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ABSTRACT 
 

This paper addresses the problem of automatically tuning in an intelligent manner so that a balance 
between efficiency and computational speed is reached. In this paper a new proposed technique 
which uses Particle Swarm Optimization (PSO) to compute the best optimal value for the PID 
parameters are presented. In this study two different performance criteria are used simultaneously 
for the optimization problem, namely Integral of Time-weighted Absolute Error (ITAE) and an output 
response based performance criteria (Fitness Function). The integration between the two 
performance criteria produces two distinct tuning techniques called Error-Fitness PSO (EFPSO) 
and Fitness-Error PSO (FEPSO). This paper also proposes new modified Time Varying 
Acceleration Coefficients (TVAC) that is used in the PSO algorithm. Finally, simulation experiment 
on a single degree of freedom robotic arm shows that the proposed techniques can produce 
optimal PID gains with good computational efficiency and improved step response characteristics. 
The proposed integration techniques can highly improve the PID tuning optimization in comparison 
with the one that use only one technique. 
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1. INTRODUCTION  
 
Proportional Integral Derivative (PID) controllers 
have been dominating the world of industrial 
controllers in the past decades. Their success 
lies in the simplicity of the controller structure, 
their robustness and flexibility [1]. 

 
The performance, safety and profitability of a 
PID-controlled system largely depend on the 
values of the controller’s parameters, namely the 
proportional, integral and differential gains. 
Manual tuning of PID controllers requires 
experienced operators able to balance the 
effects of the three parameters. In order to avoid 
this time-consuming and labor intensive task, 
numerous tuning procedures and automatic 
tuning feature were developed in the past, some 
of which are still successfully applied in 
manufacturing and process industry [2]. 

 
In recent years, optimization techniques and 
intelligent control theory has led to the 
development of meta-heuristic methods for PID 
parameter tuning. Genetic algorithm, fuzzy logic, 
neural network, ant colony, Flower Pollination 
Algorithm, simulated annealing and Particle 
Swarm Optimization (PSO) all belong to this type 
of techniques [3-9]. Rajendra and Pratihar [10], 
Bhaskaran, et al. [11], and Hamza, et al. [12], 
presented a design for an optimized Interval 
which realized by GA and PSO.  

 
Gaing [13], presented a new time domain 
performance criteria that uses the output 
response characteristics in the time domain. 
Zamani et al. [14], proposed a general 
performance criteria over both the time and 
frequency domain specifications. 

 
Mojallali, et al. [15], Soni and Bhatt [16], 
Djoewahir, et al. [17], and Sowjanya and Srinivas 
[18], achieved quantification of system 
performance through performance evaluation 
index such as IAE, ISE, ITAE, and ITSE. 

 
This paper proposes new methodology on 
intelligent tuning depends on the integration of 
two types of tuning techniques ITAE and Fitness 
Function W(K). The optimization search 
concentrates on finding the optimal PID 
controller’s gains. The fitness function based on 
time domain as well as ITAE. Moreover, the new 
methodology has the ability to keep a balance 

between swarm diversity and convergence 
speed. 
 
2. PARTICLE SWARM OPTIMIZATION 

(PSO) 
 
Since its first formulation in 1995 [19], PSO has 
received much attention within the research 
community that has led to numerous variations of 
the original algorithm [20-24] as well as 
applications in various disciplines [25-31]. The 
canonical PSO can be formulated as an 
unconstrained N-dimensional minimization 
problem as shown in Eq. (1): 
 

Min �(X)      X = [��,��,… �� ]                 (1) 
 

Where, X is a N-dimensional vector which 
represent a candidate solution, or particle, in the 
search space. 
 
At each iteration of the algorithm, the ith particle 
is characterized by the current position in the 

search space �� = [��
�,��

�,… ,��
� ] and the 

current velocity �� = [��
�,��

�,… ,��
� ]  

 
In addition, each particle remembers the best 
position it has ever reached in the search space. 
This best position of the ith particle is called the 
personal best, or 

������ = [������
�,������

�,… ,������
� ]. The fitness 

value associated with the pbest position is also 
recorded. Finally, the PSO algorithm records the 
best fitness value achieved among all particles in 
the swarm, called the global best fitness, and the 
candidate solution that achieved this fitness, 
called the global best position, or �����=
[������ ,������ ,… ,������

]. 
 
The PSO algorithm is fairly simple. Each iteration 
k consists of three steps [32]:  
 

1. Evaluate the fitness of each particle. 
2. Update individual and global best fitnesses 

and positions. 
3. Update velocity and position of each 

particle. 
 
