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ABSTRACT 
 

In this paper we show that the generalization of the virial theorem can be achieved for 
nonrelativistic quantum mechanical systems under the conditions of rotational symmetry and the 
constancy of the trace of moment of inertia tensor. Under these conditions the matrix elements of 
the commutator of the generator of dilations G and the Hamiltonian H are equal to zero on the 
subspace of the Hilbert space generated by the simultaneous eigenvectors of the particular 
maximal set of commuting self-adjoint operators which contains H, J2, Jz, the trace of the moment 
of inertia tensor TrI and additional operators. The result obtained is relevant for an important class 
of N-particle nonrelativistic quantum mechanical systems. 
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1. INTRODUCTION 
 
In general, virial theorem represents a very 
important information about the dynamical 
behaviour of many integrable and nonintegrable 
systems with useful applications. The literature 
on the quantum mechanical virial theorem for the 
nonrelativistic systems described by Schrödinger 
equation, and relativistic systems described by 
Klein–Gordon, Salpeter or Dirac equation, is 
large and extensive, an here we mention only a 
part  [1-16]. Quantum mechanical virial theorem 
in general is a statement [3] that the expectation 
values of the commutator of the generator of 
dilations G  and the Hamiltonian H  are equal to 
zero, 
 

[ ] ,0, =nHGn                                       (1) 

 
when taken with respect to the normalized 
eigenvectors of H , 
 

1, == nnnEnH n             (2) 

 
This argument is only formal since the generator 
of dilations G , given for N-particle system by 
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is an unbounded operator, and therefore, n

need not be in a domain of operator G  [6, Vol. 
4, 231].  
 
If the N-particle Hamiltonian has the form 

)()(),( rppr VTH += , then using (1), and the 
relations derived in reference [3], it follows that  
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Here, )(pT and )(rV  are the kinetic and 

potential energy operators, respectively; p
denotes the set of momentum operators 
( )Npp ,,1 K  and r denotes the set of position 

operators ( )Nrr ,,1 K  of the N-particle system. 

Therefore, quantum mechanical virial theorem is 
a relation between the expectation values of the 
directional derivatives of the kinetic and potential 
energy operators taken with respect to the 
eigenvectors of H . 

In the recent paper [15] we have shown that the 
generalization of the virial theorem (1) can be 
proved for translationally and rotationally 
invariant nonrelativistic and relativistic 
Hamiltonians, under certain strong additional 

conditions, on the subspace { }( )αΩ,,, 2
zJJHD  

of the Hilbert space. { }( )αΩ,,, 2
zJJHD  is 

generated by the set of normalized simultaneous 

eigenvectors { }n  of the maximal set of 

commuting self-adjoint operators which contains 

H , 2J , zJ  and additional operators { }αΩ . 
 
Under the conditions required in [15], the matrix 

elements of the commutator [ ]HG, , taken 

between all { }nmn ∈,  are equal to zero  

 

[ ] { }nmnnHGm ∈∀= ,,0,   (5) 

 
Therefore, for an arbitrary state vector 

∑=
n n ncψ  in the subspace 

{ }( )αΩ,,, 2
zJJHD  generated by the basis { }n

, the relation 
 

[ ] { }( ),,,,,0, 2 αψψψ Ω∈∀= zJJHDHG   (6) 

 
is obtained. This is a generalization of the 
quantum mechanical virial theorem, on the 

subspace { }( )αΩ,,, 2
zJJHD  of the Hilbert 

space.  
 
In this paper, we set out to prove that for 
rotationally symmetric nonrelativistic quantum 
mechanical systems, with the constant trace of 
the moment of inertia tensor, such a 
generalization is possible under much weaker 
conditions: 
 
Theorem 1 
 
Suppose that commutator of the N-particle 
nonrelativistic Hamiltonian )()( rp VTH +=  
with the generator of rotations, operator of total 
angular momentum J , is equal to zero. Let the 
commutator of the Hamiltonian  H  with the trace 
of the moment of inertia tensor ITr  also be 
equal to zero. Additional self-adjoint operators 
that commute with H  may also exist. The 

additional self-adjoint operators αΩ  which 

commute with H , 2J , zJ , ITr  and also among 
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themselves form the set { }αΩ . Normalized 
simultaneous eigenvectors of the maximal set of 

commuting operators { }{ }αΩ,Tr,,, 2 IzJJH  
which belong to the Hilbert space form an 
orthonormal basis in the subspace 

{ }( )αΩ,Tr,,, 2 IzJJHD . Suppose that the 

generator of dilations G  is defined on 

{ }( )αΩ,Tr,,, 2 IzJJHD . Then the matrix 
elements of the commutator of the Hamiltonian 
H  with the generator of dilations G  are equal 
to zero on the subspace  

{ }( )αΩ,Tr,,, 2 IzJJHD  of the Hilbert space. 
 

