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Abstract 
 

In this paper, a novel spectral collocation method using Legendre multi-wavelets as the basis functions is 
presented to obtain the numerical solution of nonlinear fractional differential equations. The fractional 
derivative is described in the Caputo sense. The two-scale relations of Legendre multi-wavelets and the 
properties of block pulse functions have been used in the evaluation of the fractional integral operational 
matrix and expansion coefficients of the nonlinear terms for the Legendre multi-wavelets. Due to the 
aforementioned properties, the original differential equation is converted into a nonlinear system of 
algebraic equations which can be solved by existing tools. The numerical results are compared with exact 
solutions and existing numerical solutions found in the literature and demonstrate the validity and 
applicability of the proposed method. 
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1 Introduction  
 
Fractional differential equation is a very effectively tool for the description of memory and hereditary 
properties in various materials and processes [1-4], such as gas diffusion and heat conduction in fractal 
porous media. Although a lot of attentions have been paid on fractional calculus and a large literature for 
solving fractional differential equation exists, there remain several challenges, and therefore, it is necessary 
to improve the current methods or develop new ones. Among the issues are as follows: (i) how to accurately 
represent fractional integral or differential operator, (ii) how to effectively deal with high nonlinearity and 
(iii) how to significantly reduce the computational cost.  
 
In the past two decades there has been a considerable interest to the wavelets methods in the numerical 
solution of fractional differential equations. Wavelets possess orthogonality, compactly supported, and 
ability to accurately represent a variety of functions and operators at different levels of resolution. Moreover, 
wavelets establish a connection with fast numerical algorithms [5]. Wavelets methods, such as Haar 
wavelets [6-8], Chebyshev wavelets [9,10], CAS [11,12] and Legendre wavelets [13-15] have been 
successfully developed to solve the fractional order differential equations and proved to be effective and 
powerful in simulation of fractional phenomena. A detailed description about wavelets methods in fractional 
differential equations has been presented in reference [16]. The main attraction of wavelets methods is that it 
can exploit multi-level parallelism by employing the multi-scale analysis and hierarchy structure of 
Legendre wavelets. 
 
As an extension of wavelets, multi-wavelets are a discontinuous, orthogonal, compactly supported, 
multiscale set of functions with vanishing moments and can approximate a large class functions in L2 space 
by using multiresolution analysis (MRA) in terms of translates of linear combinations of the scaling function 
vector. Sparse representation of differential and integral operators due to vanishing moments of the wavelets 
is another property of multi-wavelets [17-23]. What’s more, the numerical methods using multi-wavelets as 
basis are highly stable and the related computation is economic [24]. Legendre multi-wavelets [17] were 
firstly developed in 1990 by Alpert to provide sparse representations of integral operator for the solution of 
integral equations and have been successfully used to solve partial differential equations [20-22]. It has been 
proved that Legendre multi-wavelets can reduce the error to a level below that of wavelets [23-24]. 
Comparing to Haar wavelets, Legendre multi-wavelets can converge more rapidly and produce piecewise 
polynomial solutions of any order. What’s more, the properties of piecewise polynomials can be used to 
decrease the saving and computational complexity. 
 
To the best of the authors’ knowledge, Legendre multi-wavelets have not been used previously for solving 
fractional differential equation. Motivated and inspired by the ongoing research, we develop a new spectral 
collocation method using Legendre multi-wavelets (named LMW) to the solution of fractional differential 
equation. The remainder of the paper is organized as follows. In section 2, we describe some preliminaries 
about fractional calculus theory and also illustrate how to construct Legendre multi-wavelets. Fractional 
integral matrix and nonlinear terms approximation of Legendre multi-wavelets are derived in section 3. The 
proposed method is detailed in section 4. Five examples are given in Section 5 to demonstrate the validity 
and applicability of the proposed method. Finally the concluding remarks are given in Section 6. 
 

