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Abstract 
 

This paper describes a study using Average Monthly Exchange Rates (AMER) of Naira (Nigerian 
currency) to six other currencies of the World to evaluate and compare the performance of univariate and 
multivariate based time series models. The data from 2002 -2014 was used for modeling and forecasting 
the actual values of the AMER for 2014 of the six currencies. The Mean Absolute Percentage Error 
(MAPE) forecast accuracy measure was also used in determining if Univariate Times Series Model or 
Multivariate Time Series Models is best for forecasting the future AMER value of a given currency. The 
result of data showed that the Univariate time series fits better for Dollar, Pounds Sterling, Yen, WAUA 
and CFA, while only Euro fits well for the Multivariate time series. 
 

 
Keywords: Autoregressive integrated moving average; vector autoregressive and mean absolute percentage 

error. 
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1 Introduction 
 
Time series modeling is a dynamic research area which has attracted attentions of researchers’ community 
over last few decades. The main aim of time series modeling is to carefully collect and rigorously study the 
past observations of a time series to develop an appropriate model which describes the inherent structure of 
the series and also the determination of the temporal ordering among some variables through Granger 
causality tests. This model is then used to generate future values for the series, i.e. to make forecasts. Time 
series forecasting thus can be termed as the act of predicting the future by understanding the past [1]. Due to 
the indispensable importance of time series forecasting in numerous practical fields such as business, 
economics, finance, science and engineering, etc. ([2,3-5]), proper care should be taken to fit an adequate 
model to the underlying time series. It is obvious that a successful time series forecasting depends on an 
appropriate model fitting. A lot of efforts have been done by researchers over many years for the 
development of efficient models to improve the forecasting accuracy. As a result, various important time 
series forecasting models have been evolved in literature (see [6-11,1,12-17,4]). Furthermore, in many 
forecasting problems, it may be the case that there are more than just one variable to consider. Attempting to 
model each variable individually may at times work. But in such situations, it is often the case that these 
variables are sometimes cross-correlated, and that structure can be effectively taken advantage of in 
forecasting. It has been argued that the nature of the problem allows fairly strong restrictions to be imposed 
in a univariate model. These restrictions are not normally enforced with the traditional ARIMA framework. 
For a multivariate set-up, the number of parameters to be estimated increases rapidly as more series are 
included and a vector ARMA model the issues concerned with identifiability becomes quite complicated 
[10]. Hence it is even more important to formulate models which take account of the nature of the problem. 
Nowadays, more and more investors are interested in investing in the foreign exchange market. However, 
the international financial market is changing over time due to exchange rate volatility. It causes an 
inevitable risk in the investment since we don't even know if the exchange rate would increase or decrease 
tomorrow. Thus, how to avoid or reduce this risk requires a model to forecast the result accurately by 
eliminating the fitting errors involved with classical data forecasting. Indistinguishable linked-predictive let-
downs suggest the inadequacy of a model. Therefore, a good forecasting model should result in the fewest 
fitting errors while maximizing accuracy. 
 
In this study, we compared two types of time-series-based forecasting models: univariate and multivariate to 
see which of these models best fits the exchange rate data using MAPE. The remainder of the paper is 
structured as follows: Section 2 provides a unified framework for univariate and multivariate time series 
models. In Section 3 we describe our procedure for finding in a robust way the transformation parameters. In 
Section 4 we apply the suggested procedure to real time series Section 5 contains comparison from the two 
models and concluding remarks. 
 
1.1 Univariate time series (ARMA Model) 
 
The process { }...,2,1,0, ±±=tYt  is said to be an ARMA(p, q) process if  { }tY  is stationary and if for 

every t, Box and Jenkins [13],  
 

qtqttptptt eeeYYY −−−− −−−=−−− θθφφ LL 1111                              (1) 

 

where { } ( )2,0~ σNet . The Equation (1) can be written symbolically in a more compact form 

 

,...,2,1,0,)()( ±±== teBYB tt θφ                 (2) 

 

Where φ  and θ  are the pth and qth degree polynomials. 
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p
pBBB φφφ −−−= L11)(                                                                         (3) 

 
And 
 

q
qZZB θθθ +++= L11)(                                                                         (4) 

 

Band Z are the backward shift operators defined by  
 

,jtt
j YYB −=    ,....2,1,0 ±±=j                                                                        (5) 

 

,jtt
j eeZ −=    ,....2,1,0 ±±=j                                                                        (6) 

 

The polynomials φ  and θ  will be referred to as the autoregressive and moving average polynomials 

respectively of the difference Equation (3). 
 
