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Abstract

The recent characterization of transiting close-in planets has revealed an intriguing population of sub-Neptunes with
highly tilted and even polar orbits relative to their host star’s equator. Any viable theory for the origin of these close-
in, polar planets must explain (1) the observed stellar obliquities, (2) the substantial eccentricities, and (3) the
existence of Jovian companions with large mutual inclinations. In this work, we propose a theoretical model that
satisfies these requirements without invoking tidal dissipation or large primordial inclinations. Instead, tilting is
facilitated by the protoplanetary disk dispersal during the late stage of planet formation, initiating a process of
resonance sweeping and parametric instability. This mechanism consists of two steps. First, a nodal secular resonance
excites the inclination to large values; then, once the inclination reaches a critical value, a linear eccentric instability is
triggered, which detunes the resonance and ends inclination growth. The critical inclination is pushed to high values
by general relativistic precession, making polar orbits an inherently post-Newtonian outcome. Our model predicts that
polar, close-in sub-Neptunes coexist with cold Jupiters in low stellar obliquity orbits.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet evolution (491); Exoplanet
formation (492); Protoplanetary disks (1300)

1. Introduction

Although a large fraction of the multi-planet systems
discovered by the Kepler spacecraft exhibit a great degree of
coplanarity (Winn & Fabrycky 2015), some systems possess
significant mutual inclinations (Mills & Fabrycky 2017; Zhu
et al. 2018; Xuan & Wyatt 2020), pointing to unruly dynamical
histories. Similarly, a large stellar obliquity—the tilt between
the planet’s orbital plane and the stellar equator—can also
indicate a period of dynamical upheaval. Ensembles of
obliquity measurements can be used to probe the origin and
dynamics of tilted systems (e.g., Fabrycky & Winn 2009;
Morton & Winn 2014; Muñoz & Perets 2018), providing a
powerful tool to study planet formation.

Due to observational selection, most measurements of stellar
obliquity have been made for hot Jupiter systems. Naturally,
most theoretical efforts have focused on explaining the
obliquities of these systems. Lower-mass planets, however, are
far more common than hot Jupiters (Winn & Fabrycky 2015),
and are less likely to realign the star via tidal interactions.
Consequently, smaller-mass planets offer a more representative
and a more pristine probe into the typical planet-formation
process. Fortunately, modern instruments and novel analysis
techniques are beginning to provide obliquity measurements for
planets in the sub-Neptune category. In Figure 1, we display a
subset of systems with obliquity measurements, highlighting 13
systems hosting sub-Neptunes, five of which are dramatically
tilted into polar orbits.

Among the peculiarities of polar Neptunes, we highlight their
propensity to have Jovian outer companions (Yee et al. 2018),
their non-negligible eccentricities (Correia et al. 2020), and their
occurrence in compact multi-planet systems (Dalal et al. 2019).
These properties limit the applicability of theoretical models
developed to explain obliquities in hot Jupiters systems. For
example, tilting the entire protoplanetary disk (e.g., Batygin
2012) fails to explain why the inner planets in HAT-P-11 and π

Mensae have substantial mutual inclinations relative to their
outer giant planet companions (Damasso et al. 2020; De Rosa
et al. 2020; Xuan & Wyatt 2020), nor does it account for the
significant eccentricities of close-in sub-Neptunes (e.g., HAT-P-
11b has e;0.2). The widely invoked mechanism of high-
eccentricity migration that naturally leads to large obliquities of
planets lacking nearby neighbors, is halted by the presence of
other close-in planets (Mustill et al. 2015), thus failing to explain
polar compact multi-planet systems like HD-3167 (Dalal et al.
2019). Moreover, the high-eccentricity migration hypothesis
does not address the origin of the large initial inclinations
required for the mechanism to operate (e.g., 70° as proposed in
GJ-436, Bourrier et al. 2018).
In this work, we propose a model that can explain eccentric,

polar orbits of close-in planets that requires only the presence of
an outer Jovian companion and a slowly decaying outer
protoplanetary disk. As the disk decays, high stellar obliquities
are generated via a two-step process: (1) a nonlinear secular
resonance that excites orbital inclination, and (2) saturation of
inclination via a linear eccentric instability. This process produces
highly inclined planets, often with eccentric orbits, and does not
require extreme primordial inclinations of the planets or the disk.

2. Two-planet Systems with Dispersing Disks

Close-in planets (ain0.1 au) are often accompanied by
cold Jovians ( ~ -a 1 5out au; Zhu & Wu 2018; Bryan et al.
2019; Fernandes et al. 2019). A subset of these systems with
inner sub-Neptunes have high obliquities (see Figure 1).
Though a range of formation models are still in play for close-
in planets in general, the substantial gaseous envelopes of these
planets indicate that they coexisted with a protoplanetary disk
at some point in their evolution (Lee & Chiang 2016). We
describe below our motivation for a simplified physical model
of a two-planet system with an outer, slowly dispersing,

The Astrophysical Journal Letters, 902:L5 (10pp), 2020 October 10 https://doi.org/10.3847/2041-8213/abb952
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-0412-9314
https://orcid.org/0000-0003-0412-9314
https://orcid.org/0000-0003-0412-9314
https://orcid.org/0000-0003-2186-234X
https://orcid.org/0000-0003-2186-234X
https://orcid.org/0000-0003-2186-234X
https://orcid.org/0000-0001-5253-1338
https://orcid.org/0000-0001-5253-1338
https://orcid.org/0000-0001-5253-1338
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
http://astrothesaurus.org/uat/490
http://astrothesaurus.org/uat/491
http://astrothesaurus.org/uat/492
http://astrothesaurus.org/uat/492
http://astrothesaurus.org/uat/1300
https://doi.org/10.3847/2041-8213/abb952
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/abb952&domain=pdf&date_stamp=2020-10-07
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/abb952&domain=pdf&date_stamp=2020-10-07


protoplanetary disk. We also derive an analytic model for the
secular evolution of such a system.