2 Preliminaries and Notations 
 
2.1 Fractional calculus theory 
 
In this section, some mathematical preliminaries about the fractional calculus theory will be introduction. 
The readers could see reference [25,26] for more details about fractional calculus theory. 
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Definition 2.1: A real function ( )h x , 0x > , is said to be in the spaceCµ , Rµ ∈ , if there exists a real 

numberp µ> , such that ( ) ( )1
ph x x h x= , where ( ) ( )1 0,h x C∈ ∞ , and it is said to be in the space nCµ  

if 

and only if ( ) ,nh C n Nµ∈ ∈ . 

 

Definition 2.2: Riemann-Liouville fractional integral operator (Jα ) of order 0α ≥ , of a function
, 1f Cµ µ∈ ≥ − is defined as, 

 

( ) ( ) ( ) ( )

( ) ( )

1

0

0

1
, 0,

,

x
J f x x f d x

J f x f x

αα τ τ τ
α

−= − >
Γ

=

∫
                                                                                  (1) 

 

in which ( )αΓ is the well known Gamma function.  

 

Definition 2.3 The fractional derivative of( )f x in the Caputo sense is defined as [27]. 

 

( )( ) ( )
( ) ( )

( )
( )

( )

− +


> − < <

Γ − −= 
∂

=
∂

∫ α
α

ξ
ξ α α

α ξ

α

10

1
, 0, 1

,

m
x

m

x
m

m

f
d m m

m xD f x
f x

m
x

  ,                                        (2) 

 

where ( ): ,f R R x f x→ → denotes a continuous (but not necessarily differentiable) function. 

 

Lemma 1. Let − < ≤ ∈ > ∈ ≥ −µα µ1 , , 0, , 1nn n n N x h C . Then 

 

( ) ( ) ( ) ( ) ( )
−

+

=
= −∑α α

1

0

0
!

kn
k

k

x
J D h x h x h

k
.                                                                                            (3) 

 
2.2 Legendre multi-wavelets 
 
In this section, Legendre multi-wavelets are introduced and some useful properties are also described. A 
detailed description about Legendre multi-wavelets can be seen in reference [17-19]. 
 
2.2.1 Legendre multi-wavelets 
 
Legendre scaling functions are defined on the interval [0, 1) as follows: 
 

( ) ( )( )2

,

1
2 1 2 2 2 1 ,

2 2
0, otherwise

J J
m m J J
J k

k k
m L x k x

xφ
+ + − − ≤ ≤= 



                                                      (4) 

 

where 0, 1, 2, , 1m r= −L , 0, 1, ,2 1Jk = −L and = L0, 1, 2, ,J Here, ( )mL x  are the well-known 

Legendre polynomials of order m. 
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Legendre scaling function vector and Legendre multi-wavelets vector in subspaces 1 1− −= ⊕J J JV V W
 
are 

defined as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1
,0 ,0 , 2 1 , 2 1

, , ,|, , , ,J J

r r
J J J J J

x x x x xφ φ φ φ− −
− −

 =   
Φ L L L                                                        (5) 

 
and 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1

0 1 0 1
0,0 0,0 0,0 0,0

0 1 0 1
1,0 1,0 1,2 1 1,2 1

[ , , ,| , , |,

,| , , |, , , , ]J J

r r
J

r r
J J J J

x x x x x

x x x x

φ φ ψ ψ

ψ ψ ψ ψ− −

− −

− −
− − − − − −

=Ψ L L

L L L L
,                                      (6) 

 
respectively. 
 

Legendre scaling function vector ( )J tΦ
 
satisfies a two-scale equation of the form 

 

( ) ( ) ( )
1

0

= 2k
J J

k

x x k
=

−∑Φ H Φ ,                                                                                                             (7) 

 

where ( )kH is a finite set of matrices, 
 
The two-scale relation of Legendre multi-wavelets vector is given in the following form 
 

( ) ( ) ( )
1

0

= 2k
J J

k

x x k
=

−∑Ψ G Φ ,                                                                                                             (8) 

 

where ( )J xΨ  is the vector of corresponding wavelet functions. So the Legendre multi-wavelets can be 

constructed by Legendre scaling functions by two-scale equation Eq. (8). 
 

