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1 Introduction
Cytotoxic T Lymphocytes (CTL) cells are responsible of cellular immunity and they play a crucial
role in antiviral defense by killing the productive infected cells. In addition, the activation of CTL
immune response is not instantaneous. In reality, there is a delay in activation of CTL immune
response. To model the impact of this delay on the dynamics of human immunodeficiency virus
(VIH) infection, we propose the following model

dT

dt
= λ− µTT (t)− f(T (t), V (t))V (t) + ρE(t),

dE

dt
= f(T (t), V (t))V (t)− (µE + ρ+ γ)E(t),

dI

dt
= γE(t)− µII(t)− pI(t)C(t),

dV

dt
= kI(t)− µV V (t),

dC

dt
= aI(t− τ)C(t− τ)− µCC(t),

(1.1)

where T (t), E(t), I(t), V (t) and C(t) represent the concentrations of uninfected CD4+ T cells,
infected cells in the eclipse stage (unproductive infected cells), productive infected cells, free virus
particles and CTL cells at time t, respectively. Further, λ is the production rate of the uninfected
cells and f(T, V ) is the rate of uninfected cells to become infected by virus. The parameters µT ,
µE , µI , µV and µC are the death rate of uninfected CD4+ T cells, infected cells in the eclipse
stage, productive infected cells, free virus particles and CTL cells at time t, respectively. The γ,
k and a are, respectively, the rates at which infected cells in the eclipse stage become productive
infected cells, the production rate of virions by infected cells and the proliferation rate of CTL cells.
The p represents the clearance of productive infected cells by CTL cells and ρ is the cure rate of
the unproductive infected cells (i.e., the rate at which the unproductive infected cells return to the
uninfected cells). Moreover, the infection transmission process is modeled by Hattaf’s incidence
rate [1] of the form f(T, V ) = βT

1+α1T+α2V +α3TV
, where α1, α2, α3 ≥ 0 are constants and β > 0

is the infection coefficient, and it includes the bilinear incidence rate, the saturated incidence rate,
the Beddington-DeAngelis functional response [2, 3] and Crowley-Martin functional response [4].
Finally, τ represents the time needed for the activation of the CTL immune response.

On the other hand, the model governed by ordinary differential equations (ODEs) and presented by
Maziane et al. in [5] is a special case of (1.1) when the delay in activation of CTL immune response
is absent. It is important to note that the ODE model [5] is the generalization of the viral infection
model in [6] and the improvement of the ODE models presented in [7–11].

The rest of this paper is structured as follows. In the next section, we first show the nonnegativity
and boundedness of solutions, after, we discuss the existence of equilibria for system (1.1). The
stability of the equilibria and the existence of Hopf bifurcation are investigated in section 3. Some
numerical simulations are given in section 4 to illustrate our main results. Finally, the paper ends
with a brief conclusion in section 5.

2 Basic Results
First, we establish the positivity and boundedness of solutions of model (1.1). The cell numbers
should remain non-negative and bounded because this model describes the evolution of a cell
population. Let C = C([−τ, 0]; IR5) be the Banach space of continuous functions mapping from
[−τ, 0] to IR5 equipped with the sup-norm. Using the fundamental theory of differential equations
[12], we can easily show that there exists a unique solution (T (t), E(t), I(t), V (t), C(t)) for system
(1.1) with initial conditions (T0, E0, I0, V0, C0) ∈ C. Moreover, and for biological reasons, we assume
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that the initial conditions are non-negative

T0(s) ≥ 0, E0(s) ≥ 0, I0(s) ≥ 0, V0(s) ≥ 0, C0(s) ≥ 0, for s ∈ [−τ ; 0]. (2.1)

Proposition 2.1. The solution of system (1.1) satisfying condition (2.1) remains non-negative and
bounded for all t ≥ 0.