2.1. Initial Conditions

The innermost regions of protoplanetary disks are complex
environments whose properties are likely set by the interplay
between high-energy stellar radiation and magnetic fields
(Dullemond & Monnier 2010; Ercolano & Pascucci 2017). The
large and diverse population of “transition” disks (those with
inner regions depleted of gas, dust, or both) indicate that
planetary systems interior to 1 au might coexist with a more
massive external disk (e.g., Espaillat et al. 2014; Andrews et al.
2018). The existence of transition disks with inner holes of
5 au motivate our simplified model in which the (dynamically
relevant) protoplanetary disk lies near but exterior to the orbit
of any Jovian planet located at 1 au.

We consider systems composed of two planets with masses
Min and Mout, evolving secularly in the presence of an outer
gas disk. The disk is assumed to follow a Mestel profile
(M(<r)∝r), with a total mass Mdisk(t), and inner and outer
radii given by Rin and Rout, respectively. In addition to the
mutual perturbations between the planets, the outer planet is
coupled to the gravitational potential of the disk, while the
inner planet is coupled to the quadrupolar field induced by
stellar rotation and undergoes apsidal precession from post-
Newtonian effects. The planet orbital elements are ain, ein, Iin,
win and Win for the inner planet, and similarly for the outer
planet.

We evolve the system throughout the gas dispersal phase,
which is short enough for tidal dissipation with the star to be
ignored. The system is assumed to have formed in near-
alignment (i.e., with small obliquities and relative inclinations).
Thus, any high inclinations are generated self-consistently,
which is an important distinctive feature of this model.

2.2. Resonantly Excited Inclinations

Inclinations can be resonantly excited if the nodal precession
rates of the inner and outer planets encounter a commensurability

(e.g., Ward et al. 1976). In the presence of an external disk, the
nodal precession rate of the outer planet is proportional to Mdisk

and typically fast (W Wout in∣ ∣ ∣ ∣   ). As the disk disperses, Wout∣ ∣
decreases, inevitably reaching (W » Wout in∣ ∣ ∣ ∣  ) in a process termed
“secular resonance passage” or “scanning secular resonances”
(Heppenheimer 1980; Ward 1981).
The Hamiltonian of the secular system (Equation (A1)) can

be reduced to a simplified model for =e 0in (Equation (B12)).
The simplified model mimics the “second fundamental model
of resonance” (Henrard & Lemaitre 1983), which is a one-
degree-of-freedom Hamiltonian with a pair of canonically
conjugate variables, and a conserved quantity (Equation (B6))
proportional to

º - + - M a I M a I1 cos 1 cos . 1in in
1 2

in out out
1 2

out( ) ( ) ( )

The model has one free parameter Δ, which defines a “distance
to resonance” (Appendix B)
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where ξdisk measures the relative precession rates of the outer
planet (driven by the disk) and the inner planet ( W Wout in∣ ∣ ∣ ∣   ),
and ηå the relative strength of the stellar quadrupole and the
two-planet interactions. These are defined as follows:
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and (e.g., Tremaine et al. 2009)
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In Equation (4), J2 is the star’s second zonal harmonic, which
can be related to the stellar rotation period På by (Sterne 1939)
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Figure 1. Measured stellar obliquity for close-in planets (a0.1 au) as a function of the host star’s effective temperature. The gray circles show the sample of hot
Jupiters (Mp>0.3MJ and P<10 days) with reliable obliquity measurements (1-σ errors < 20°). The larger red circles show the sample of planets with either sizes or
masses comparable to or smaller than that of Neptune, specifically Rp<6R⊕ and/or Mp<30M⊕. The data is taken from the TEPCat Catalog as of 2020 August
(Southworth 2011, http://www.astro.keele.ac.uk/jkt/tepcat) with most values corresponding to projected stellar obliquities, though a small fraction are non-projected
values. When both are available, we use the latter.
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where k2 is the tidal Love number, which is ;0.2 for the fully
convective, pre-main-sequence (PMS) stars that we consider
here (e.g., Claret 2012).

Resonance crossing occurs whenΔ=0, i.e., when ξdisk=1
(Equation (2)). In this simplified model, resonant capture is
guaranteed if the following conditions are met (Henrard &
Lemaitre 1983): (1) D > 0 when Δ=0, which requires a
decaying disk with initially enough mass such that ξdisk>1;
(2) the starting inner planet inclination Iin,0 is sufficiently low,
so h< µ + I I I 1in,0 in, cap out

1 3[ ( )] (Equation (B14)); and (3)
the resonance is crossed with a sufficiently small Mdisk to
preserve adiabatic invariance (Equation (B17)).