 If 1)( ≡Bφ  then  
 

tt eBY )(θ=                                                                                                          (7) 

 
The process is said to be a moving-average process of order q (or MA(q)). Similarly, If 1)( ≡Bθ  then  

 

tt eYB =)(φ                                                                                                                                (8) 

 
The process is said to be an autoregressive process of order p (or AR(p)). 
 
A series which becomes stationary after first differencing is said to be integrated of order one, denoted I(1). 

If tY∆  is described by a stationary ARMA(p, q) model, we say that tY  is described by an autoregressive 

integrated moving average (ARIMA) model of order p,1,q, or mathematically ARIMA(p,1,q) is written as 
 

tt
d eBYBB )()1)(( θφ =−

 
 
Let 
 

)1( B

tt YX −=                                                (9) 
 

t
d

t
d

t XXBW ∇=−= )1(                                            (10) 
 

Then, (10) admits an ARMA (p, q) Model if ; 
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∑
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t
teS

1

2)(α                                 (13) 

 

where tY is the original series, tX  is the transformed series, 1,...,2,1,...,2,1, ++++= qpppiiα  

are the sequence of the parameters of ARMA(p, q) process, te  is the white noise process, ( )2,0~ σNet  

and )(αS  is the model residual sum of squares. 

 
1.2 Multivariate time series 
 
Multivariate time series is an extension of the Univariate time series. Multivariate time series in practice are 

best considered as components of some vector valued time series { }tY  having not only serial dependence 

within each component { }itY  and { }
tj

Y , ji ≠ . Much of the theory of univariate time series extends in a 

natural way to the multivariate case. In multivariate time series, attention is confined to vector autoregressive 
(or VAR) models. The univariate autoregressive moving average models can be readily extended to the 
multivariate case, in which the stochastic process that generates the time series of a vector of variables is 
modeled. The most common approach is to consider a vector autoregressive (VAR) model. A VAR 
describes the dynamic evolution of a number of variables from their common history [3]. If we consider two 

variables, tY1  and tY2 , a first order VAR(1) would be given by 

 

tttt zYYY 1)1(212)1(11111 +++= −− φφµ                                                        (14) 

 

tttt zYYY 2)1(222)1(12122 +++= −− φφµ                                                       (15) 

 

Where tz1  and tz2  are two white noise processes (independent of the history of tY1  and tY2 ) that may be 

correlated. Hence 012 ≠φ
 
it means that the history of tY1  helps explaining tY2 . Equations (17 and 18) can 

be written as: 
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                                                      (16) 

 
Or with appropriate definitions, as 
 

ttt zYY
rrr

+Θ+= −11µ                                                                           (17) 

 

where tY
r

= ( )/
21 , tt YY  and tz

r
= ( )/

21 , tt zz .  

 
This can be extended to a general vector autoregressive model of order p (VAR(p)), hence for a k-

dimensional vector tY
r

 given by 

 

tptptt zYYY
rrrr

+Θ++Θ+= −− ...11µ                                                        (18) 
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where each iΘ  is a kk ×  matrix and tz
r

 is a k-dimensional vector of white noise terms with covariance 

matrix Σ . As in the univariate case, we can use the lag operator to define a matrix lag polynomial 
 

p

pk LLIL Θ−−Θ−=Θ ...)( 1
                                          (19) 

 

Where kI  is the k-dimensional identity matrix, hence VAR can be written as 
 

tt zYL
rr

+=Θ µ)(                                             (20) 
 

The matrix lag polynomial is a kk ×  matrix where each element corresponds to p-th order polynomial. 
 