Proof. It is easy to show the positivity of the solution of system (1.1) with initial conditions
satisfying (2.1). Now, we show the boundedness of solution. Define

G(t) = T (t) + E(t) + I(t) +
µI

2k
V (t) +

p

2a
C(t+ τ),

then

dG

dt
= λ− µTT (t)− µEE(t)− µI

2
I(t)− µIµV

2k
V (t)− pµC

2a
C(t+ τ)− p

2
I(t)C(t)

≤ λ− µG(t),

where µ = min

{
µT , µE ,

µI
2
, µV , µC

}
. Hence

G(t) ≤ max

{
G(0),

λ

µ

}
.

Therefore, T (t), E(t), I(t), V (t) and C(t) are bounded.

Next, we discuss the existence of equilibria for system (1.1). Based on the results given in [5], we

deduce that system (1.1) has an infection-free equilibrium of the form Q0

( λ
µT

, 0, 0, 0, 0
)
.

Hence, the basic reproduction number of (1.1) is given by

R0 =
λβkγ

µIµV (λα1 + µT )(ρ+ µE + γ)
. (2.2)

We recall that R0 represents the number of secondary infections produced by one productive infected
cell during the period of infection when all cells are uninfected.

If R0 > 1, there exists an other biological equilibrium Q1(T1, E1, I1, V1, 0) with T1 ∈
(
0, λ

µT

)
,

E1 = λ−µT T1
µE+γ

, I1 = γ(λ−µT T1)
µI (µE+γ)

and V1 = kγ(λ−µT T1)
µIµV (µE+γ)

. This equilibrium correspond to positive
levels of healthy cells, unproductive infected cells, productive infected cells and virus, but no CTL
immune response.

In addition to R0, we define the CTL immune response reproduction number R1 of our ODE model
by

R1 =
aI1
µC

, (2.3)

where 1
µC

represents the average life expectancy of CTL cells, and I1 is the number of productive
infected cells at Q1. Hence, R1 represents the average number of CTL cells activated by the
productive infected cells when viral infection is successful.

IfR1 > 1, there exists an infection equilibriumQ2(T2, E2, I2, V2, C2) with T2 ∈
(
0, λ

µT
−µIµC(µE+γ)

aγµT

)
,

E2 = λ−µT T2
µE+γ

, I2 = µC
a

, V2 = kµC
aµV

and C2 = aγ(λ−µT T2)−µIµC(µE+γ)
pµC(µE+γ)

. This equilibrium denotes the
state in which both the virus and the CTL immune response are present.
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Theorem 2.1.

(i) When R0 ≤ 1, the system (1.1) has always an infection-free equilibrium of the form

Q0

( λ
µT

, 0, 0, 0, 0
)
.

(ii) When R0 > 1, the system (1.1) has an immune-free infection equilibrium of the form

Q1(T1, E1, I1, V1, 0) with T1 ∈
(
0,

λ

µT

)
, E1 = λ−µT T

µE+γ
, I1 = γ(λ−µT T )

µI (µE+γ)
and V1 = kγ(λ−µT T )

µIµV (µE+γ)
.

(iii) When R1 > 1, the system (1.1) has an infection equilibrium of the form Q2(T2, E2, I2, V2, C2)

with T2 ∈
(
0, λ

µT
− µIµC(µE+γ)

aγµT

)
, E2 = λ−µT T2

µE+γ
, I2 = µC

a
, V2 = kµC

aµV
and

C2 = aγ(λ−µT T2)−µIµC(µE+γ)
pµC(µE+γ)

.

3 Stability Analysis

Now, we focus on the global stability of the infection-free equilibrium Q0 and the immune-free
equilibrium Q1. At first, let Φ(x) = x − 1 − ln(x). Note that Φ has a global minimum at 1
and Φ(1) = 0. To simplify, we will use the notation: ψ(t) = ψ and ψ(t − τ) = ψτ , for any ψ ∈
{T,E, I, V, C}.

Theorem 3.1. If R0 ≤ 1, then the infection-free equilibrium Q0 is globally asymptotically stable.