The constraint that the resonance is crossed “adiabatically”
can be written as

t t< º
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is the adiabatic time, Pin is the inner planet’s orbital period, and
τdisk is the disk dispersal time, which can itself be a function of
time. The degree of adiabaticity can be quantified in the
“adiabatic parameter” t tºxad disk adia. As we show in
Section 3, the three conditions for resonance capture are met
for a wide range of realistic initial conditions.

During resonant capture, the system follows a slowly
evolving fixed point in phase space, which corresponds to
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(Petrovich et al. 2013). For D 1 , » Dx 3* . Therefore,
after the resonance has been crossed, and x  0disk , it is easy to
check that Icos 0in , i.e., the inner orbit inexorably
approaches a polar configuration if allowed by the conservation
of angular momentum deficit (Equation (1); I 3.7out,0 for
our fiducial parameters) and if the orbit remains circular. The
latter constraint represents the aforementioned second phase of
our mechanism, which we describe below.

2.3. Exponential Eccentricity Growth and Resonance Detuning

In the simplified treatment of resonant capture, we have
assumed =e 0in and arbitrary eout at quadrupolar order.

5

A simplified linear stability analysis of the inner orbit
(Appendix C) shows that initially circular orbits are unstable to

eccentricity growth when
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measures the relative strength of general relativity (GR)
corrections with respect to the two-planet interaction. For
fiducial parameters, ηGR∼20, which inhibits eccentricity
growth (Fabrycky & Tremaine 2007; Liu et al. 2015).
Because Iin approaches the unstable region (Equation (10))

from below, the relevant threshold is
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which is a generalization of the well-known von Zeipel–Lidov–
Kozai critical angle I 39 .2in  , recovered when h h= = 0GR .
An important consequence from Equation (12) is that all

inclinations are stable if

h h+  6 13GR ( )

in which case the resonant mechanism would pump inclina-
tions all the way to 90° while the orbit remains circular
(Equation (8)). In Liu et al. (2015), the authors also consider
the effect of oblateness, but only for zero-obliquity, in which
case J2 can only amount to a stabilizing effect. Indeed, from
Equation (50) of that paper, one can derive that the
unconditional stability requirement in such a case is
h h> - 6GR

4

3
. Both conditions reduce to Equation (36) of

Fabrycky & Tremaine (2007) when ηå=0.
The limit of ηå?1 and ηGR≈0 is also interesting. In this

case, Icrit≈63°.4, known as the “critical inclination” in geo-
satellite dynamics, which marks the boundary between
prograde to retrograde apsidal precession. Around 63°.4, there
is a narrow unstable region of width ΔI=2/ηå. Therefore, in
this limit, resonance detuning takes place at » I 63in ,
saturating the final inclination to this value. Conversely, for
Icrit to be greater than 63°.4, one must require

h h+ > >6 4 eccentric, inclined orbits 14GR ( ) ( )

Consequently, values of ηGR greater than 4 are instrumental in
overcoming this early-onset saturation of inclination, and in
tilting orbits toward nearly polar configuration. In this sense,
the creation of polar-orbit planets is inherently a post-
Newtonian effect.

3. Predicted Obliquities

3.1. Behavior of the Fiducial System

To test the predictions of the analytical model, we
numerically integrate the full secular equations of motion
(A7–A9) for a range of parameters and initial conditions. The
parameter space may appear hopelessly multi-dimensional, but
most of the physics is contained in the values of ηGR and ηå,
which determine if and when inclination growth is saturated via
resonance detuning.

5 We have checked numerically that octupole-level corrections play a minor
dynamical role due to strong relativistic and J2 precession, at least for

e 0.6out in our fiducial set-up.
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In Figure 2, we show three examples of an initially coplanar
Neptune-mass planet that undergoes inclination growth, with
ηGR;25.4 and ηå;18.9 (left panels), ηGR;12.2 and ηå;7.5
(middle panels), ηGR;6.6 and ηå;3.5 (right panels). In the first
case, condition (13) is satisfied, and the orbit reaches a final
inclination of 90° (black line, top) while remaining nearly circular
( e .02in ; black line, bottom). In the second case, only the
condition (14) is satisfied, and the inclination grows to Icrit;81°.3
(black line, top), as predicted by Equation (12). As Icrit is reached,
eccentricity grows exponentially until quasi-regular eccentricity-
inclination oscillations are established (see the zoom-in inset in the
middle panels). The third case is similar to the second but with
lower Icrit and lower-amplitude eccentricity oscillations. We
overlay in red the theoretical (adiabatic) inclination growth given
by Equation (8). In all examples, the agreement is excellent.

3.2. Numerical Experiments: Assessing the Adiabaticity

In Figure 3 we show the values of the inner planets
inclination and eccentricity long after the resonance is crossed
from a suite of numerical experiments where we vary the disk
dispersal timescale given in units of the adiabaticity parameter
xad=τdisk/τadia. Each panel from left to right corresponds to a
different semimajor axis ain and the other parameters are the
same as in Figure 2. We observe that whenever a system
evolves adiabatically, i.e., when xad>1, there is resonant
capture (inclination grows toward Icrit), in accordance with the
theory. On the other hand, for non-adiabatic resonance passage,
the planet still receives a kick in inclination, Inon−ad (e.g.,
Quillen 2006). The magnitude of this excitation is empirically

well described by

h
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
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I
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15non ad

out,0
1 3

ad
2 3·
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(red lines in Figure 3). In most cases, <-I Inon ad crit, which
means that the eccentricity instability is not triggered, and the
orbits remain circular.
All the systems captured into resonance have post-capture

inclinations that are consistent with either the predicted polar
state for stable systems (panel a with =a 0.05in au), or with
Icrit for the unstable systems (panels b, c, and d). The post-
capture eccentricities of the unstable systems (panels f, g, h)
oscillate in time. Conversely, systems that are not captured
into resonance (with adiabaticity parameter xad<1) exhibit
moderate inclination growth with ( ~  I 10 40in – ) and no
eccentricity excitation.