The fitness of each particle is assessed by 
supplying the candidate solution to the objective 
function (1), also called fitness function. The 
newly evaluated fitnesses are compared with the 
previously recorded individual and global best 
fitnesses, which are replaced if necessary.  
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The last step of the algorithm updates the velocity and positions of the jth dimension of the ith particle 
using the following formulas: 
 

��
�(� + 1) = ���

�(�) + ����(������
�(�) − ��

�(�)) + ����(�����
� (�) − ��

�(�))                            (2) 

 

��
�(� + 1) = ��

�(�) + ��
�(� + 1)                                                                                                (3) 

 
The parameters r1 and r2 are uniformly 
distributed random numbers between 0 and 1 
which introduce a stochastic component in the 
search process. 
 
In recent years improvements to the 
convergence and diversity of PSO have been 
made through dynamic adaptation of these 
parameters using different methods [33-35]. 
 
The algorithm keeps iterating till a determined 
stopping criterion is met, e.g. a fixed number of 
iteration, a specified error bound or a predefined 
target fitness value is reached. 
 
In equation (2) different parameters appear 
which play a different role in the PSO algorithm. 
The first parameter w is called inertia weight.                        
Its value typically ranges between 0.8 and                   
1.2, which can either reduce the particle’s                
inertia or accelerate the particle in its original 
direction. Usually larger values of w support 
exploration of new search areas whereas smaller 
values of w facilitate fine-searching the current 
search area. 
 
The parameters c1 and c2 represent the 
weighting of the stochastic acceleration terms 
that pull each particle toward pbest and gbest 
and they are called cognitive and social 
coefficient respectively. The value of the 
cognitive coefficient c1   is usually between 0 and 
2 and determines the extent to which a particle is 
attracted towards its own personal best solution. 

Similarly, the social coefficient c2 ranges 
between 0 and 2 and determines the extent                      
to which a particle is attracted towards the                 
global best solution found so far [28]. In [36] it 
has been demonstrated that convergence of the 
algorithm is satisfied under the following 
conditions: 
 

�����

�
− 1 < � < 1                                    (4) 

 
3. PID TUNING BASED ON PSO  
 
Generally, textbooks describe the control signal 
u(t) generated by the PID controller with the 
following equation [37]: 
 

�(�) = ���(�) + �� ∫ �(�)��
�

�
+ ��

��(�)

��
        (5) 

 
in which e is the difference between the between 
the measured process variable y and the 
reference or set point ysp. The control signal is 
therefore a sum of three terms: the proportional 
term directly related to the error e through the 
constant Kp, the integral term proportional to the 
integral of the error e through the constant Ki and 
the derivative term proportional to the derivative 
of the error e through the constant Kd.  
 
As mentioned before, the performances of the 
PID controller largely depends on the values of 
the parameters Kp, Ki, Kd. PSO-based tuning of 
these parameters is generally centered on error 
criteria, as shown in Fig. 1. 

 

 
 

Fig. 1. PSO-PID control loop 



In other words, the performance criterion 
considered in the PSO optimization problem 
is a standard PID integral performance 
criterion such as the Integral Absolute Error
(IAE), or the integral of time
absolute error (ITAE), or the integral of 
squared-error (ISE), or the 
Time-Weighted-Squared Error (ITSE) [
These criteria are expressed by the following 
equations: 

 

��� = ∫ |�|
�

�
��                                   

 

���� = ∫ �|�|
�

�
��                        

 

���= ∫ �� ��
�

�
                                    

 

���� = ∫ ��� ��
�

�
                                      

 
In [13] a new performance criterion is presented. 
This method uses the output response 
characteristics in the time domain, such as 
overshoot Mp, rise time tr , settling time 
steady-state error ess to evaluate the choice of 
Kp, Ki, Kd. The performance criterion 
defined as: 

 
����  ������������ (� ) = 

�1 − ��� ��� � + ����+ ��� (�� − ��

 
Where, K=[Kp  Ki  Kd], and β is a weighting factor 
set in the range between 0.8 and 1.5.

 
4. PROPOSED PSO-PID CONTROLLER
 
In this work, two different tuning techniques are 
proposed, the Error-Fitness PSO (EFPSO) and 
Fitness-Error PSO (FEPSO) which use a 
combination of two performance criteria to 
search and find the optimal PID controller’s 
gains. The two performance criteria used are the 
ITAE and the output response based 
performance criteria W(K) introduced above. The 
integration of these two performance criteria has 
been empirically investigated, analyzed and 
verified.  