A function ( )f x  in k
nV  can be approximated by using the Legendre scaling functions as 

 

( ) ( ) ( ) ( )
2 1 1

T
, ,

0 0

J r
m m

J J k J k J
k m

f x P f x c x xφ
− −

= =

≈ = =∑ ∑ C Φ ,                                                                            (9) 

 

and the decomposition of ( )f x  has an equivalent Legendre multi-wavelets given by 

 

( ) ( ) ( ) ( ) ( )
1 1 2 1

T
0,0 0,0 , ,

0 0 0

jr J
m m m m

J j k j k J
m j k

f x P f x c x d x xφ ψ
− − −

= = =

  ≈ = + = 
  

∑ ∑∑ D Ψ ,                                             (10) 

 
where 
 

( ) ( ), , , ,, , ,m m m m
j k j k j k j kc f x d f xφ ψ= = ,                                                                                        (11) 

 

in which .,. denotes the stander inner product of the Hilbert space, and C and D are 1N ×  vectors with 

2JN r=  given by 
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( ) ( )
T 0 1 0 1

,0 ,0 , 2 1 , 2 1
, , | | , , ,J J

r r
J J J J

c c c c− −
− −

 =   
C L L L                                                                                   (12) 

 
and 
 

1 1
T 0 1 0 1 0 1 0 1

0,0 0,0 0,0 0,0 1,0 1,0 1,2 1 1,2 1
[ , , ,| , , |, ,| , , |, , , , ].J J

r r r r
J J J J

d d d d d d d d− −
− − − −

− − − − − −
=D L L L L L L                       (13) 

 
The operator JP  is named as the orthogonal projection of function f onto space JV  . 

 
For example the cubic Legendre scaling functions consist of four functions are given in the following: 
 

( )
( ) ( )
( ) ( )
( ) ( )

0

1

2 2

3 3 2

1, 0 1

3 2 1 , 0 1

5 6 6 1 , 0 1

7 20 30 12 1 , 0 1

x x

x x x

x x x x

x x x x x

φ

φ

φ

φ

 = ≤ <

 = − ≤ <
 = − + ≤ <


= − + − ≤ <

,                                                                      (14) 

 

The corresponding Legendre multi-wavelets ( )0 xψ , ( )1 xψ , ( )2 xψ and ( )3 xψ have the form as 

 

( )
( )

( )

3 2

0

3 2

15 1
224 216 56 3 , 0

17 2

15 1
224 456 296 61 , 1

17 2

x x x x
x

x x x x

ψ


− − + − ≤ <
= 
 − + − ≤ <

,                                                      (15) 

 

( )
( )

( )

3 2

1

3 2

1 1
1680 1320 270 11 , 0

21 2

1 1
1680 3720 2670 619 , 1

21 2

x x x x
x

x x x x

ψ


− + − ≤ <

= 
 − + − ≤ <

,                                              (16) 

 

( )
( )

( )

3 2

2

3 2

35 1
256 174 30 1 , 0

17 2

35 1
256 594 450 111 , 1

17 2

x x x x
x

x x x x

ψ


− − + − ≤ <
= 
 − + − ≤ <

,                                                    (17) 

 

( )
( )

( )

3 2

3

3 2

5 1
420 246 36 1 , 0

21 2

5 1
420 1014 804 209 , 1

21 2

x x x x
x

x x x x

ψ


− + − ≤ <

= 
 − + − ≤ <

,                                                 (18) 

 

which are determined using Eqs. (7) and (8). The matrix ( )0H and ( )0G  for r = 4 are defined as [24]. 
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( )0

