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Abstract 
Abiotic stresses affect crop productivity worldwide. Plants have developed defense mechanisms against 
environmental stresses by altering the gene expression pattern which leads to regulation of certain metabolic and 
defensive pathways. Sorghum [Sorghum bicolor (L.) Moench] is an important crop in those regions irrigated by 
salty water. Sweet sorghum is a variant of common grain sorghum and is relatively more adapted to marginal 
growing conditions. Here, we compared the different response to salt stress of sweet and grain sorghum. We 
investigated six traits related with seed germination under salt-stress and normal conditions, conducted a 
genome-wide research on the salt effect on the gene expression of a landrace sweet and two grain sorghum by 
RNA-sequencing at seedling stage. The results showed that salt stress had significant inhibition to sorghum seed 
germination capability, and the inhibition to grain sorghum was greater. By comparing sweet and grain sorghum 
and the KEGG pathway analysis based on the DEGs, six genes involved in flavonoid biosynthesis pathway to 
tannins and anthocyanins from phenylalanine were identified in the landrace sweet sorghum, which expression 
was significant different with that in grain sorghum. Quantitative real-time PCR (qRT-PCR) data were closely in 
accordance with the transcript patterns estimated from the RNA-seq data. Tannins accumulation changes were 
associated with the genes expression under salt stress and control. These suggested that flavonoid biosynthesis 
pathway was involved in the sorghum resistance to salt stress. The present results suggested that flavonoid 
biosynthesis plays an important role in the sweet sorghum capacity for salt tolerance. 
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1. Introduction 
Salt stress is one of the main restrictions to crop production as it affects more than 800 million hectares (ha) of 
land worldwide (Farooq et al., 2017). Moreover, salinity stress is a major environmental threat to agriculture and 
its adverse impacts are getting more serious in those salt affected areas (Johnson et al., 1992; Zeng et al., 2001). 
Salinity stress involves a complex process such as osmotic stress, ionic imbalances, and sets in secondary 
stresses such as accumulation of toxins, nutritional imbalances and oxidative stress in plants, ultimately causing 
a reduction in plant growth and development (Munns & Tester, 2008; Türkan & Demiral, 2009). Defense 
strategies of plants against salinized conditions depend upon activation of cascades of molecular networks 
involved in stress sensing, signal transduction and the expression of specific stress-related genes and metabolites 
(Türkan & Demiral 2009; Deinlein et al., 2014; Wang et al., 2010). Understanding the molecular mechanisms of 
abiotic stress tolerance is therefore critical for developing stress tolerant crop plants and use of saline water in 
the future. 

Sorghum (Sorghum bicolor L. Moench) is an important crop widely grown in the arid and semi-arid regions. 
Sweet sorghum is a variant of common grain sorghum and a widely adapted sugar crop with potential for 
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bioenergy production (Carpita & McCann 2008; Rooney et al., 2007; Vermerris, 2011; Regassaand & Wortmann 
2014). It is relatively more adapted to marginal growing conditions, such as salinity, alkalinity, water stress and 
other environmental stresses compared with grain sorghum and maize (Zhang et al., 2011; Michael et al., 2017; 
Regassa & Wortmann 2014). Its remarkable levels of salinity tolerance make it a good candidate to identify 
salt-resistance genes. 

Many genes expression is induced or suppressed by salt stress, and the study on gene expression regulation has 
become a hot topic in recent years. The release of genome sequence of sorghum and next/third generation 
sequencing (NGS) technologies provide a favorable reference to investigate interaction mechanisms between 
environment stress and sorghum genes response (Paterson et al., 2009; Klára Kosová et al., 2011; Liu et al., 2012; 
Martin et al., 2011; Suja et al., 2017). This study, therefore, compared sweet and grain sorghum seedlings 
responses to salt stress based on RNA-sequencing and found genes and pathways in sweet sorghum which may 
participate in salt stress response by regulation of flavonoid biosynthesis. Our results presented here help us 
elucidate the salinity stress effects and develop salinity management strategies aimed at enhancing the use of 
saline water in agriculture based on plant improvements. 