2 Materials and Methods 
 
The data used in this research is the daily exchange rate of the Nigerian currency naira to other currencies for 
the period of January, 2002 – December 2014 which was obtained from the Central Bank of Nigeria. The 
Average Monthly Exchange Rate (AMER) was computed for six selected currencies namely, Dollar, Pounds 
Sterling, Euro, Yen, West Africa Unit of Account (WAUA) and Commuaute Financiere Africaine (CFA). 
The AMER became necessary in order to obtain a more central measure of the daily exchange rates due to 
calendar problem often encountered in time series analysis. Thus, the AMER was computed for the period of 
January 2002 – December 2014. 
 

2.1 Data transformation 
 
In most time series data, transformation is required in order to stabilize the variance of the data in other 
words the series do not depend on the mean of the data. Transformation is a preliminary analysis often 
associated with non-stationary time series data, hence the reason for transformation could be that the amount 
of variability in a time series is not constant across time or to study what is left in a data set after having 
removed the trends (see [18,14,19]). A simple but often effective way to stabilize the variance across time is 

to apply the common transformations 








YY
Y

Y
YY

1
,

1
,,

1
,,log

2
2

 to the time series. In this study we 

would apply the power transformation to time series data this is necessary in order to have a uniform 
transformation for all the variables under consideration. In applying the power transformation, we split the 

observed time series },...,2,1,{ ntYt =  chronologically into mfairly equal different groups and compute 

their means { }miYi ,...,2,1, =  and standard deviations { }mjj ,...,2,1,ˆ =σ   for the groups. We then 

regress the natural logarithms of the group standard deviations { }mjj ,...,2,1,ˆ =σ  against the natural 

logarithms of the group means { }miYi ,...,2,1, =   and then determine the slope, β , of the relationship. 

[20]: 
 

iieie Y εβασ ++= logˆlog                                            (21) 

 
The power transformation is given as 
 





≠
=

= − 1

1,log
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β
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t

te
t Y
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3 Data Analysis and Applications 
 
Based on (2), the required transformation for each of the variables were obtained, resulting from estimates of 
the fitted line slopes ( )'sβ . It was observed that all the variables required transformation of their data except 
for CFA. Table 1 illustrates the transformation required for each of the variables. 
 

Table 1. Transformation required for the variables 
 

Variable (Currency) β -Value Transformation 

Dollar -9.253 253.10
tt YX =  

Pounds -4.583 583.5
tt YX =  

Euro -0.7024 7024.1
tt YX =  

Yen 0.7073 2927.0
tt YX =  

WAUA -1.813 813.2
tt YX =  

CFA 0.1336 No transformation is required. 
 
Having obtained the transformed series for each of the six variables and ARIMA models fitted to the 
variables, the AIC selection criteria was used to select which models gives a better fit based on a list of 
candidate models computed for each of variables. Table 2 summaries the fitted models for these variables 
 

Table 2. Summary of fitted models 
 

Variable (Currency) Fitted model  Model equation 
Dollar ARIMA(1,1,1) 

tttt eeYY +−−= −− 11 7143.04589.0ˆ  

Pounds Random walk 
ttt eYY += −1
 

Euro ARIMA(0,1,1) 
ttt eeY +−= −12974.0  

Yen ARIMA(1,1,0) 
ttt eYY += −13586.0ˆ  

WAUA ARIMA(0,1,1) 
ttt eeY +−= −13653.0ˆ  

CFA ARIMA(1,1,0) 
ttt eYY +−= −12389.0ˆ  

 

The time series plots of the AMER for the six variables (currencies) are illustrated in Figs. 1-6 while the 
SACF and SPACF of the residual plots of the fitted models for five of the variables are illustrated in Figs. 7-
16. 
 

 
 

Fig. 1. Time series plot of the AMER for 
Dollar 

Fig. 2. Time series plot of the AMER for 
Pounds Sterling 
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Fig. 3. Time series plot of the AMER for  
Euro 

Fig. 4. Time series plot of the AMER for  
Yen 

 

 

Fig. 5. Time series plot of the AMER for 
WAUA 

Fig. 6. Time series plot of the AMER for    
CFA 

 
SACF and SPACF of the residual plots of the fitted models for five of the variables are shown below 
 

 
 

Fig. 7. Autocorrelation plot of residuals of 
ARIMA(1,1) model for Dollar  

 

Fig. 8. Partial autocorrelation plot of residuals 
of  ARIMA(1,1) model for Dollar 