3.3. Population Predictions

Having established the final orbital states long after the disk
dispersal, we can make predictions for the final stellar obliquities
as a function of disk properties (tV and Mdisk,0), stellar properties
(  P R, ), planetary architecture (a M a, ,in out out) and the initial
inclination of the outer planet Iout,0.
Our procedure to obtain the final inclination Ifinal is as

follows.

1. We determine if x = >t 0 1disk ( ) (Equation (3)) and the
resonance is crossed . If the resonance is not crossed, then
Ifinal=0.

Figure 2. Inclination and eccentricity evolution of a Neptune-mass planet orbiting a Solar-mass star with an initially nearly circular ( =e 0.01in ) and coplanar orbit
( = I 1in relative to the host star’s equator). We place a 4 MJ gas giant at 2 au in a circular orbit with inclination Iout=5°, and a coplanar disk (relative to star’s
equator) with edges at =R 3 auin and =R 30 auout whose mass decays as = +M M t50 1 1MyrJdisk

3 2[ ( )] . The star has a radius of 1.3Re, a Love number k2=0.2,
and spin period of På=7 days. In the left panels we set =a 0.05in , satisfying the stability condition h h> + 6GR , thus leading to resonance capture into a polar
orbit and no eccentricity instability. The red dashed line shows the analytical model from Equation (8) that perfectly reproduces the numerical integrations. In the
middle panels we set =a 0.06in , predicting an instability at Icrit=81°. 3 from Equation (12), leading to exponential eccentricity growth up to e in∼0.9 and detuning
of the resonance. The eccentricity-inclination oscillations are shown as a zoom-in inset in the orange boxes. In the right panels, we set =a 0.07in resulting in
Icrit;71° and eccentricity growth up to ∼0.5. The subsequent tidal evolution is ignored in this example as we focus mainly on the inclination excitation.
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2. We assess the adiabaticity of the resonance crossing.
If xad>1 (adiabatic), then Ifinal=Icrit. If xad<1 (non-
adiabatic), then = -I Ifinal non ad from Equation (15).

In Figure 4, we show the final inclination Ifinal as a function
of ain and the stellar properties that determine the J2 potential

 k R P2
5 2. The resonance is only encountered outside the blue

Figure 3. Post-resonance inclinations and eccentricities as a function of the disk depletion timescales expressed as a function of the adiabaticity parameter xad=τdisk/
τadia for Neptune-like planets at 0.05 au (panels a and e), 0.06 au (b and f), 0.07 au (c and g), and 0.06 au (d and h). The other parameters are the same as in Figure 2,
except that the disk is assumed to decay exponentially so τdisk=d log Mdisk/dt is constant in time. The error bars indicate the minimum and maximum values
centered at the mean calculated over a window of time in [9τdisk, 10τdisk]. All panels show the transition from a non-adiabatic resonance crossing at xad<1 to an
adiabatic one above xad>1. The former leaves the eccentricities unperturbed and excites only moderate inclinations increasing with xad as xad

2 3 (see fitted lines). In
turn, the adiabatic cases reach final inclinations in agreement with our predicted values, where for stable (GR-dominated) systems reach inclinations of 90° (panel a),
while the unstable cases reach values close to Icrit (Equation (12), shown in horizontal blue lines). In the unstable cases, the final eccentricities reach order unity,
undergoing large-amplitude ein−Iin oscillations.

Figure 4. Final stellar obliquities as a function the semimajor axis of the inner planet ain and the rotationally induced stellar oblateness represented by the combination

 k R P2
5 2. We fix the outer planet properties ( =M M4 Jout , =a 2 auout , and = I 5out ) and disk evolution as = +M M t50 1 1 MyrJdisk

3 2( ) . Large obliquities are
attained in the region where the resonance is crossed (x = >t 0 1disk ( ) in Equation (3)) and the crossing is adiabatic ( t t= >x 1ad disk adia in Equation (6)). Within this
region, the planets acquire nearly polar orbits for h > 4GR at a 0.08 auin , and eccentricity excitation occurs when h h< + 6GR . The lower-right region is
dominated by the outer planet (h h <, 1GR ) and reaches obliquities of 50 .
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region where the stellar quadrupole is weak enough. Here, we
identify two distinct regions in parameter space:

1. a region dominated by relativistic precession with
ηGR>4 that leads to nearly polar orbits at

a 0.08 auin (yellow to orange contours), including a
region that is stable to eccentricity perturbations at
ηGR>6+ηå;

2. a region where the precession is dominated by the outer
planet with a 0.1 auin and ηå, ηGR<1 reaching
inclinations of ∼40°–50° (Icrit<51°.7).