Proof. Consider the following Lyapunov functional

W0(T,E, I, V, C) = T − T0 −
∫ T

T0

f(T0, 0)

f(S, 0)
dS +

ρ(T − T0 + E)2

2(1 + α1T0)(µT + µE + γ)T0

+
ρ+ µE + γ

γ
I + E +

µI(ρ+ µE + γ)

kγ
V +

p(ρ+ µE + γ)

aγ
C

+
p(ρ+ µE + γ)

γ

∫ t

t−τ

ICdθ,

where T0 = λ
µT

.

Calculating the time derivative of W0 along the positive solutions of system (1.1), we obtain

dW0

dt
=

(
1− f(T0, 0)

f(T, 0)

)
dT

dt
+

ρ(T − T0 + E)( dT
dt

+ dE
dt

)

(1 + α1T0)(µT + µE + γ)T0

+
ρ+ µE + γ

γ

dI

dt
+ Ė +

µI(ρ+ µE + γ)

kγ

dV

dt
+
p(ρ+ µE + γ)

aγ

dC

dt

+
p(ρ+ µE + γ)

γ

d

dt

∫ t

t−τ

ICdθ.
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Noting that λ = µTT0, we get

dW0

dt
=

(
1− f(T0, 0)

f(T, 0)

)
µT (T0 − T ) +

f(T0, 0)f(T, V )

f(T, 0)
V + ρ

(
1− f(T0, 0)

f(T, 0)

)
E

− ρµT (T − T0)
2

(1 + α1T0)(µT + µE + γ)T0
− ρ(µE + γ)E2

(1 + α1T0)(µT + µE + γ)T0

+
ρE

(1 + α1T0)T0

(
T0 − T

)
− p(ρ+ µE + γ)

γ
IC − µIµV (ρ+ µE + γ)

kγ
V

+
p(ρ+ µE + γ)

γ
IτCτ − µCp(ρ+ µE + γ)

aγ
C +

p(ρ+ µE + γ)

γ

[
IC − IτCτ

]
= −

(
1

T
+

ρ

(µT + µE + γ)T0

)
µT (T − T0)

2

1 + α1T0
− ρ(µE + γ)E2

(1 + α1T0)(µT + µE + γ)T0

− ρ(T − T0)
2E

(1 + α1T0)TT0
+
µIµV (ρ+ µE + γ)

kγ
(R0 − 1)V

− (α2 + α3T )V
2

1 + α1T + α2V + α3TV
f(T0, 0)−

µCp(ρ+ µE + γ)

aγ
C.

Therefore, dW0
dt

≤ 0 if R0 ≤ 1. Further, dW0
dt

= 0 if and only if T = λ
µT

, E = 0, I = 0, V = 0 and
C = 0. Hence, the largest compact invariant set in {(T,E, I, V, C)| dW0

dt
= 0} is just the singleton

{Q0}. Thus, the global stability of the infection-free equilibriumQ0 follows from LaSalle’s invariance
principle [13].

Theorem 3.2. The immune-free infection equilibrium Q1 of system (1.1) is globally asymptotically
stable if R1 ≤ 1 < R0 and

R0 ≤ 1 +
[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ

2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
. (3.1)

Proof. Constructing a Lyapunov functional W1 as follows

W1(T,E, I, V, C) = T − T1 −
∫ T

T1

f(T1, V1)

f(S, V1)
dS

+
ρ(1 + α2V1)(T − T1 + E − E1)

2

2(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)T1

+
f(T1, V1)V1

γE1
I1Φ(

I

I1
) + E1Φ(

E

E1
) +

µIf(T1, V1)V1

kγE1
V1Φ(

V

V1
)

+
pf(T1, V1)V1

aγE1
C +

pf(T1, V1)V1

γE1

∫ t

t−τ

ICdθ.