 
4.1 EFPSO 
 
The EFPSO technique implicitly depends on the 
combination of two equations; the fitness function 
W(K), that can satisfy the set design 
requirements depending on the set of numbers 
for the adaptation based on the expected 
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In other words, the performance criterion 
considered in the PSO optimization problem               
is a standard PID integral performance                   

Integral Absolute Error         
or the integral of time-weighted                   

absolute error (ITAE), or the integral of                
error (ISE), or the Integral of                 

(ITSE) [18,15]. 
These criteria are expressed by the following 

                                   (6) 

                                   (7) 

                   (8) 

                            (9) 

] a new performance criterion is presented. 
This method uses the output response 
characteristics in the time domain, such as 

, settling time ts , and 
to evaluate the choice of 

. The performance criterion W(K) is 

�)                 (10) 

is a weighting factor 
set in the range between 0.8 and 1.5. 

CONTROLLER 

In this work, two different tuning techniques are 
Fitness PSO (EFPSO) and 

Error PSO (FEPSO) which use a 
combination of two performance criteria to 
search and find the optimal PID controller’s 

ce criteria used are the 
ITAE and the output response based 

introduced above. The 
integration of these two performance criteria has 
been empirically investigated, analyzed and 

depends on the 
combination of two equations; the fitness function 

, that can satisfy the set design 
requirements depending on the set of numbers 
for the adaptation based on the expected 

parameters, and ITAE, as shown in the following 
equations: 
 

����� = ����� ������− ����

 

���� = ∫ �|�����|
�

�
��                           

 
The complex derivation process and the time 
consuming of ITAE through each population 
leads to use the fitness function W(K)
the updating of velocities and positions as 
illustrated in the flowchart of Fig. 2.
 

 
Fig. 2. PSO Using Error-Fitness Function 

technique (EFPSO)

 
4.2 FEPSO 
 
FEPSO technique operates in a similar manner 
as the EFPSO. The latter differs from the first in 
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parameters, and ITAE, as shown in the following 

�  ������������ (� ) 

(11) 

                         (12) 

The complex derivation process and the time 
consuming of ITAE through each population 

W(K) only after 
the updating of velocities and positions as 
illustrated in the flowchart of Fig. 2. 

 

Fitness Function 
que (EFPSO) 

FEPSO technique operates in a similar manner 
as the EFPSO. The latter differs from the first in 



the sequence of steps as illustrated in the 
flowchart of Fig. 3. The superiority of the FEPSO 
techniques with respect to the EFPSO is 
demonstrated by the better results obtained 
using FEPSO, although the computed optimal 
PID gains were greater than the gains that 
obtained from EFPSO. 

 

 
Fig. 3. PSO Using Fitness – Error technique 

(FEPSO) 
 

5. SIMULATION RESULTS  
 

5.1 Robotic ARM System 
 
The proposed tuning techniques for the PID 
controller have been tested on a single degree of 
freedom robotic arm. We assumed the system as 
a two links robot connected by single joint driven 
by a DC motor as shown in Fig. 4. 
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the sequence of steps as illustrated in the 
flowchart of Fig. 3. The superiority of the FEPSO 
techniques with respect to the EFPSO is 

results obtained 
using FEPSO, although the computed optimal 
PID gains were greater than the gains that 

 

Error technique 

techniques for the PID 
been tested on a single degree of 

freedom robotic arm. We assumed the system as 
a two links robot connected by single joint driven 

 
Fig. 4. Single DOF robotic arm

 
The DC motor directly provides a rotatory motion 
proportional to the applied input voltage. The 
electrical model of such a DC motor is shown in
Fig. 5. 
 

 
Fig. 5. Electrical model of DC 

 
Where, Va is the armature voltage, 
armature resistance, La is the armature 
inductance, T is the motor torque, 
emf and θm is the angular displacement of the 
motor shaft. 
 
In this work, we assumed that the input of the 
system is the voltage source Va 
motor's armature, while the output is the angular 
position of the shaft θm 

 
The control problem consists of controlling the 
angular positioning of the link by regulating the 
armature voltage of the motor.  
 
The dynamic of the single joint 
approximated using the following transfer 
function [38]: 
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robotic arm 

The DC motor directly provides a rotatory motion 
proportional to the applied input voltage. The 
electrical model of such a DC motor is shown in 

 

of DC motor 

is the armature voltage, Ra is the 
is the armature 

is the motor torque, eb is the back 
is the angular displacement of the 

In this work, we assumed that the input of the 
 applied to the 

motor's armature, while the output is the angular 

The control problem consists of controlling the 
angular positioning of the link by regulating the 

The dynamic of the single joint can be 
approximated using the following transfer 
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��(�)

��(�)
=

��

��(������ ���������� ��������� ���� �)�
   

(13) 
 

Since the electrical time constant is much bigger 
than the electrical time constant of the motor 
then the armature inductance La can be 
neglected.  