 



 
 
 

Azubuike and Kosemoni; BJMCS, 21(4): 1-17, 2017; Article no.BJMCS.30733 
 
 
 

8 
 
 

 
 

Fig. 9. Autocorrelation plot of residuals of 
MA(1) model for Euro 

Fig. 10. Partial autocorrelation plot of 
residuals of MA(1) model for Euro 

 

 
 

Fig. 11. Autocorrelation plot of residuals of 
AR(1) model for Yen 

Fig. 12. Partial autocorrelation plot of 
residuals of AR(1) model for Yen 

 

 
 

Fig. 13. Autocorrelation plot of  residuals of 
MA(1) model for WAUA 

Fig. 14. Partial autocorrelation plot of 
residuals of MA(1) model for WAUA 
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Fig. 15. Autocorrelation plot of residuals of  
AR(1) model for CFA 

 
Fig. 16. Partial autocorrelation plot of  

residuals of  AR(1) model for CFA 
 
In the case of the Pounds Sterling, a preliminary analysis of the time series using the SACF and SPACF 
shows that the series looks like a white noise process. Figs. 17-18 depicts the SACF and SPACF of the 
Pounds Sterling series. 
 

 
 

Fig. 17. Autocorrelation plot of the differenced 
series for Pound Sterling 

 
Fig. 18. Partial autocorrelation plot of the 

differenced series for Pound Sterling 
 

3.1 Multivariate analysis 
 
This section we consider fitting a multivariate time series model to the Average Monthly Exchange Rates 
(AMER) of the six variables. A Vector Autoregressive Model of order twelve VAR(12)  is applied using  
GreI software to select the most appropriate p order of the VAR model using the HIC, BIC and AIC 
criterion. 
 

3.2 Selection of the VAR order p 
 
The choice of an appropriate order p for the estimates of the VAR model was determined using the AIC, 
BIC and HQC criterion using the Gretl software. Table 3 outlines the log-likelihood ratio for lags 1 to 12 and 
its corresponding AIC, BIC and HQC values. The asterisks below indicate the best (that is, minimized) 
values of the respective information criteria, Akaike criterion (AIC), Schwarz Bayesian criterion (BIC) and 
Hannan-Quinn criterion (HQC). 
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Table 3. VAR system, maximum lag order 12 
 

Lags Loglik p(LR) AIC BIC HQC 
1 5458.24543   83.337052      84.254307*    83.709782  
2 5394.72088   0.00000    82.920013*    84.623487      83.612227* 
3 5360.51133   0.00089    82.947141      85.436834      83.958838  
4 5342.23723   0.44320    83.215716      86.491627      84.546896  
5 5318.08289   0.08247    83.395195      87.457325      85.045859  
6 5292.14166   0.04207    83.547601      88.395950      85.517747  
7 5263.37049   0.01275    83.657129      89.291696      85.946758  
8 5230.99159   0.00229    83.711994      90.132780      86.321107  
9 5201.90821   0.01108    83.816791      91.023796      86.745387  
10 5157.46184   0.00000    83.688816      91.682039      86.936895  
11 5105.59107   0.00000    83.448350      92.227792      87.015912  
12 5058.80664   0.00000    83.284949      92.850610      87.171995 

 
Based on the result of Table 3, a VAR model of order p=2 is the most appropriate model to use. We 
therefore proceed by fitting Vector Autoregressive model of order two VAR(2) to the six variables. 
 
3.3 Vector autoregressive model for Dollar 
 
The estimates of the VAR(2) of the AMER for  Dollar are shown in Table 4. 
 