The time derivative of W1 along the positive solutions of system (1.1) satisfies

dW1

dt
=

(
1− f(T1, V1)

f(T, V1)

)
dT

dt
+

ρ(1 + α2V1)(T − T1 + E − E1)(
dT
dt

+ dE
dt

)

(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)T1

+
f(T1, V1)V1

γE1

(
1− I1

I

)
dI

dt
+

(
1− E1

E

)
dE

dt
+
µIf(T1, V1)V1

kγE1

(
1− V1

V

)
dV

dt

pf(T1, V1)V1

aγE1

dC

dt
+
pf(T1, V1)V1

γE1

d

dt

∫ t

t−τ

ICdθ.
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Using λ = µTT1 + f(T1, V1)V1 − ρE1, we get

dW1

dt
=

(
1− f(T1, V1)

f(T, V1)

)
µT (T1 − T ) +

f(T1, V1)f(T, V )

f(T, V1)
V + ρ

(
1− f(T1, V1)

f(T, V1)

)
E

− µT ρ(1 + α2V1)

(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)T1
(T − T1)

2

− ρ(1 + α2V1)(µE + γ)

(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)T1
(E − E1)

2

− ρ(1 + α2V1)(E − E1)(T − T1)
2

(1 + α1T1 + α2V1 + α3T1V1)T1T
− (f(T1, V1))

2

f(T, V1)
V1 + 4f(T1, V1)V1

−f(T1, V1)V − f(T1, V1)V1
I1E

IE1
− f(T, V )V

E1

E
− f(T1, V1)V1

V1I

I1V

+
pf(T1, V1)V1

γE1
(I1 −

µC

a
)C

= − (1 + α2V1)(T − T1)
2

TT1(1 + α1T1 + α2V1 + α3T1V1)

(
(µTT1 − ρE1) +

ρµTT

µT + µE + γ
+ ρE

)
− ρ(E − E1)

2(1 + α2V1)(µE + γ)

T1(1 + α1T1 + α2V1 + α3T1V1)(µT + µE + γ)

+f(T1, V1)V1

(
5− f(T1, V1)

f(T, V1)
− I1E

E1I
− f(T, V )

f(T1, V1)

V E1

V1E
− V1I

V I1
− f(T, V1)

f(T, V )

)
− f(T1, V1)(1 + α1T )(α2 + α3T )(V − V1)

2

(1 + α1T + α2V1 + α3TV1)(1 + α1T + α2V + α3TV )

+
pµCf(T1, V1)V1

aγE1
(R1 − 1)C.

Using the arithmetic-geometric inequality, we get

5− f(T1, V1)

f(T, V1)
− I1E

E1I
− f(T, V )

f(T1, V1)

V E1

V1E
− V1I

V I1
− f(T, V1)

f(T, V )
≤ 0. (3.2)

Therefore, dW1
dt

≤ 0 if R1 ≤ 1 and ρE1 6 µTT1.

Obviously, the condition ρE1 6 µTT1 is equivalent to

R0 ≤ 1 +
[µTµIµV (µE + γ) + α2µTλkγ](µE + ρ+ γ) + ρα3kγλ

2

ρµIµV (µE + ρ+ γ)(µT + α1λ)
.

In addition, dW1
dt

= 0 if and only if T = T1, E = E1, I = I1, V = V1 and C = 0. Hence, the largest
compact invariant set in {(T,E, I, V, C)| dW1

dt
= 0} is the singleton

{
Q1

}
. This prove the global

stability of Q1 by using LaSalle’s invariance principle [13].

For the global stability of the chronic infection equilibrium, we give the following result without
any proof, since the proof is similar to that presented by Maziane et al. in [5].

Theorem 3.3. When τ = 0, the chronic infection equilibrium with immune response Q2 is globally
asymptotically stable if R1 > 1 and

kβµCρ ≤ α1λρaµV + µT (ρ+ µE + γ)(α2kµC + aµV ) + α3ρλkµC . (3.3)
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Next, we investigate the local stability of the chronic infection equilibrium Q2(T2, E2, I2, V2, C2).