2. Material and Methods 
2.1 Evaluation of Seed Germination Under Salt Stress 

Three sorghum varieties were selected as materials; i.e., a landrace sweet sorghum variety, GZ, which has high 
tolerance to salt; two grain sorghum cultivars, TAx623B (genome sequenced) and HN16, which are relative 
susceptible to salt. Before germination experiment, the seeds were surface-sterilized using 15% bleach for 20 
min and washed subsequently three times with sterile distilled water. 30 seeds from each cultivar were placed in 
Petri dishes on two layers of filter paper soaked with 10 mL NaCl solution. The filter paper was soaked with 10 
mL distilled water in the control. Then the seeds were cultured in an illumination incubator at day/night 
temperature 30 °C/25 °C with 10-h light/14-h dark photoperiod under relative humidity of 80% for 10 days. Four 
different NaCl concentrations (40 (S1), 80 (S2), 120 (S3) and 160 mM (S4)) were set in order to compare the 
sorghum different response to stress and determine the most suitable salt concentration for further experiment. 
Each treatment was performed three biological replicates. Distilled water was used to supplement the daily 
evaporation to maintain NaCl concentration. Seeds germination index (GI), vigor index (VI), germination rate 
potential (GP), germination rate (GR) and inhibition rate (IR) were calculated.  

The GR represented the germination percentage at 7 days (GR = Nt/N0 × 100%, Nt is the number of germinated 
seeds at day 7 and N0 is the total number of experimental seeds). GP was the germination percentage at 4 days 
after treatment. GI was calculated by the formula: GI = Σ(Gt/Tt) (Gt is the accumulated number of germinated 
seeds at day t and Tt is the time corresponding to Gt in t days). 10 germinated seeds were chosen to measure the 
average root length (RL)), root dry weight (RDW) and leaf dry weight (LDW) after 10 days. The seed vigor 
index (VI) was measured by the formula: VI = S × GI (S is the accumulated fresh root weight). The response to 
salt stress was evaluated with inhibition ratio (IR): IR = (1 − Ps/Pc), (Ps is mean performance of a cultivar under 
stress; Pc represents average performance of the same cultivar under control) (Wang et al., 2010).  
2.2 Plant Culture and RNA Isolation  

For salt stress treatments, three-leaves-old sorghum plants were irrigated with 160 mM NaCl. Whole plants were 
collected at 0, 48 and 72 h after treatment and stored at -80 °C for mRNA isolation (the treatment code was as 
shown in Table 1). Each collection was replicated three times (every sample consisted of 5 plants). Total 
sorghum RNA was extracted using Trizol plus RNA kit according to the manufacturer’s instructions. The RNA 
from three replicates was mixed at 1:1:1 ratio. RNA quality and integrity were measured using Nanodrop TM 
1000 Spectrophotometer (Thermo, MA, USA). Qualified RNA was used for subsequent RNA library 
construction and sequencing.  
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Table 1. The codes of samples treated by NaCl 

Samples Code 

TA×623 B-ck (0 h stress) T01 
GZ-ck(0 h stress) T02 
HN16-ck(0 h stress) T03 
TA×623B-48 h stress T04 
GZ-48 h stress T05 
HN16-48 h stress T06 
TA×623B-72 h stress T07 
GZ-72 h stress T08 
HN16-72 h stress T09 

 

2.3 Preparation of RNA Library and Sequencing 

Poly (A) mRNAs were purified from total RNA using oligo (dT) magnetic beads and cut into short fragments 
with fragmentation buffer. These fragments were used as templates for first-strand cDNA synthesis using random 
hexamer primers. The second strand cDNA was synthesized using Buffer, dNTPs, DNA polymerase I and RNase 
H. Double-stranded cDNA was purified by AMPure XP beads, and then end-repaired. Sequencing adaptors were 
ligated to the fragments and the desired size fragments were selected to be enriched by PCR amplification (Wang, 
et al., 2017). The amplified products were sequenced using an Illumina HiSeq 2500 platform (Illumina, San 
Diego, CA, USA.).  