4. Application to Observed Systems

For any known close-in Neptune in a tilted orbit, we can use
the above procedure to predict the orbital properties of an outer
companion. As a proof of concept, we focus on the HAT-P-11
system, where the nearly polar inner planet has a known outer
companion HAT-P-11 c (Yee et al. 2018). Given the semimajor
axis of HAT-P-11b (0.052 au) and reasonable assumptions for
the disk dispersal time, and for the PMS stellar radius and
rotational period, the resulting obliquity becomes a function of
only Mout and º -b a e1out out out

2 1 2( ) , the unseen companion’s
mass, and its semiminor axis, respectively.

In Figure 5, we show the expected obliquity as a function
of Mout and = -b a e1out out out

2 1 2( ) assuming various rotation
periods representative of low-mass PMS stars (Bouvier et al.
2014), and for rapid and slow dispersal (top and bottom rows,
respectively). From the figure, we see that polar orbits (orange-
to-yellow regions) are produced with great likelihood if
På=10d (right panels) and to a moderate extent På=7d
(middle panels). The known values for HAT-P-11 c are
included in each panel (red squares), with a predicted “high
obliquity” region in the rightmost panels with eccentricity
excitation in orange contours.

In conclusion, provided that the star rotates slowly enough
and the disk is sufficiently long-lived (typically ∼3 Myr), our
model can explain the large obliquity of HAT-P-11b, the non-
negligible eccentricity of planet b, and the large mutual
inclination with the outer planet (  < < i54 126b,c at 1-σ;
Xuan & Wyatt 2020). The nearly polar state is expected as
h 55GR  , much larger than the required threshold of 4
(Figure 4). Although uncertain, the obliquity of the outer planet
might not be as low as our model predicts (Xuan &Wyatt 2020).

4.1. Other Tilted Systems

We can extend the analysis for HAT-P-11 to other tilted
systems based on their current orbital states, noting that nearly
polar planets should reside in systems with ηGR>4, while
those with moderate obliquities (50°) ηGR<4 (or a non-
adiabatic crossing). Using these constraints, we both confirm
the viability of our mechanism for systems with known cold
Jovians, and predict the properties of the planets yet to be
detected. We exclude the compact multi HD-3167 and Cancri-
55 shown in Figure 1, see Section 5.1:

1. Mensae has an obliquity of 

-

+27 4.7
5.8 (Kunovac Hodžić

et al. 2020), Må;1.1Me, =a 0.068in , =b 2.54 AUout ,
and M M14out J , leading to ηGR;1.3, consistent with
the non-polar orbit expectation (provided an adiabatic
crossing). Also, mutual inclination between b and c is

 < < i49 131b,c at 1-σ barely consistent with a low-
obliquity Jovian, but consistent at 2-σ (Xuan & Wyatt
2020);

2. WASP-107 has a near polar orbit, while a 0.055 auin 
and M M0.69 , thus requiring b 2 auout

3( )
M M0.5 ;Jout( )

3. GJ-436 also has a nearly polar orbit, while =a 0.28 auin
and M M0.4 , thus requiring a companion with

b M M3 au 1.2 Jout
3

out( ) ( ).

Figure 5. Final obliquity as a function of the outer planet’s mass Mout and semiminor axis -a e1out out
2 1 2( ) for different rotations periods of the hosts Ps (4, 7, and 10

days from left to right) and two disk models with =t 0.2 MyrV (rapid dispersal, top row) and =t 1 MyrV (slow dispersal, bottom row) with
= +M M t t50 1J Vdisk

1 2( ) , edges at =R a1.5in out and =R R10out in. The host star has a mass of =M M0.8  similar to HAT-P-11, the planet’s semimajor
axis at 0.052 au and we set its radius to R1.3  (typical of K-dwarfs with ages of several Myr; Baraffe et al. 2015). The error bar indicates the measurement for HAT-P-
11 c (Xuan & Wyatt 2020). Note that its current radius and rotation period are R R0.68  P 29 days (Yee et al. 2018).
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4. Kepler-408 has an obliquity of 

-

+48 5
4 , while

a 0.037 auin  and M M1.05 , compatible with
either a non-adiabatic resonance passage or a capture with
ηGR1 (i.e., b M M0.28 au 1 Jout

3
out[ ] [ ]);

The detection of Jovian-mass companions with the predicted
properties will provide strong support to our model as well as
the measurements of low obliquities of cold Jupiter systems,
the first of which measurements was performed using
interferometry in the β Pictoris system, finding strong evidence
for low obliquities (Kraus et al. 2020).

5. Discussion

For the first time, we have analytically demonstrated that a
nearly coplanar system of two planets and a disk can secularly
evolve into one with high obliquities and eccentricities (for the
inner planet) and large mutual inclinations (with the still
coplanar outer Jovian).

The novelty of this mechanism is that it can self-consistently
produce close-in planets that are highly inclined and eccentric
(see Correia et al. 2020), without invoking extreme initial
conditions, i.e., large primordial misalignments of stellar
equators, disks, planets or some combination therein. Instead,
it relies on the natural dissipation of the protoplanetary disk to
induce resonance sweeping and capture.

This discovery required substantial developments beyond
the classic Lagrange–Laplace theory (Heppenheimer 1980;
Ward 1981). We have worked out a proper nonlinear
resonance, valid for arbitrary inclinations, and for which
resonant “capture” is well defined. The mathematical formal-
ism of this treatment is closely related to that of Batygin et al.
(2016), where the authors attributed resonance sweeping to a
decline in stellar oblateness (Ward et al. 1976), rather than disk
mass.6

Finally, this mechanism makes specific predictions for the
required properties of as-yet undetected outer planets that
should be easily testable with ongoing radial velocity surveys
and astrometric measurements from Gaia.