The associated characteristic equation of system (1.1) is given by

λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 + e−λτ(b1λ4 + b2λ

3 + b3λ
2 + b4λ+ b5

)
= 0, (3.4)

where,

a1 =
∂f(T2, V2)

∂T
V2 + µT + µI + µV + µC + pC2 + µE + ρ+ γ,

a2 =

(
∂f(T2, V2)

∂T
V2 + µT

)[
(µE + ρ+ γ) + µV + µI + µC + pC2

]
+(µE + ρ+ γ)(µV + µI + µC + pC2) + (µI + pC2)(µV + µC) + µV µC + µT ρ,

a3 =

(
∂f(T2, V2)

∂T
V2 + µT

)[
(µV + µC)(µI + pC2) + µV µC

]
+

(
∂f(T2, V2)

∂T
V2 + µT

)
(µE + γ)(µI + µV + µC + pC2) + µCµV (µI + pC2 + µE + ρ+ γ)

−kγ ∂f(T2, V2)

∂V
V2 + µT ρ(µV + µI + µC + pC2),

a4 =

(
∂f(T2, V2)

∂T
V2 + µT

)[
µV µC(µI + pC2) + (µE + γ)(µV + µI + pC2)µC

−kγ ∂f(T2, V2)

∂V
V2

]
− kγµC

∂f(T2, V2)

∂V
V2 + ρµT

(
(µI + pC2)(µC + µV ) + µV µC

)
+
∂f(T2, V2)

∂T
V2

[
kγ
∂f(T2, V2)

∂V
V2 + µV (µE + γ)(µI + pC2)

]
,

a5 = −
(
∂f(T2, V2)

∂T
V2 + µT

)
kγ
∂f(T2, V2)

∂V
V2µC +

∂f(T2, V2)

∂T
V2µC

(∂f(T2, V2)

∂V
V2 + f(T2, V2)

)
−kγµTµV

∂f(T2, V2)

∂V
V2,

b1 = −µC ,

b2 = −µC

[
∂f(T2, V2)

∂T
V2 + µT + µI + µV + µE + ρ+ γ

]
,

b3 = −µC

[(
∂f(T2, V2)

∂T
V2 + µT

)(
µI + µV + µE + γ

)
+ µIµV + (µI + µV )(µE + ρ+ γ) + ρµT

]
,

b4 = −µC

[(
∂f(T2, V2)

∂T
V2 + µT

)(
µIµV + (µE + γ)(µI + µV )

)
− kγ

(
∂f(T2, V2)

∂V
V2 + f(T2, V2)

)
+µT ρ(µI + µV )

]
,

b5 = −µC

[(
∂f(T2, V2)

∂T
V2 + µT

)
µIµV (µE + γ)− kγµT

(
∂f(T2, V2)

∂V
V2 + f(T2, V2)

)
+ ρµTµIµV

]
.

For τ ̸= 0, we assume that λ = iω with ω > 0 is a purely imaginary root of (3.4). substituting
λ = iω in (3.4) and equating real parts and imaginary parts, we have

w5 − a2w
3 + a4w = (b1w

4 − b3w
2 + b5) sinωτ + (b2w

3 − b4w) cosωτ,
a1w

4 − a3w
2 + a5 = −(b1w

4 − b3w
2 + b5) cosωτ + (b2w

3 − b4w) sinωτ.
(3.5)

7



Maziane et al.; BJMCS, 21(4), 1-15, 2017; Article no.BJMCS.30819

Squaring and adding both equations of (3.5), we obtain

ω10 + c1ω
8 + c2ω

6 + c3ω
4 + c4ω

2 + c5 = 0, (3.6)

where

c1 = a21 − 2a2 − b21,

c2 = a22 + 2a4 − 2a1a3 + 2b1b3 − b22,

c3 = a23 − 2a2a4 − b23 + 2b2b4 + 2a1a5 − 2b1b5,

c4 = a24 − b24 − 2a3a5 + 2b3b5,

c5 = a25 − b25.