2.4 Identification of Differentially Expressed Genes (DEGs) and Gene Annotation 

Raw data were quality-filtered with criteria of less than 0.1% low quality bases (Phred score < 30). Adapter 
sequences and primers were subsequently removed. The filtered reads were aligned to the sorghum reference 
genome using TopHat2 software (Love et al., 2014). The sequences were further annotated by GO, KOG, 
Swiss-Prot, KEEG, COG and NR databases with criteria of E-value equals 10-5. The GO terms and KEGG 
pathway analysis were conducted using Blast2Go. Fragments per kilo base of exon per million fragments 
mapped (FPKM) and DESeq (Anders & Huber, 2010) were employed to represent gene expression level. DEGs 
were measured with Fold Change ≥ 2 and FDR < 0.01.  

FPKM were estimated by following equation:  

FPKM	=	 cDNA Fragments

Mapped Fragments ሺMillionsሻ ×	Transcript Length (kb)
                        (1) 

2.5 Gene Expression Analysis by qRT-PCR 

To evaluate the genes associated with salt stress response mined from the Illumina data, transcriptomes obtained 
from the comparison between sweet and grain sorghum were selected to validate the RNA-seq results by 
qRT-PCR with Actin (LOC110436378) as the endogenous control. Gene-specific primer sequences were 
designed using Primer 3 software and are listed in Table 2. RNA for qRT-PCR analysis was extracted from 0, 48 
and 72 h NaCl stressed plants (RNA and cDNA were as same as RNA sequencing). Non-template controls were 
performed in every reaction. Relative transcription levels were calculated using the 2-ΔΔCt method (Livak & 
Schmittgen, 2001). qRT-PCR data shown were averages of three technical replicates for each independent 
experiment. 
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Table 2. Primer for qRT-PCR 

Sobic.001G249600F cct cct gga cct ggc act cg 

Sobic.001G249600R cct cgt gaa ctg cac cac ctt g 
Sobic.003G230900F tcg gct cct ggc tcg tca tg 
Sobic.003G230900R cag caa tgg ctt cgt ctt cac aac 
sobic.006G272700F gct gcc gcc tta tac tgt cat ctg 
sobic.006G272700R gac gct tgt tcc ttc tcg gtg ac 
sobic.006G253900F gcg gtg gtg aac tct gag tgt ag 
sobic.006G253900R cca tct tgc ggc ggt aca tct c 
sobic.006G227000F cac cgt gaa gac aca tct gct ctc 
Sobic.006G227000R cgt cca gcg tct cgt act tga ac 
sobic.004G000700F cca cta cgc tgc ttg cca tcc 
Sobic.004G000700R tgc tgc tgc tgc tgc tgt tc 
actin F ggtcctcttccagccatcctt 

R atttccttgcctcatcctgtca 

 

2.6 Determination of Tannins Content 

The seedlings were washed with fresh water, chopped into small pieces and oven-dried (samples were collected 
at the same time with RNA sequencing). The material was ground to fine powder using an electric grinder. 
Tannins were determined by the acid butanol assay (Terrill et al., 2010). Tannic acid was also used in this study 
as standard. Every sample was performed three biological replicates.  

Total tannins content was expressed as milligrams tannic acid equivalents per gram of dry plant extract (mg /g) 
through the calibration curve of tannic acid, whose linearity range was from 10 to 100 mg/mL (R2 > 0.99). 

2.7 Data Analysis 

Data were analyzed using EXCEL 2003 (Microsoft Corporation, WA, USA) and SPSS 17.0 (IBM SPSS, NY, 
USA.).  

3. Result 
3.1 Salt Stress Effects on Seed Germination of Sweet and Grain Sorghum  

GI, VI, GR, GP and IR were calculated for 3 sorghum cultivars. The seed germination capability significantly 
decreased as NaCl concentration increased. The inhibition of salt stress on GR, VI, RDW and RL was 
significantly different between the sweet and grain sorghum (p < 5%, Table 3, Figure 1). The inhibition of salt 
stress to the sweet sorghum seedlings was the least, which showed GZ has the best tolerance to salt (Figure 2). 
The most inhibition was observed under 160 mM NaCl treatment. Therefore, 160 mM NaCl treatment was used 
to compare the different responses to salt stress between the sweet and grain sorghum. Whole plants were 
collected at 48 h and 72 h salt stress and control for RNA-sequencing.  