1 0 0 0

3 1
0 0

2 2

15 1
0 0

4 4

7 21 35 1
8 8 8 8

 
 
 − 
 =  − 
 
 − 
 

H  and ( )0

2 3 21
0 2

17 8585

1 1 1 5 3
2 21 221 7

1 21 3 7 8
0

4 85 4 17 85

5 5 5 5 23 15
8 21 8 7 88 21

 
− 

 
 
 − − −
 

=  
 − − − 
 
 
 
 

G .       (19) 

 

The elements ( )1
,i jh  of matrix ( )1H  and ( )1

,i jg  of matrix ( )1G can be calculated by using the following formulae 

 
( ) ( ) ( )1 0
, ,1

i j

i j i jh h
+= −                                                                                                                             (20) 

 
and 

( ) ( ) ( )1 0
, ,1

i j K

i j i jg g
+ += − ,                                                                                                                        (21) 

 
respectively. 
 
2.2.2 Transition matrix of Legendre multi-wavelets 
 
Eq. (7) can be rewritten as 
 

1,k k k +=Φ H Φ                                                                                                                                   (22) 

 

where kH , 1, 2, ,k J= L  is a ( )12 , 2k kr r−  matrix. 

 
Similarly, Eq. (8) can be rewritten as 
 

1k k k +=Ψ G Φ ,                                                                                                                                 (23) 

 

where kG , 1, 2, ,k J= L  is a ( )12 , 2k kr r− matrix. 

 
From Eqs. (22) and (23), one can have 
 

1J J +=Ψ GΦ ,                                                                                                                                   (24) 
 

where G  is ( )N N×  transit matrix and can be calculated as follows [23]. 

 

1 2

1 2

-2 -1

-1

J

J

J J J

J J

J N N×

× × × 
 × × × 
 

=  
× × × 

 ×
 
  

H H H

G H H

G
G H H

G H

G

L

L

M

L
.                                                                                                       (25) 
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Relations (24) and (25) can be used to develop the fast algorithms for transition between different scales of 
the multiresolution analysis. It’s worth mentioning that the transition operator between coefficients and 
values is sparse and possess hierarchy structure. 
 
2.3 Block-Pulse functions 
 
The N-set of block-pulse functions is defined on [ )0, l  as follows 

 

( )
( )1

1, ,

0, ,
i

i l il
x

b x N N
otherwise

 −
≤ <= 




                                                                                                       (26) 

 

where 1, 2, ,i N= L . The functions ( )ib x  are disjoint and orthogonal. That is, for [ )0,x l∈  and 

, 1, 2, ,i j N= L .  

 

( ) ( ) ( ),
0,

i
i j

b x i j
b x b x

i j

 == 
≠

,                                                                                                          (27) 

 
and 

( ) ( )
0

,

0,

l

i j

l
i j

b x b x N
i j

 == 
 ≠

∫ ,                                                                                                          (28) 

 
The orthogonality property of block-pulse functions is obtained from the disjointness property for 

1, 2, ,i N= L . It is also known that for arbitrary absolutely integrable function ( )f x on [ )0, l can be 

expanded in block-pulse functions: 
 

( ) ( )T
Nf x x= ξ B ,                                                                                                                            (29) 

 
in which 
 

[ ]T
1 2, , , Nf f f=ξ L                                                                                                                              (30) 

 
And 
 

( ) ( ) ( ) ( )1 2, , ,N Nx b x b x b x =  B L ,                                                                                              (31) 

 

where ( )1, 2,if i N= L  are the coefficients of the block-pulse function given by 

 

( ) ( ) ( ) ( )
( )( )
( )

0 1

l i N l

i i ii N l

N N
f f x b x dx f x b x dx

l l −
= =∫ ∫ .                                                                       (32) 

 
So the disjointness property of BPF’s follows 
 

( ) ( ) ( ) ( )T diagN N Nx x x=B B ξ ξ B .                                                                                                 (33) 
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3  Nonlinear Term Approximation and Fractional Integral of Legendre 
Multi-wavelets 

 
3.1 Nonlinear term approximation 
 
The Legendre scale functions can be expanded into N-set of block-pulse functions as 
 

( ) ( ).J N N Nx x×=Φ Φ B                                                                                                                     (34) 

 
where 2JN r= . 
 