Letting z = ω2 yields
h(z) = z5 + c1z

4 + c2z
3 + c3z

2 + c4z + c5 = 0. (3.7)

Lemma 3.4. If c5 < 0, then Eq. (3.7) has at least one positive root.

Proof. Since limz→+∞ h(z) = +∞ and h(0) = c5 < 0, then there exists a z0 ∈ (0,+∞) such that
h(z0) = 0.

For the case of c5 ≥ 0, we consider the following equation

h′(z) = 5z4 + 4c1z
3 + 3c2z

2 + 2c3z + c4 = 0. (3.8)

Let z = y − 1
5
c1, then equation (3.8) becomes

y4 + p1y
2 + q1y + r1 = 0, (3.9)

where

p1 = − 6

25
c21 +

3

5
c2,

q1 =
8

125
c31 +

6

25
c1c2 +

2

5
c3,

r1 = − 3

625
c41 +

3

125
c21c2 −

2

25
c1c3 +

1

5
c4.

If q1 = 0, then the solutions of (3.9) are

y1 =

√
−p1 +

√
∆0

2
, y2 = −

√
−p1 +

√
∆0

2
,

y3 =

√
−p1 −

√
∆0

2
, y4 = −

√
−p1 −

√
∆0

2
,

where ∆0 = p21 − 4r1. Then zi = yi − 1
5
c1, i = 1, 2, 3, 4 are the roots of (3.8). From [14], we have

the following result.

Lemma 3.5. Suppose that c5 ≥ 0 and q1 = 0.

(i) If ∆0 < 0, then (3.7) has no positive real roots.

(ii) If ∆0 ≥ 0, p1 ≥ 0 and r1 > 0, then (3.7) has no positive real roots.

(iii) If (i) and (ii) are not satisfied, then (3.7) has positive real roots if and only if there exists at
least one z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0.
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Next, we assume that q1 ̸= 0. Denote

p2 = −1

3
p21 − 4r1,

q2 = − 2

27
p31 +

8

3
p1r2 − q21 ,

∆1 =
1

27
p32 +

1

4
q22 ,

s∗ = 3

√
−q2

2
+

√
∆1 +

3

√
−q2

2
−

√
∆1 +

1

3
p1,

∆2 = −s∗ − p1 +
2q1√
s∗ − p1

,

∆3 = −s∗ − p1 −
2q1√
s∗ − p1

.

z̄ =
q1

2(p1 − s∗)
− 1

5
p.

Similarly to [14], we get the following results.

Lemma 3.6. Suppose that c5 ≥ 0, q1 ̸= 0 and s∗ > p1.

(i) If ∆2 < 0 and ∆3 < 0, then (3.7) has no positive real roots.

(ii) If (i) is not satisfied, then (3.7) has positive real roots if and only if there exists at least one
z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0.

Lemma 3.7. If c5 ≥ 0, q1 ̸= 0 and s∗ < p1, then (3.7) has positive real roots if and only if
q21

4(p1−s∗)2
+ 1

2
s∗ = 0, z̄ > 0 and h(z̄) ≤ 0.

Suppose that (3.7) has positive roots zk, k = 1, 2, 3, 4, 5, where wk =
√
zk. From (3.5), we have

cosωkτ =
(w5 − a2w

3 + a4w)(b2w
3 − b4w)− (a1w

4 − a3w
2 + a5)(b1w

4 − b3w
2 + b5)

(b2w3 − b4w)2 + (b1w4 − b3w2 + b5)2

= L(ωk).

Let
τkj =

1

ωk

[
arccosL(ωk) + 2jπ

]
, k = 1, 2, 3, 4, 5, j = 0, 1, 2, ... .

Then ±iwk is a pair of purely imaginary roots of (3.4) with τ = τkj .
Define

τ0 = τk0
j0

= min
1≤k≤5,j≥1

{τkj }, w0 = wk0 .

From Theorem 3.3 and Lemmas 3.4-3.7, we have the following result.

Lemma 3.8. Suppose that R1 > 1 and (3.3) hold.