5.1. Caveats and Future Work

While we have shown that many of the polar planets in
Figure 1 are easily produced by our model, we highlight several
areas that require future study.

Are the orbital configurations sustained on Gyr timescales?
We have thus far carried out integrations of the systems for up
to ∼10 Myr. The most likely culprit to alter orbits on Gyr
timescales is the tidal dissipation of the residual eccentricities,
also damping the planet’s semimajor axis. This orbit shrinkage
would act to further decouple the sub-Neptune from the outer
planet due to enhanced relativistic precession, effectively
freezing the inclinations at their large values, not altering our
results.

The significant eccentricities of the outer planets in systems
like HAT-P-11 and π Men suggest that dynamical scattering
took place after the disk dispersal, likely tilting their orbital
planes (Chatterjee et al. 2008) and forcing variations of the
inner planet’s inclination around the polar states (Yee et al.
2018).

Can compact multi-planet systems be resonantly tilted?
The resonant excitation of inclinations could readily operate
in a compact multi-planet system, but the danger lies in the
eccentricity instability at high inclinations, which can lead
to close encounters and destabilization of the close-in planets.
However, similar to the role of general relativistic precession,
the planet–planet interactions may act to stabilize the
system against the eccentricity instability (Denham et al.
2019). As such, our model could provide a sound mechanism
to account for systems such as Kepler-56 (Huber et al. 2013)
and the polar multi-planet system HD-3167 (Dalal et al.
2019).
Does the resonance affect hot Jupiter systems? While there

is no upper mass limit for excitation, the larger masses of hot
Jupiters compared to sub-Neptunes would demand initial
inclinations for the outer planet that are larger by a factor of
∼3–10 to satisfy the conservation of angular momentum deficit
(Equation (1)). Specifically, the inner planet can reach a polar
orbit only for I m m a aout in out

1 2
in out

1 4( ) ( ) leading to
I 3 .7out in our fiducial Neptune and I 11 .7out for a hot

Jupiter. Because the mechanism no longer operates in the
nearly coplanar limit, we deem it less promising, though similar
conditions are invoked in other models for high obliquity hot
Jupiters (Matsakos & Königl 2017).
How does the stellar type affect the resonance? Inclination

excitation is most likely when the rotationally induced stellar
quadrupole is small, and disks longer-lived. The former
condition promotes resonant capture, while the latter promotes
the adiabaticity of the resonant encounter. These two
constraints operate in tandem to favor lower-mass stars. First,
they are naturally smaller in radius, even with their slower PMS
contraction (Baraffe et al. 2015). Second, low-mass stars harbor
longer-lived disks (Luhman & Mamajek 2012). Finally,
resonance crossing occurs at later times, and thus smaller R*,
for slowly dissipating disks. This preference appears to be
borne out observationally: polar planetary systems are hosted
by M to K-dwarfs (see Figure 1).

6. Conclusions

We have proposed a novel mechanism to explain the orbital
architectures of a population of sub-Neptunes in non-circular,
nearly polar orbits (stellar obliquities of ∼90°) with misaligned
outer companions.
The mechanism consists of a joint process of resonance

sweeping and parametric instability, driven by disk dispersal. A
long enough dispersal timescale guarantees resonant capture
and subsequent inclination growth. The inclination growth is
then halted by the eccentricity instability threshold, in turn
leading to eccentricity growth. The inclination threshold is
pushed to large values primarily by post-Newtonian correc-
tions, making GR a fundamental factor in producing polar
orbits.
This mechanism predicts that nearly polar sub-Neptunes

should coexist with cold Jupiters in low stellar obliquity orbits
and orbital periods that are long enough so that the planet’s
apsidal precession is dominated by relativistic effects
(ηGR>4).
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Appendix A
Equations of Motion and Definitions

It is easiest to express the potential that includes the secular
coupling between the planets and the external fields due the
stellar quadrupole (oriented along ŝ) and the disk (oriented
along jdisk

ˆ ) in terms of the eccentricity vectors =e eeˆ and
specific angular momentum vectors = -j je1 2 1 2( ) ˆ. By
defining the indices “in” and “out” the vectors (and orbital
elements later on) for the inner and outer planets, the potential
reads (e.g., Tremaine & Yavetz 2014):

f
f f

f

f

=-
-

-

- - + + -

-

 s j

e j j j

j j

j

j j

e

2 2

2
5 2

2
A1

in, in
2 1

3 in
2

in
5

in,GR

in

in,out
in out

2
in out

2
in
2 1

3

out, disk
disk out

2

(ˆ · )

( · ) ( · )

( ˆ · )

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦

where the amplitudes are

f =
 J GM M R

a

3

2
, A2in,

2 in
2

in
3

( )

f = G M M

a c

6
, A3in, GR

2
in

2

in
2 2

( )

f =
GM M a

b

3

4
, A4in, out

in out in
2

out
3

( )

with = -b a e1out out out
2 1 2( ) the semiminor axis of the outer

planet. We note that writing the equations of motion in terms of
orbital elements is cumbersome, and decided to evolve the full
system using vectors, while carrying out the analytic calcula-
tions in Appendices B and C using orbital elements for limiting
cases.