 
Hence,  
 

��(�)

��(�)
=

��

��(������� ������� ���� �)�
           (14) 

 
Where, the following variables for the single joint 
are: 

 
Jm = Moment of inertia of the motor referred to 

the motor shaft. 
JL = Moment of inertia of the motor referred to   

the load shaft. 
Jeff = Jm+n2JL=1  (oz.in.s2/rad). 
La = 0 Henry: Armature inductance.  
Ra=1.3 Ohm: Armature resistance. 
n =1: Gear reduction ratio. 
fm = Viscous friction coefficient related to the 

motor shaft. 
fL = Viscous friction coefficient related to the 

load shaft. 
feff = fm+n2fL = 0.11 N-m.s/rad 
Ka = 1 N-m/A: Motor torque proportional 

constant. 
Kb = 0.33 V-s/rad: Proportionality constant 

between ω (angular speed) and eb (back 
emf). 

 
If there is a gear train between the motor and 
load, then the angular displacement of the load 

θL is different from the angular displacement of 
the motor θm. The angles are related by the gear 
ratio relationship, described by the following 
equation: 

 
��

��
= �                                                     (15) 

 
Therefore, equation (14) becomes 

 
��(�)

��(�)
=

���

��(������� ������� ���� �)�
            (16) 

 
The block diagram for the position control of the 
robotic arm is shown in Fig. 6. 

 
The robotic arm system was first controlled by a 
PID tuned using the classical Ziegler-Nichols 
method [39,40]. The computed PID gains Kp, Ki 
and Kd are illustrated in Table 1. 
 

Table 1. PID gains based on Ziegler Nichols 
technique 

 
Gain Value 
Kp 0.666 
Ki 0.00877

 

Kd 0.1266 
 
With these parameters, the closed loop transfer 
function of the control system becomes: 

 
��(�)

�� (�)
=

�.��������.������.�����

����.��������.������.�����
        (17) 

 
The step response of the control system tuned 
using the Ziegler-Nichols method is shown in          
Fig. 7. 

 

 
 

Fig. 6. Position and velocity block diagram for DC motor robot arm  
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Fig. 7. Step response for closed loop system  

 
5.2 Experimental Results 
 

The performance of the proposed techniques has 
been verified through simulation. The optimal 
PID gains have been obtained using EFPSO and 
FEPSO techniques. The output of the system 
was carried out through step response to verify 
the stability response, speed and steady state 
error for the system. 
 

A nonlinearly decreasing inertia weight is used to 
investigate the influence of path variant of 
decreased inertia weight. Nonlinearity degree of 
the path adjusted by nonlinear index number x. 
This number can significantly affect the 
performance of PSO. The nonlinearly decreasing 
inertia weight is [32]: 
 

� =  ����  +  (���� − ����) .�
������

������
�

�
                                

(18) 
 

Where, x is the nonlinear index number. 
Normally, x is set to 1.5 for the best performance. 
kmax is the number of maximum iteration and k is 
the current number of iterations.   
 

The parameter x was set to 1.5 for the best 
performance, whereas the inertia weight 
parameters wmax and wmin were set to 0.9 and 0.4 
respectively, which provided a balance between 
global and local explorations. 
 

Time Varying Acceleration Coefficients (TVAC) 
were used to avoid premature convergence in 

initial iterations of the search and to improve 
convergence to the global optimum solution 
during the final stages of the search.  
 
In this work we proposed and modified the TVAC 
to be as given by Eq. (19) and (20): 

 

�� = (��� − ���) �
�

����
� + ���              (19) 

 

�� = (��� − ���) �
�

����
� + ���             (20) 

 
Where c1s and c2s are the initial values of the 
acceleration coefficients c1 and c2. c1L and c2L are 
the final values of the acceleration coefficients c1 
and c2. The suggested value of c1 from 2.5 to 0.5 
and c2 from 0.5 to 2.5 results in good 
performance of PSO [41]. 
 
5.2.1 Simulation for EFPSO technique  
 
To verify the effectiveness of the proposed 
EFPSO technique simulations were carried out 
with the control parameters tuned according                
to the trials and swarm populations shown in 
Table 2.  
 