Table 4. VAR(2) parameter estimates of the AMER for dollar 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant 1205.65 657.092 -1.8348 Not Significant 
Y1t-1 0.994158 0.11275 8.8174 Significant 
Y1t-2 -0.0529731 0.113358 -0.4673 Not Significant 
Y2t-1 -1.371108e-012 6.28668e-12 -0.2181 Not Significant 
Y2t-2 3.37565e-012 6.30687e-012 -0.5352 Not Significant 
Y3t-1 0.103098 0.0700886 1.4710 Not Significant 
Y3t-2 -0.103098 0.0706959 -1.5380 Not Significant 
Y4t-1 3236.27 1318.4 2.4547 Significant 
Y4t-2 -2036.48 1447.33 -1.4071 Not Significant 
Y5t-1 -0.272922 0.194013 -1.4067 Not Significant 
Y5t-2 0.241743 0.18688 1.2936 Not Significant 
Y6t-1 1458.87 959.563 1.5203 Not Significant 
Y6t-2 -664.545 958.08 -0.6936 Not Significant 

 
From Table 4 it shows that only one variable Yen (Y4) contributes to the value of Dollar. It also reveals that 
the value of Dollar at any given time using the VAR (2) is determined by the value of Dollars at time t-1 and 
Yen at t-1. 

The model equation is  tttt eYYY ++= −− 14111 27.32369942.0ˆ  

 
3.4 Vector autoregressive model for pounds sterling 
 
The estimates of the VAR(2) of the AMER for  Pounds Sterling are shown in Table 5. 
 
From Table 5 it shows that only one variable Euro (Y3) contributes to the value of Pounds Sterling. It also 
reveals that the value of Pounds Sterling at any given time using the VAR (2) is determined by the value of 
Pounds Sterling at time t-1 and Euro at times t-1 and t-2. 
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Table 5. VAR(2) parameter estimates of the AMER for pounds sterling 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant 9.57721e+011 1.29535e+012 0.0739 Not Significant 
Y1t-1 -2.35039e+09 2.22268e+09 -1.0575 Not Significant 
Y1t-2 2.31799e+09 2.23466e+09 1.0373 Not Significant 
Y2t-1 0.941758 0.123932 7.5900 Significant 
Y2t-2 -0.0269465 0.12433 -0.2167 Not Significant 
Y3t-1 3.68249e+09 1.38168e+09 2.6652 Significant 
Y3t-2 -3.75579e+09 1.39366e+09 -2.6949 Significant 
Y4t-1 2.08224e+013 2.59901e+013 0.8012 Not Significant 
Y4t-2 -1.85546e+013 2.85317e+013 -0.6530 Not Significant 
Y5t-1 -3.28038e+09 3.82465e+09 -0.8577 Not Significant 
Y5t-2 4.20743e+09 3.68404e+09 1.1421 Not Significant 
Y6t-1 -3.49117e+013 1.89163e+013 -1.8456 Not Significant 
Y6t-2 1.87796e+01 1.8887e+013 0.9943 Not Significant 

 

The model equation is  ttttt eYeYeYY ++−++= −−− 2313122 0975579.30968249.39418.0ˆ
. 

 
3.5 Vector autoregressive model for Euro 
 
The estimates of the VAR(2) of the AMER for  Euro are shown in Table 6. 
 

Table 6. VAR(2) parameter estimates of the AMER for Euro 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant -2137.62 1852.68 -1.1538 Not Significant 
Y1t-1 0.157544 0.317899 0.4956 Not Significant 
Y1t-2 -0.0123727 0.3196613 -0.0387 Not Significant 
Y2t-1 -6.29127e-012 1.77254e-011 -0.3549 Not Significant 
Y2t-2 2.58059e-012 1.77823e-011 0.1451 Not Significant 
Y3t-1 1.59251 0.197616 8.0586 Significant 
Y3t-2 -0.552697 0.199328 -2.7728 Significant 
Y4t-1 5932.98 3717.24 1.5961 Not Significant 
Y4t-2 -3137.53 4080.76 -0.7689 Not Significant 
Y5t-1 -1.23995 0.547021 -2.2667 Significant 
Y5t-2 0.847933 0.52691 1.6093 Not Significant 
Y6t-1 -871.734 2705.5 -0.3222 Not Significant 
Y6t-2 677.328 2701.32 0.2507 Not Significant 

 
From Table 6 it shows that only one variable WAUA (Y5) contributes to the value of Euro. It also reveals 
that the value of Euro at any given time using the VAR (2) is determined by the value of Euro at times t-1 
and t-2 as well as the value WAUA at t-1. 
 

The model equation is   ttttt eYYYY +−−= −−− 1523133 23995.1552697.059251.1ˆ
. 