For the disk, we model its potential using the distant tide
approximation as in Terquem & Ajmia (2010), which for a
Mestel disk with mass Mdisk and inner and outer edges Rin and
Rout, respectively, results in

f =
+


GM M a R R

R R

a

R

3

8
, A5out,disk

out disk out
2

out in

in
2

out
2

out

in

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

where we have included a multiplicative factor  a Rout in( ) to
correct the expression for the parts of the disk close to the
planet as in Petrovich et al. (2019). We set = a R 2out in( ) ,
valid for ~R a 1.5in out , thus approximating the amplitude of

the potential to

f
GM M a

R R

3

4
. A6out,disk

out disk out
2

in
2

out

( )

We solve the motion of e j j, ,in in out using the Milankovitch
set of equations (e.g., Tremaine & Yavetz 2014) as

f f= -  ´ +  ´
j

j e
d

dt L

1
A7j e

in

in
in inin in( ) ( )

f f= -  ´ +  ´
e

j e
d

dt L

1
A8e j

in

in
in inin in

( ) ( )

f= -  ´
j

j
d

dt L

1
, A9j

out

out
outout

( )

where = L M GM ain in in and = L M GM aout out out are the
angular momenta.

Appendix B
Inclination Resonance: Analytic Model and Conditions for

Capture

We simplify the potential assuming that =e 0in during the
inclination resonance phase and write

f f

f f

=-

- -

j j

s j j j . B1

1

2 in,out out in
2

1

2 in, in
2 1

2 out,disk disk out
2

( · )

(ˆ · ) ( ˆ · ) ( )

We express this potential as a two-degree-of-freedom
Hamiltonian using orbital elements defined relative to ŝ
(=jdisk

ˆ ) as

f f

f

=- -

+ W - W

+ W - W -

  I I I

I I

I I I

cos cos cos

sin 2 sin 2 cos

sin sin cos cos .

B2

1

2 in,
2

in
1

2 in,out
2

in
2

out

1

2 in out out in

2
in

2
out

2
out in

1

2 out, disk
2

out

[

( )

( )]
( )

We express this Hamiltonian in Poincaré variables -W =Z,in in{
-L I1 cosin in( )} and -W = -Z L I, 1 cosout out out out{ ( )} appro-

ximating I Z Lsin 2 2 2in in in and I Z Lsin 2 2 2out out out
and retaining only the lowest-order terms in Zout. Thus,

f f

f

f f

- +
-

- W - W

+ +

 
L Z

L

Z

L

Z

L
Z

L

2

2 2
cos

. B3

in,out in,
in in

2

in
2

in,out
in

in

out

out
out in

in,out out, disk
out

out

( ) ( )

[ ]

( ) ( )



We perform a canonical transformation to the new pairs
q Q,{ } and q¢ Q¢,{ } using the following the generating function

= W - W Q - W Q¢ , B4out in out[ ] ( )
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such that q = Q = W - Wd d out in, = - W = QZ d din in

and = - W = Q¢ - QZ d dout out , and

f f

f q

f f

- +
Q -

-
Q Q¢ - Q

+ +
Q¢ - Q

 
L

L

L L

L

2

2 2
cos

. B5

in,out in,
in

2

in
2

in,out
in out

in,out out,disk
out

( ) ( )

( )

( ) ( ) ( )



We note that the Hamiltonian does not depend on q¢,
implying that

Q¢ = - + -L I L I1 cos 1 cos B6in in out out( ) ( ) ( )

is a constant of motion, stating that the angular momentum
deficit is conserved. By dropping inessential constants and
using that L Lin out such that Q Q¢ , we reduce the
Hamiltonian to

f f f f

f f
f q

+
-

+
Q

-
+

Q -
Q Q¢

 



L L

L L L2

2 2
cos . B7

in,out in,

in

in,out out, disk

out

in,out in,

in
2

2
in,out

in out

( ) ( )

( )
( )

⎡
⎣⎢

⎤
⎦⎥

Furthermore, assuming that inclinations are initially small,
we can write Q¢ L I 2out out,0

2 . Similarly, it is safe to assume
that f fin,out out,disk , thus further simplifying the Hamiltonian

f f f

f f
f q

+
- Q

-
+

Q -
Q

 



L L

L
I

L2

2
cos . B8

in,out in,

in

out, disk

out

in,out in,

in
2

2
in,out out,0

in

( )

( )
( )

⎡
⎣⎢

⎤
⎦⎥

Following Henrard & Lemaitre (1983) we can further
simplify this Hamiltonian by re-scaling the variables as

t
h

t
=

+  I
t1

8
, B9

1 3

out,0
2 3

sec
( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

h h
=

+ Q
=

+
- R

I L I
I

1 1
1 cos B10

out,0

2 3

in out,0

2 3

in( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

p q p= - = - W + Wr , B11out in ( )

with t f= Lsec in in,out and h f f= in,out in, , to arrive to the
“second fundamental model of resonance”:

= - D + - R R R r3 2 2 cos , B122 ( ) ( )

where

h f t

h
D =

+
-

+



t

I

t

L

2

3

1
1

1
B13

out,0

2 3
out,disk sec

out
( )

( )
( )

( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

As shown by Henrard & Lemaitre (1983), capture into
resonance is certain if the following conditions are satisfied:

1. tD >d d 0 as it crosses 0. This requires that initially the
precession rate of the outer planet driven by the disk

fW - Lout out,disk out
  dominates over the precession
rate of the inner planet driven by both the outer planet
and the stellar rotationally induced quadrupole given by

h tW - + 1in sec( )  at I 1in  .