2. THE PROOF OF THEOREM 1 
 
Under Theorem 1, the condition of rotational 
symmetry is satisfied, since it is required that the 
following commutator is equal to zero 
 

[ ] ,0, =JH                                                  (7) 
 

Here, ∑ =
= N

i i1
JJ is the operator of the total 

angular momentum for a system of N particles. 
As given by (3), the generator of dilations G  is a 
scalar operator and therefore invariant to 
rotations. This means that G  commutes with the 
generator of rotations, operator of the total 
angular momentum J , 
 

[ ] .0, =JG                                                  (8)    
 

In classical mechanics, the components of the 
moment of inertia tensor I  are given by, 
 

( ),
1

2∑
=

−=
N

i
iiii rrrmI βααβαβ δ                        (9) 

 

where im  is the mass and αir , βir , with 

3,2,1, =βα , are the Cartesian components of 

the position vector ir of the i th particle. The 

trace of the moment of inertia tensor ITr  is a 
scalar defined by  
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Therefore, in quantum mechanics the trace of the 
moment of inertia tensor  ITr  is a scalar 
operator, invariant to rotations. In classical 
mechanics, ITr  is equal to 

,Tr 321 III ++=I                                    (11) 

 

where 1I , 2I  and 3I  are the components of the 

moment of inertia tensor in the system of 
principal axes, where it is diagonal. 
 
Furthermore, under the conditions of Theorem 1, 
the trace of the moment of inertia tensor ITr  
commutes with the Hamiltonian H , 
 

[ ] .0Tr, =IH                                            (12) 
 
This means that, together with the total angular 
momentum operator J  in (7), operator ITr  is 
also a constant of the Heisenberg equation of 
motion. Suppose that in addition J  and ITr , 
other self-adjoint operators that commute with 

H  exist. The set { }αΩ  is then formed by all self-
adjoint operators satisfying the following 
relations: 
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Therefore, the set { }{ }αΩ,Tr,,, 2 IzJJH  is the 
maximal set of commuting self-adjoint operators. 

The subspace { }( )αΩ,Tr,,, 2 IzJJHD  of the 

Hilbert space is generated by the set of 

normalized simultaneous eigenvectors { }n ,  
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of the maximal set of commuting self-adjoint 

operators { }{ }αΩ,Tr,,, 2 IzJJH ; 
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From (8) and (15) it follows that the commutators 

of the operators 2J  and zJ , with the operator 

G , if taken between any { }nmn ∈, , are 

equal to 
 

[ ]
( ) ( )[ ] ,011

,
2

2

=+−+= hmmnn jjjjnGm

nJGm
   (16)  

 
and 
 

[ ] [ ] .0, =−= hmnz mmnGmnJGm   (17) 

 
From (16) and (17) it follows that the matrix 
elements of the operator G  are equal to zero, if 
taken between the eigenvectors with different j  

and between the eigenvectors with different m ,  
 

{ }
{ }
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Using (18), we then obtain that for the following 
cases the matrix elements of the commutator 

[ ]HG, are equal to zero: 
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Therefore, to complete the proof that 

[ ] 0, =nHGm  for all eigenvectors 

{ }nmn ∈∀ , , we still have to show that the 

relation 0=nGm  is true for all eigenvectors 

{ }nmn ∈,  for which mn jj = , mn mm =  

and mn EE ≠ .  

 
The Heisenberg equation of motion for the 
position operator ir of i th particle in the 

nonrelativistic quantum mechanics gives 
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Using (3), (10) and (20), we obtain that  
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The trace of the moment of inertia tensor ITr  
commutes with the Hamiltonian H , as given by 
relation (12). In general, if A  and B  are both 
unbounded self-adjoint operators, the 

commutator [ ]BA,  a priori is only defined as a 

quadratic form on the intersection of their 

domains, i.e. on ( ) ( )BDAD ∩  [7]. Therefore, 
relations (12) and (21) really mean that on the 

subspace { }( )αΩ,Tr,,, 2 IzJJHD , generated 

by the set of simultaneous eigenvectors { }n  of 

the set of commuting operators 

{ }{ }αΩ,Tr,,, 2 IzJJH , where the commutator 

[ ]ITr,H  is defined, the matrix elements of 

operator G  are all equal to zero  
 

{ }.,,0 nmnnGm ∈∀=       (22) 

 
Using (15) and (22) we then obtain that   
 

[ ] { },,,0, nmnnHGm ∈∀=   (23)  

 
which is what we set out to prove. 
 
3. CONCLUSION 
 
In this work we derived the generalized version 
of the quantum mechanical virial theorem for 
nonrelativistic N-particle systems with rotational 
symmetry, which are characterized by the 
constant trace of the moment of inertia tensor. In 
that sense, the work also represents the 
application of the generalized hypervirial relation 
on the example of trace of the moment of inertia 
tensor. It is known that hypervirial approaches 
lead to important recurrence relations between 
the matrix elements [17]. Classically, the trace of 
the moment of inertia tensor is equal to the sum 

321 III ++  of the moments of inertia about the 

principal axes. The result obtained could be 
applicable to quantum systems known to have 
this property. There are many possible 
applications, for example, in nonrelativistic 
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models for nuclei with the constant moments of 
inertia, where the nucleons are moving in a self-
consistent field [18]. Also in a molecular models, 
when the electronic contribution to the tensor of 
inertia, and coupling between the rotational 
motion of the molecule and its other degrees of 
freedom (vibrational and electronic) could be 
neglected.    
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