Taking the collocation points as following 
 

1 2
, 1, 2, , .i

i
x i N

N
−= = L                                                                                                       (35) 

 
The N-square Legendre matrix N N×Φ  is defined as: 

 

                                                                                         (36) 
 

and 
 

( ) ( ) ( )1 .J J N N Nx x x+ ×= =Ψ GΦ GΦ B                                                                                            (37) 

 

The operational matrix of product of Legendre multi-wavelets vector ( )J xΨ  can be obtained by using the 

properties of BPFs. Let ( )1f x  and ( )2f x  are two absolutely integrable functions, which can be expanded in 

Legendre multi-wavelets as ( ) ( )T
1 1 Jf x x= F Ψ and ( ) ( )T

2 2 Jf x x= F Ψ , respectively. 

 
From Eq. (37), we have 
 

( ) ( ) ( )
( ) ( ) ( )

T T
1 1 1

T T
2 2 2

J N N

J N N

f x x x

f x x x

×

×

= =

= =

F Ψ F GΦ B

F Ψ F GΦ B
.                                                                                              (38) 

 
By employing Lemma 1 in [28] and Eq. (38), we get 
 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

F GΦ F GΦ B

F GΦ F GΦ GΦ GΦ B

F GΦ F GΦ GΦ Ψ

× ×

× × × ×

× × ×

= ⊗

= ⊗

= ⊗

T T
1 2 1 2

T T
1 2

T T
1 2

inv

inv

N N N N

N N N N N N N N

N N N N N N J

f x f x x

x

x

,                                                (39) 

 
where ( )ij ij N N

a b
×

⊗ =A B  is the Hadamara products of matrix ( )ij N N
a

×
=A  and ( )ij N N

b
×

=B . Here and after 

we denote N N N N× ×=Ψ GΦ . 

 
Fig. 1 shows the sparse structure of matrices T and N N×Ψ . It can be found that the transition matrices T and 

N N×Ψ  are sparse and possess hierarchy structure which can be used to save memory cost. 
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Fig. 1. Sparse structure of matrices of T and Ψ ×N N  
 
3.2 The fractional integral operator of Legendre multi-wavelets 
 
The Legendre multi-wavelets can be expanded into N-set of block-pulse functions as 
 

( ) ( )N Nx x×=Ψ Ψ B .                                                                                                                        (40) 

 
The fractional integral of block-pulse function vector can be written as 
 

,                                                                                                                      (41) 
 

where B
αP  is given in [29] and is defined as  

 

( )

1 2 1

1 2

3

1

0 1
1 1

0 0 1
2

0 0 0 1

N

N

B NN
α

α

ξ ξ ξ
ξ ξ

ξ
α

−

−

−

 
 
 
 =

Γ +  
 
 
 

P

L

L

L

M M M O M

L

,                                                                                 (42) 

 
in which 
 

( ) ( )1 111 2 1i i i i
α ααξ + ++= + − + − .                                                                                                   (43) 

 

The fractional integral of vectors ( )J xΨ  and ( )J xΦ  can be expressed as 

 

( )( ) ( ) ( )( ) ( ),J J J JI x x I x xα α α α
φ ψ= =Φ P Φ Ψ P Ψ ,                                                                         (44) 

 

where α
φP  and α

ψP  are operational matrices of fractional integral for Legendre scaling functions and 

Legendre multi-wavelets, respectively. The matrix α
φP  can be obtained by the following process.  