(i) If one of the following holds: (a) c5 < 0; (b) c5 ≥ 0, q1 = 0, ∆0 ≥ 0 and p1 < 0 or r1 ≤ 0 and
there exist z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0; (c) c5 ≥ 0, q1 ̸= 0, s∗ > p1,
∆2 ≥ 0 or ∆3 ≥ 0 and there exist z∗ ∈ {z1, z2, z3, z4} such that z∗ > 0 and h(z∗) ≤ 0; (d)

c5 ≥ 0, q1 ̸= 0, s∗ < p1,
q21

4(p1−s∗)2 + 1
2
s∗ = 0, z̄ > 0 and h(z̄) ≤ 0, then all the roots of (3.4)

have negative real parts when τ ∈ [0, τ0).

(ii) If all the conditions (a)− (d) of (i) are not satisfied, then all roots of (3.4) have negative real
parts for all τ ≥ 0.
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Let λ(τ) = ξ(τ) + iω(τ) be a root of (3.4) satisfying ξ(τ) = 0 and ω(τ) = ω0. Differentiating the
two sides of (3.4) with respect to τ and noticing that λ is a function of τ , it follows that(

dλ

dτ

)−1

= − 5λ4 + 4a1λ
3 + 3a2λ

2 + 2a3λ+ a4
λ(λ5 + a1λ4 + a2λ3 + a3λ2 + a4λ+ a5)

+
4b1λ

3 + 3b2λ
2 + 2b3λ

1 + b4
λ(b1λ4 + b2λ3 + b3λ2 + b4λ+ b5)

− τ

λ
.

By (3.5) we get[
dRe(λ(τ))

dτ

]−1

τ=τ
j
k

= − (5ω4
k − 3a2ω

2
k + a4)(−ω6

k + a2ω
4
k − a4ω

2
k)

(−ω6
k + a2ω4

k − a4ω2
k)

2 + (a1ω5
k − a3ω3

k + a5ωk)2

+
(4a1ω

3
k − 2a3ωk)(a1ω

5
k − a3ω

3
k + a5ωk)

(−ω6
k + a2ω4

k − a4ω2
k)

2 + (a1ω5
k − a3ω3

k + a5ωk)2

+
(−3b2ω

2
k + b4)(b2ω

4
k − b4ω

2
k)

(b2ω4
k − b4ω2

k)
2 + (b1ω5

k − b3ω3
k + b5ωk)2

+
(−4b1ω

3
k + 2b3ωk)(b1ω

5
k − b3ω

3
k + b5ωk)

(b2ω4
k − b4ω2

k)
2 + (b1ω5

k − b3ω3
k + b5ωk)2

.

From (3.4) we obtain

(ω5 − a2ω
3 + a4ω)

2 + (a1ω
4 − a3ω

2 + a5)
2 = (b2ω

3 − b4ω)
2 + (b1ω

4 − b3ω
2 + b5).

Then [
dRe(λ(τ))

dτ

]−1

τ=τ
j
k

=
5z4k + 4c1z

3
k + 3c2z

2
k + 2c3zk + a4

(b1ω4
k − b3ω2

k + b5)2 + (b2ω2
k − b4)2

=
h′(zk)

(b1ω4
k − b3ω2

k + b5)2 + (b2ω2
k − b4)2

.

Therefore, it follows that

sign

[
dRe(λ(τ))

dτ

]
τ=τ

j
k

= sign

[
dRe(λ(τ))

dτ

]−1

τ=τ
j
k

= sign

[
h′(zk)

]
.

Since zk > 0, then Re
[
dλk(τ)

dτ

]
τ=τ

j
k

and h′(zk) have the same sign.

Summarizing the above analysis in the following result.

Theorem 3.9. Suppose that R1 > 1 and (3.3) hold.

(i) If the conditions (a) − (d) of Lemma 3.8 are all not satisfied, then the chronic infection
equilibrium Q2 is locally asymptotically stable for all time delay τ ≥ 0.