2. the action (i.e., the inclination) is small far from the
resonance. More precisely that <R 30 , or replacing
Equation (B9) with ~Z L I 20 in in,0

2 , the initial inclina-
tion is

h
<

+ 
I

I
3

1
. B14in,0

out,0
1 3

( )
⎡
⎣⎢

⎤
⎦⎥

The capture probability decays with R0>3 (Henrard &
Lemaitre 1983). In our applications R0<3 always.

3. Δ changes slowly near the resonance crossing. In
particular, when R0=1 we require that tD ¢ <d d g
with g of order unity, implying

t
t

f

h
D

=
+

<


d

d L I
g

4

3

1 1

1
. B15sec

2 out,disk

out out,0

4 3 2 3∣ ∣
( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥



We numerically found that g=4/3 provides with a good
threshold to capture into resonance up to a nearly polar
orbit7 (see Figure 3 showing a numerical test of
adiabaticity). Because f µ M tout,disk disk ( ), the condition
can be expressed in terms of the disk’s depletion
timescale

t
f

h
>

+

-



d M

dt L I

log 1 1

1
,

B16

disk
1

sec
2 out,disk

out out,0

4 3 2 3

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

which it can be evaluated at the resonance encounter8

Δ=0 yields

h t> +
-


d M

dt I

log 1
1 . B17disk

1

out,0

4 3
1 3

sec( ) ( )
⎡
⎣⎢

⎤
⎦⎥

Finally, we can compute the fixed points that describe the
evolution of system. Using the canonical momentum-coordi-
nate pair =x y R r r, 2 cos , sin( ) ( ) we evaluate the fixed
points of the Hamiltonian by setting ¶ ¶ = x 0, yielding

- D - =x x3 2 0. B183 ( )

For Δ<0, when the disk dominates, there is only one branch
with solution (Petrovich et al. 2013):

= + - D + D

´ + - D -

x t t t

t

1 1

1 1 . B19

3 1 3

3 1 3

*( ) ( ( ) ) ( )

( ( ) ) ( )

Thus, the (adiabatic) evolution of the system along the
fixed point is simply given by =R x t2 *( ) and r=0
( pW - W =in out , anti-aligned nodes).

Appendix C
Unstable Regions at High Inclinations

For simplicity we assume an axisymmetric system with
=s joutˆ ˆ and ignore the disk that only allows to sweep over a

range of inclinations Iin. In this limit, the Hamiltonian can be

7 Others numerical estimates for capturing planet into first-order mean-motion
resonances yield a slightly larger value of g∼2 (Friedland 2001;
Quillen 2006)
8 It could also be evaluated at the time that the separatrix appears at Δ=1,
introducing a small correction.
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written in orbital elements as

f
w

f f

=- -

+ - + -

-
-

- -
-





e I

e I e

e
I

e

2
5 sin sin

1 cos 2

2 1
cos

2 1
,

C1

in,out
in
2

in
2 2

in

in
2 2

in in
2 1

3

in,

in
2 3 2

2
in

1

3

in, GR

in
2 1 2

)
( )

(

( )

( ) ( )
( )

which we can write in terms of the Delaunay canonical
variables as

f

w
f f

=- + -

- - - +

´ - - -





H

L

G

L

G

L

H

G

H

L

H L

G

L

G

L

G

2
2

5 1
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2 3 2
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3
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2
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2
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2
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2
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3
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3
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⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

From Hamilton’s Equations w= -¶ ¶Gin in
 and w =in

¶ ¶ Gin

t w w

t w

w
h h

= -

= - - - -
-

´ +
-

- +
-



e e e I

e e
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e

e
I

e

5 1 sin sin cos

2 1 5 1
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1

sin
2 1
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2 1

,

C3
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2 1 2 2

in in in

sec in in
2 1 2
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2
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2 1 2

2
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2 2

2
in

GR

in
2
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˙ ( ) ( )
( )

( )
( )

( )
( )

⎡
⎣⎢

⎤
⎦⎥

/

/ /
/

with t f= Lsec in in,out and = -H L e I1 cosin in in
2 1 2

in( ) a con-
served quantity as  does not depend on Win. The linearized
equations near the fixed point ein=0 read

w
w

t
w
w= - +-

d

dt

e
e

A B
A

e
e

cos
sin

0
0

cos
sin

C4

in in

in in

sec
1 in in

in in

( )
⎜ ⎟
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

with h h h= + + - A I2 2 2 5 2 sinGR
2

in and =B I5 sin2
in.

We can then obtain the growth rates of the eccentricity vector by
solving the eigenvalues of the square matrix as

l t

t h h h

h h h

=  -

= + + -

´ + - - -

-

-
 

 

A B A

I

I I

2 2 sin

5 sin sin 2 2 . C5

sec
1

sec
1 1

2 GR
5

2
2

in

2 5

2
2

in
1

2 GR

1 2

( )
( )

( )

( )

⎡⎣
⎤⎦

Thus, the fixed point =e 0in is an unstable saddle point if the
eigenvalues are real and different, requiring that B>A>0.
Expressing this condition in terms of the inclinations, we get
that the unstable range is given by
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We note that, for ηGR=0, this expression is the same as the
one found by Katz & Dong (2011) and Tremaine & Yavetz
(2014) using the vectorial formalism without relativistic
precession.
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