 
3.6 Vector autoregressive model for Yen 
 
The estimates of the VAR(2) of the AMER for Yen are shown in Table 7. 
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Table 7. VAR(2) parameter estimates of the AMER for Yen 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant -0.0215931 0.0506119 -0.4266 Not Significant 
Y1t-1 4.24777e-06 8.68443e-06 0.4891 Not Significant 
Y1t-2 -5.89148e-06 8.73127e-06 -0.6748 Not Significant 
Y2t-1 0 0 0.0159 Not Significant 
Y2t-2 0 0 -1.0994 Not Significant 
Y3t-1 3.99801e-06 5.39851e-06 0.7406 Not Significant 
Y3t-2 -1.38554e-06 5.44529e-06 -0.2544 Not Significant 
Y4t-1 1.36515 0.101549 13.4433 Significant 
Y4t-2 -0.33492 0.111479 -3.0043 Significant 
Y5t-1 -3.086326e-05 1.49437e-05 -2.0633 Significant 
Y5t-2 2.72085e-05 1.43943e-05 1.8902 Not Significant 
Y6t-1 0.0935117 0.0739096 1.2652 Not Significant 
Y6t-2 -0.114607 0.0737953 -1.5530 Not Significant 

 
From Table 7 it shows that only one variable WAUA (Y5) contributes to the value of Yen. It also reveals that 
the value of Yen at any given time using the VAR (2) is determined by the value of Yen at time t-1 and t-2 
as well as the value WAUA at time t-1. 
 

The model equation is  ttttt eYeYYY +−−−= −−− 1524144 0508326.333492.036515.1ˆ
 

 

3.7 Vector autoregressive model for WAUA 
 
The estimates of the VAR(2) of the AMER for  WAUA are shown in Table 9. 
 

Table 8. VAR(2) parameter estimates of the AMER For WAUA 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant -1597.03 711.832 -2.2436 Significant 
Y1t-1 0.197692 0.122142 1.6185 Not Significant 
Y1t-2 -0.138393 0.122801 -1.1270 Not Significant 
Y2t-1 -1.66543e-012 6.8104e-012 -0.2445 Not Significant 
Y2t-2 -1.68479e-012 6.83227e-012 -0.2466 Not Significant 
Y3t-1 0.386876 0.0759274 5.0953 Significant 
Y3t-2 -0.325448 0.0765853 -4.2495 Significant 
Y4t-1 5368.09 1428.23 3.7586 Significant 
Y4t-2 -3476.62 1567.9 -2.2174 Significant 
Y5t-1 0.120208 0.210175 0.5719 Not Significant 
Y5t-2 0.613945 0.202448 3.0326 Significant 
Y6t-1 586.987 1039.5 0.5647 Not Significant 
Y6t-2 -826.596 1037.89 -0.7964 Not Significant 

 
From Table 8 it shows that the constant term, variables Y3 (Euro) and Y4 (Yen), contributes to the value of 
WAUA. It also reveals that the value of WAUA at any given time using the VAR (2) is determined by the 
value of WAUA at time t-2 and values of Euro and Yen at t-1 and t-2. It also confirms the reason for the 
presence of WAUA in the earlier models for Y3 (Euro) and Y4 (Yen).  The model equation is 
 

ttttttt eYYYYYY ++−+−+−= −−−−− 25241423135 6139.062.347609.53683254.03869.02436.2ˆ
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3.8 Vector autoregressive model for CFA 
 
The estimates of the VAR(2) of the AMER for  CFA are shown in Table 9. 
 

Table 9. VAR(2) parameter estimates of the AMER For  CFA 
 

Variable Co-efficient Std error t-ratio Remarks 
Constant -0.0961157 0.0711225 -1.3514 Not Significant 
Y1t-1 -5.80468e-06 1.22038e-05 -0.4756 Not Significant 
Y1t-2 1.05132e-05 1.22696e-05 0.8569 Not Significant 
Y2t-1 0 0 1.4227 Not Significant 
Y2t-2 0 0 -1.1337 Not Significant 
Y3t-1 2.07073e-05 7.58627e-06 2.7296 Significant 
Y3t-2 -1.37394e-05 7.652e-06 -1.7955 Not Significant 
Y4t-1 0.183023 0.142701 1.2826 Not Significant 
Y4t-2 -0.0542741 0.156656 -0.3465 Not Significant 
Y5t-1 -3.91948e-05 2.0999e-05 -1.8665 Not Significant 
Y5t-2 1.99803e-05 2.02275e-05 0.9878 Not Significant 
Y6t-1 0.472836 0.103861 4.5526 Significant 
Y6t-2 0.365834 0.103701 3.5278 Significant 