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 2816

LMW_Transit_Matrix r= 4,J= 5

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3072

LMW_PHI2BPF_Matrix r= 4,J= 5
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By using Eq. (34) 
 

,                              (45) 
 

So 
 

.                                                                                                                         (46) 
 

From Eqs. (24) and (44), we have 
 

( )( ) ( )( ) ( ) ( )11
1

J J J JI x I x xxα α α α
φ φ+

−
+= = =Ψ Φ P PG G Φ G G Φ .                                                    (47) 

 
Finally, we obtain 
 

1α α
ψ φ

−=P PG G .                                                                                                                                 (48) 

 

4 Numerical Method and Convergence Analysis 
 
4.1 Description of numerical method 
 
Consider the following initial value problem: 
 

( ) ( ) ( ) ( ), 0D u x N u x L u x g xα α   + + = >    ,                                                                          (49) 

 
( ) ( )0 , 0, 1, 2, , 1, 1k

ku c k m m mα= = − − < ≤L ,                                                              (50) 

 
where L  is a linear operator, N  is a nonlinear operator, and Dα  is the Caputo fractional derivative of order 
α . 
 
Applying the fractional integral operator Iα  to both sides of (49) and using Lemma 1, yields 
 

( ) ( ) ( ) ( )( ) 0, 0u x I N u x L u x R xα α   + + − = >    ,                                                                  (51) 

 

in which ( ) ( ) ( ) ( )
1

0

0
!

kn
k

k

x
R x u g x

k

−
+

=
= +∑ . 

 

To solve the problem, ( )u x  and ( )R x  are approximated by Legendre multi-wavelets as 

 

( ) ( )T
Ju x x= D Ψ , ( ) ( )T

JR x x= R Ψ .                                                                                          (52) 

 

Now for the nonlinear part ( )N u x   , by nonlinear term approximation described in Section 3.1, we have  

 

( ) ( )T
JN u x x  =  N Ψ .                                                                                                                   (53) 

  
For the linear part, we have 
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( ) ( ) ( )T T
J JL u x x a x  = =  L Ψ D Ψ .                                                                                               (54) 

 
where a=L D  has a linear relation with D and a is constant. 
 
Substituting Eq. (52)-(54) into Eq. (49), we can get a system of algebraic equations as 
 

( )T T T T 0, 0α
ψ α+ + − = >D N L R P ,                                                                                             (55) 

 
According to the Wu’s [30] technology for determining the initial iteration value, the first guess can be 
determined as  
 

( ) ( ) ( ) ( )( )
1

0
0

0
!

kn
k

frac
k

t
u x u J g x

k
α

−
+

=

= +∑ ,                                                                                        (56) 

 

where ( )fracg x  is the fractional component of ( )g x  with respect to x. The coefficient matrix TD  can be 

computed by using the MATLAB function fsolve( ) or the method described in [31]. The power of LMW 
depends on the occurrence of the exact solution in Eq. (56) and the accurate representation of fractional 
integral. If the exact solution exists, LMW can converge very fast to the exact solution. What’s more, for the 
linear fractional equation, the solution can be obtained by following equation,  
 

( ) 1T T aα α
ψ ψ

−
= +D R P I P .                                                                                                                   (57

) 
 

where I  is an identical matrix. 
 
4.2 Convergence analysis 
 
Theorem 4.1. Suppose that the function ( ) [ ]: 0,1f x → R  and ( ) [ ]1 0,1rf x C −∈ . Then ( )JP f x  

approximates f  with mean error bounded as follows [19]: 
 

( ) ( ) ( ),Jf x P f x M r J− ≤ ,                                                                                                             (58) 

 
in which 
 

( ) ( ) ( )( ) [ ]
( ) ( )1

0,12 1 1

1 1
, sup

1 ! 2
r

xJ r
M r J f x

r
−

∈+ − −
=

−
.                                                                          (59) 

 

Theorem 4.2. Suppose that the function ( ) [ ]: 0,1f x → R  and ( ) [ ]1 0,1rf x C −∈ . Then ( )JP f x  converges 

to f . 