 

Table 3. The inhibition of salt stress on sorghum seed germination (IR) 

Cultivar GR GP GI RDW LDW VI RL 

GZ 0.0904b 0.361b 0.2127a 0.5366b 0.4585b 0.576b 0.5182b 

BTx623B 0.1335a 0.3571b 0.2598a 0.6068a 0.4275b 0.6381a 0.6857a 

HN16 0.1682a 0.6214a 0.2791a 0.6030a 0.6465a 0.6587a 0.7252a 

Note. Different letters in the same column indicate significant difference among treatments at p < 5%.  
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sorghum in the salt stress inhibition. The analyses based on RNA-sequencing, 6 genes involved in flavonoid 
biosynthesis were found differential expressed in sweet sorghum GZ compared with grain sorghum. Swissprot 
annotation revealed the 4 up-regulated genes responsible for DFR, LDOX, ANR and F3H enzymes, were all 
involved in the biosynthetic pathway leading to the synthesis of anthocyanins and condensed tannins 
(proanthocyanidins). While, the 2 genes coding POD and CCR which are the key enzymes leading phenylalanine 
to lignin down regulated, which will help phenylalanine to synthesis of anthocyanins and condensed tannins. The 
anthocyanin biosynthetic pathway is well understood and is conserved among plants, and its key enzymes and 
genes have been characterized (Besseau et al., 2007; Hichri et al., 2011.). It is involved in the regulation of the 
environmental stress responses. Anthocyanin and tannins have high antioxidant capacity and help in the natural 
defense of plants against abiotic stress damage and pests and diseases (Dempsey et al., 2011). 

In this study, the genes responsible for F3H, DFR, LDOX and ANR are key enzymes in anthocyanins and 
condensed tannins biosynthesis, the 2 genes coding POD and CCR were involved in the pathway from 
phenylalanine to lignin. Phenylalanine is the pre-material of flavonoid biosynthesis and synthesis of lignin. The 
changes of these genes expression will affect phenylalanine biosynthesis pathway directions and flavonoids 
accumulation. The RNA-sequencing data showed F3H, DFR, LDOX and ANR expressed significantly higher in 
sweet sorghum, while the 2 genes coding POD and CCR expressed lower than that in grain sorghum either under 
normal or in salt stress conditions. These changes of genes expression would result in the accumulation of 
anthocyanins or tannins. Meanwhile, the results also showed tannins content changes were positively related 
with the sorghum salt resistance. It is assumed that accumulation of tannins enhances the sorghum capacity for 
salt tolerance.  

It has been documented that flavonoids have important physiological roles in plants, its accumulation is induced 
by abiotic stresses and is a hallmark of plant stress (Mori et al., 2005; Meng et al., 2015; Gu et al., 2015). For 
instance, flavonoid accumulation increases under chilling stress in maize, grape, red orange, apple and tobacco 
(Meng et al., 2015; Christie et al., 1994). In addition, it was observed that salt-tolerant species often accumulate 
more flavonoids than the salt-sensitive species, which suggested that there exist a relationship between 
flavonoids biosynthesis and salt stress resistance (Liu et al., 2012). The results of Meng et al. (2015) study in 
tobacco demonstrated that both chilling stress and SlF3HL (F3H-like protein gene) overexpression induced 
flavonoid accumulation in tobacco, implying that SlF3HL plays a key function in flavonoid biosynthesis or in 
regulating this biosynthetic pathway in response to chilling stress. The increased flavonoid contents may 
contribute to elevating the antioxidant activity of the plant tissues under stress (Piero et al., 2005; Ubi et al., 2006; 
López Climen et al., 2008). Our results implied flavonoid biosynthesis pathway played an important role in the 
high salt tolerance in the landrace sweet sorghum. 

In conclusion, salt stress had significant inhibition to sorghum seed germination capability and seeding growth. 
Six genes involved in flavonoid biosynthesis were found based on RNA-Seq in the landrace sweet sorghum. The 
analysis results suggested that flavonoid biosynthesis pathway played an important funcion in the sweet sorghum 
high salt tolerance. This could provide a valuable reference for further understanding of sorghum response to 
saline stress. 
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