 
From Table 9 it shows that only one variable Y3 (Euro) contributes to the value of CFA. It also reveals that 
the value of CFA at any given time using the VAR (2) is determined by the value of CFA at time t-1 and t-2 
as well as the value of Euro time t-1. 
 

The model equation is  ttttt eYYYeY +++−= −−− 2616136 365834.0472836.005071.2ˆ
.
 

 
3.9 Plots of the Univariate forecast and the multivariate forecast with the actual 

values of the AMER for 2014 
 
The plots of the univariate and multivariate forecast of the 2014 AMER of the six currencies are illustrated 
in Figs. 19-24. 
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Fig. 19. Plot of the AMER univariate and multivariate forecast for Dollar with the actual values for 
2014 
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Fig. 20. Plot of the AMER univariate and multivariate forecast for Pounds Sterling with the actual 
values for 2014 
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Fig. 21. Plot of the AMER univariate and multivariate forecast for Euro with the actual values for 
2014 
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Fig. 22. Plot of the AMER univariate and multivariate forecast for Yen with the actual values for 2014 
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Fig. 23. Plot of the AMER univariate and multivariate forecast for WAUA with the actual values for 
2014 
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Fig. 24. Plot of the AMER univariate and multivariate forecast for CFA with the actual values for 
2014 

 
The plots of the univariate forecast and multivariate forecast with the actual values of AMER of 2014 
showed general a downward slope of the multivariate forecast which suggests that most of the variables 
contributes negatively to the multivariate forecast values. On the other hand, the univariate forecast plots 
move almost in the direction of the actual values except for AMER of Euro. 
 

4 Results and Discussion 
 
4.1 Comparison of the univariate models and multivariate models 
 
This section outlines a comparison of the univariate model and the multivariate model. Table 10 outlines the 
mean absolute percentage error (MAPE) of each of these variables by comparing the univariate method 
MAPE and the multivariate method MAPE. The MAPE of the univariate and the multivariate methods are 
compared, the method with a lesser MAPE is chosen as the preferable method for the variable been 
considered. 
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Table 10. Comparison of the univariate and multivariate models using mean absolute percentage 
error (MAPE) 

 
Variable Univariate  model 

mape % 
Multivariate  model 
mape % 

Remarks 

Dollar 0.76 3.57 Univariate Model is Preferable 
Pounds Sterling 2.05 3.04 Univariate Model is Preferable 
Euro  3.20 3.06 Multivariate Model is Preferable 
Yen  3.27 10.64 Univariate Model is Preferable 
WAUA  1.22 5.41 Univariate Model is Preferable 
CFA 3.12 5.79 Univariate Model is Preferable 

 

4.2 Discussion of results 
 
In line with the aim of this research study, a univariate and multivariate time series models for each of the 
six variables were fitted the results based on their mean absolute percentage error (MAPE) shows that 
univariate method is preferable for Dollar, Pounds Sterling, Yen, WAUA and CFA. On the other hand, only 
one of these variables Euro shows that the multivariate method is preferable. Furthermore, the justification 
of these results explains the reason why Euro contributes significantly to three other variables namely; 
Pounds, WAUA and CFA) which suggests a multivariate model fits better.  
 

5 Conclusion 
 
Based on the results obtained, the univariate time series gives a better model for Dollar, Pounds Sterling, 
Yen, West African Unit of Account and CFA. Similarly, the forecast plots compared to the actual values for 
these variables also illustrates how close these values are with the actual values. The Multivariate time series 
model is preferable for only Euro, forecast plots also illustrates how close these values are to the actual 
values. The mean absolute percentage error (MAPE) was used as a forecast accuracy measure in drawing the 
conclusion as to which of the two methods gives a much closer approximate values to the actual values. 
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