Proof. Let ( ) ( ) ( )
1 1 2 1

0,0 0,0 , ,
0 0 0

jr J
r m m m m

J J j k j k
m j k

P f x y c x d xφ ψ
− − −

= = =

  = = + 
  

∑ ∑∑ be a sequence of partial sums, we have 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 1

0,0 0,0 , ,
0 0 0

1 1 2 1

0,0 0,0 , ,
0 0 0

1 1 2 12 2

0,0 ,
0 0 0

, ,

, ,

j

j

j

r J
r m m m m
J j k j k

m j k

r J
m m m m

j k j k
m j k

r J
m m

j k
m j k

f x y f x c x d x

c f x x d f x x

c d

φ ψ

φ ψ

− − −

= = =

− − −

= = =

− − −

= = =

  = + 
  

  = + 
  

  = + 
  

∑ ∑∑

∑ ∑∑

∑ ∑∑

.                                            (60) 

Without loss of generality, assuming that 2 1r r>  and 2 1J J> , then we can get 
 

( ) ( ) ( ) ( )

( ) ( )

( )

1 1 2 2

1 2

1 2

2 2

1 1

1 1 1 12 1 2 1

0,0 0,0 , , 0,0 0,0 , ,
0 0 0 0 0 0

2
1 12 1

0,0 0,0 , ,
0

0,0 0,0

j j

j

r J r J
r r m m m m m m m m
J J j k j k j k j k

m j k m j k

r J
m m m m

j k j k
m r j J k

m m

y y c x d x c x d x

c x d x

c x

φ ψ φ ψ

φ ψ

φ

− − − −− −

= = = = = =

− − −

= = =

      − = + − +   
      

  = + 
  

=

∑ ∑∑ ∑ ∑∑

∑ ∑∑

( ) ( ) ( )
2 2 2 2

1 1 1 1

2 2

1 1

1 1 1 12 1 2 1

, , 0,0 0,0 , ,
0 0

1 12 12 2

0,0 ,
0

,
j j

j

r J r J
m m m m m m
j k j k j k j k

m r j J k m r j J k

r J
m m

j k
m r j J k

d x c x d x

c d

ψ φ ψ
− − − −− −

= = = = = =

− − −

= = =

      + +   
      

  = + 
  

∑ ∑∑ ∑ ∑∑

∑ ∑∑

,      (61) 

 

So, as 2JN r= → ∞ , from Bessel’s inequality and Theorem 4.1, we have 
 

( ) ( ) ( ) ( )
2 2

1 2 1 2

1 2 1 2

1 1

1 12 12 2

0,0 , 1 1 2 2
0

, ,
jr J

r r r rm m
j k J J J J

m r j J k

c d y y y x y y x y M r J M r J
− − −

= = =

  + = − ≤ − + − ≤ + 
  

∑ ∑∑ . (62) 

 

It can be found that 
1 1 2 12 2

0,0 ,
0 0 0

jr J
m m

j k
m j k

c d
− − −

= = =

  + 
  

∑ ∑∑  is convergent, thus { r
Jy } is a Cauchy sequence. 

 
Further 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

, , ,

2 1 1

, , , ,
0 0

, ,

lim , , lim ,

lim ,

0

J

r m m r m
J J k J k J J kN N

r
m m m m
J k J k J k J kN

k m

m m
J k J k

f x y x f x x y x

c c x x

c c

φ φ φ

φ φ

→∞ →∞

− −

→∞ = =

− = −

 
= −   

 

= − =

∑∑ .                                              (63) 

 

It implies that sequence {rJy } converge to ( )f x . 

 

Theorem 4.3. Assume that ( ) [ ]∈ 1 0,1f x C , and ∃ > 0M , ( )∀ ∈ 0,1x , ( )′ ≤f x M , as → ∞N , ( )ξ BT
N x

is point-wise convergent to ( )f x with error bounded as follows [28,32]. 
 