(ii) If one of the conditions (a)−(d) of Lemma 3.8 is satisfied, then the chronic infection equilibrium
Q2 is locally asymptotically stable for τ ∈ [0, τ0).

(iii) If the condition of (ii) is satisfied and h′(zk) ̸= 0, then system (1.1) undergoes a Hopf
bifurcation at Q2 when τ = τ0.
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4 Numerical Simulations

We choose the following data set of system (1.1): Λ = 10, µT = 0.0139, β = 2.4× 10−5, α1 = 0.1,
α2 = 0.01, α3 = 0.00001, ρ = 0.01, γ = 0.01, µI = 0.27, µE = 0.0347, p = 0.001, k = 1200, µV = 3,
a = 0.002 and µC = 0.1. By calculation we have R0 = 0.1141 < 1. In this case, system (1.1)
has an infection-free equilibrium Qf (719, 4245, 0, 0, 0, 0). Hence, by Theorem 3.2, Qf is globally
asymptotically stable. (See fig 1).

In fig 2, we choose β = 0.0012 and keep all other parameter values. By calculation, we have
R0 = 3.2055 and R1 = 0.8183 and [µT µIµV (µE+γ)+α2µT λkγ](µE+ρ+γ)+ρα3kγλ

2

ρµIµV (µE+ρ+γ)(µT+α1λ)
= 3.3465. In this

case, system (1.1) has an immune-free equilibrium Q1(139.7195, 180.2658, 6.6765, 2671.8, 0). By
Theorem 3.3, Q1 is globally asymptotically stable. In the absence of CTL cells, the CD4+T cells
decrease to the value 139.7195, which means that the patient enters in the phase AIDS, (< 200 cell
mm−3).

Now, we change one parameter, which is a = 0.065, then, we have R1 = 3.8292 > 1, condition (3.3)
holds and (3.4) have no positive root. Then, the system (1.1) have a chronic infection equilibrium
Q2(341.6990, 129.5433, 1.9973, 798.8222, 380.0478). From the Theorem 3.9(i), we get that Q2 is
locally asymptotically stable for any time delay τ ≥ 0. (See fig 3).

Next, we choose k = 1500, then we get that R1 = 4.1492 > 1, condition (3.3) holds and (3.4) have
two positive roots. By calculation, we have τ0 = 45, 1203. From Theorem 3.9 (ii), Q2(319.4270,
122.1529, 1.4771, 738.3008, 557.2327) is locally asymptotically stable for if 0 < τ < τ0. (See Fig. 4).

Finally, Fig 5 shows the occurrence of Hopf bifurcations in the case of τ = 67 > τ0.

Fig. 1. Stability of the infection-free equilibrium Q0 of system (1.1) for different
initial conditions, when R0 ≤ 1, for all τ ≥ 0
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Fig. 2. Stability of the immune-free infection equilibrium Q1 of system (1.1) for
different initial conditions, when R0 > 1 ≥ R1 and condition (3.1) holds, for all τ ≥ 0

Fig. 3. Stability of the chronic infection-equilibrium Q2 of system (1.1) when R1 > 1
and condition (3.3) holds, for all τ ≥ 0
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Fig. 4. Stability of the chronic infection equilibrium Q2 of system (1.1) when R1 > 1,
condition (3.3) holds and τ = 40

Fig. 5. A periodic solutions appear when R1 > 1, condition (3.3) holds and τ = 67
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5 Conclusion
In this paper, we have proposed a delayed HIV infection model with cure of infected cells in eclipse
stage. The delay represents the time needed for the activation of the CTL immune response.
In addition, the infection transmission process in the proposed model is modeled by Hattaf’s
incidence rate that includes the traditional bilinear incidence rate, the saturated incidence rate,
the Beddington-DeAngelis functional response and Crowley-Martin functional response. We have
proved that the delay has no effect on the dynamics of the model when R0 ≤ 1 or R1 ≤ 1 ≤ R0.
However, when R1 > 1, the model loses its stability when the time delay is large.
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