More than one trial were randomly generated for 
each swarm population. It was noticed that the 
best output responses was obtained in 
correspondence to the maximum performance 
indexes. This means that the boundary of each 
gain for the PID controller can be obtained and 
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its effectiveness on the output response can be 
observed. ITAE and W(K) values had a 
convergence in shape and divergence in position 
and magnitude and that gives a remarkable 
ability for more controllable tuning parameters 
between these two techniques. In other words, 
the particles position can be measured and 
adjusted prematurely or currently regarding to 

the optimization method (comparing algorithm in 
Fig. 2) which related to the designer, as 
illustrated in Figs. 8, 9, 10 and 11, where the step 
response for maximum performance indexes 
also is shown to verify the performance of the 
EFPSO technique. For Swarm population of 30 it 
was difficult to get a stable system as the 
boundary of gains was very narrow. 

 
Table 2. Simulation result for EFPSO 

 
Trial Kd Kp Ki Performance 

indexes 
Best fitness Swarm 

population 

1 22.8614 36.1007 3.9029 5.5727e-008 1.0020 100 

2 6.9747 5.4601 1.4334 5.2687e-008 0.9243 100 

3 20.5825 28.7669 4.0385 5.7324e-008 1.0001 100 

4 16.0205    20.3322     7.0730 6.3158e-008 0.8708 70 

5 9.9372     9.0213     3.6974 3.6082e-010 0.9924 70 

6 14.9605    15.7296     9.5327 3.7073e-008 0.9426 70 

7 17.1273 15.8685 14.1294 6.3806e-008 0.9901 50 

8 9.6634 8.1553 3.0706 2.9757e-008 0.9592 50 

9 5.4900 5.2084 0.0607 1.6806e-007 0.7042 50 

10 8.2752     2.0875     0.5690 9.9217e-008 0.8077 30 

11 Difficult to get a stable system 30 

12 Difficult to get a stable system 30 

 

 
 

Fig. 8. Fitness, ITAE, error and step response of robot arm using EFPSO for 100SP 
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Fig. 9. Fitness, ITAE, Error and step response of robot arm using EFPSO for 70SP 
 

 
 

Fig. 10. Fitness, ITAE, error and step response of robot arm using EFPSO for 50SP 
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Fig. 11. Fitness, ITAE, error and step response of robot arm using EFPSO for 30SP 

 
5.2.2 Simulation for FEPSO technique  
 
In This section, the simulation shows the stability 
boundary for various trials for difference swarm 
populations for the PID controller gains, as 
illustrated in Table 3. 
  
The results indicate that the obtained PID                   
gains were higher compared with that                          

one obtained through EFPSO. The results                    
also show that the best output response was 
obtained in correspondence of minimum fitness 
value for the same swarm population. The 
proposed tuning FEPSO technique can produce 
optimal PID gains that affect the system to get 
better output response compared with the 
classical PSO, as illustrated in Figs. 12, 13, 14 
and 15. 

 
Table 3. Simulation result for FEPSO 

 
Trial Kd Kp Ki Best fitness Performance indexes Swarm population 

1 287.0102 27.8888 13.2988 0.1972 5.1764e-008 100 

2 144.5535 17.0928 14.0902 0.1982 1.3534e-008 100 

3 70.4271 23.7048 31.1467 0.1973 7.7777e-008 100 

4 21.8193   12.8355    2.9018 0.1976 1.5233e-007 70 

5 651.0239   12.6835    6.6429 0.1978 4.0027e-008 70 

6 15.7645   10.1152    4.3912 0.2001 6.6046e-009 70 

7 40.9398 16.8193 12.3807 0.2010 1.4577e-008 50 

8 16.3631 9.7694 0.3701 0.2016 7.0698e-008 50 

9 10.4255 6.2375 0.8608 0.2064 1.0175e-008 50 

10 5.1896     2.8900     0.5757 0.2345 1.8025e-007 30 

11 7.3202     5.8264     0.0703 0.2417 1.3463e-007 30 

12 4.6902     3.1122     1.5118 0.2367 1.9786e-006 30 
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Fig. 12. Fitness, ITAE, error and step response of robot arm using FEPSO for 100SP 

 

 
 

Fig. 13. Fitness, ITAE, error and step response of robot arm using FEPSO for 70SP 
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Fig. 14. Fitness, ITAE, error and step response of robot arm using FEPSO for 50SP 
 

 
 

Fig. 15. Fitness, ITAE, error and step response of robot arm using FEPSO for 30SP 
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The sophistication of the proposed techniques 
coming from keeping a balance between swarm 
diversity and convergence speed in addition, the 
simulation results showed that both EFPSO and 
FEPSO outperform classical PSO, with FEPSO 
technique performing better than the EFPSO. 
Finally, the new proposed time varying 
acceleration coefficients (TVAC) shows a good 
ability for particles to determine the extent to 
which a particle is attracted towards its own 
personal best solution, and towards the global 
best solution. 
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