( ) ( )ξ B− ≤T
N

M
f x x

N
.                                                                                                                 (64) 
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Theorem 4.1, 4.2 and 4.3 give the guarantee of convergence of SCLWM. It is clear that the approximation 
will be more accurate if N is increased. 

 

5 Applications and Results 
 
In this section, we first give two linear examples with exact solution to analysis the accuracy of LMW with 
difference values of r and J, and then use three examples to demonstrate the validity and applicability of 
LMW in the solution of nonlinear fractional differential equations. It should be note that linear examples are 
solved by using Eq. (57) while the nonlinear cases using Matlab function fsolve( ). 
 

Table 1. L2 error of example 1 for different values of r and J 
 

r J =2 J =3 J =4 J =5 J =6 J =7 J =8 

2 0.0041 0.0015 5.2449e-4 1.8684e-4 6.6467e-5 2.3621e-5 8.3868e-6 

3 4.0370e-4 1.4915e-4 5.4740e-5 1.9973e-5 7.2508e-6 2.6209e-6 9.4393e-7 

4 2.6530e-4 9.8094e-5 3.5978e-5 1.3111e-5 4.7531e-6 1.7158e-6 6.1719e-7 
 
Example 1. Consider the composite fractional oscillation equation [13]. 
 

( ) ( ) ( )
0.25 2 1.752

0
2.75

D u x u x x x+ − − =
Γ

,                                                                                  (65) 

 

with the initial condition ( )0 0u = and the exact solution is ( ) 2u x x= . 

 
Table 1 shows the L2 error of example 1 for different values of r and J. It is easy to deduce that the accuracy 
of LMW is improving with the increase of r and J and converge rapidly which depend on the accuracy of the 
integral of fraction-order. It is worth mentioning that the obtained results agree well with exact solutions 
even for small values of r and J. 
 
Example 2. Consider the following fractional linear equation [13,3-35]. 
 

( ) ( ) 0, 0 1, 0 2D u x u x xα α+ = < < < ≤ ,                                                                                  (66) 

 

( ) ( )0 1, 0 0,u u′= =                                                                                                                       (67) 

 

The exact solution of this problem is( ) ( )
( )0 1

k

k

x
u x

k

α

α

∞

=

−
=

Γ +∑ . 

 
Table 2. L2 errors for example 2 

 

r αααα  J =4 J =5 J =6 J =7 J =8 
3 1 4.8361e-05 1.7182e-05 6.0904e-06 2.1561e-06 7.6280e-07 

2 2.0809e-05 7.3880e-06 2.6177e-06 9.2652e-07 3.2776e-07 

4 1 3.1739e-05 1.1219e-05 3.9663e-06 1.4023e-06 4.9578e-07 

2 1.3633e-05 4.8198e-06 1.7040e-06 6.0246e-07 2.1300e-07 
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Fig. 2. Numerical solutions of example 2 for difference ���� 
 

Table 3. Numerical results of Example 2 for αααα =0.50 and 0.75 with r=3 and J=5 
 

αααα  0.50 0.75 
x JOM [33] SFJTM [34] LMW JOM [33] SFJTM [34] LMW 
0.1 0.737355 0.723578 0.723585 0.830145 0.828251 0.828258 
0.2 0.633468 0.643788 0.643789 0.731281 0.732585 0.732588 
0.3 0.593029 0.592018 0.592019 0.660086 0.660337 0.660339 
0.4 0.563169 0.553606 0.553606 0.603789 0.602121 0.602122 
0.5 0.512164 0.523157 0.523156 0.552192 0.553603 0.553603 
0.6 0.499543 0.498025 0.498024 0.512051 0.512285 0.512285 
0.7 0.485038 0.476703 0.476703 0.477957 0.476555 0.476555 
0.8 0.447227 0.458246 0.458246 0.44395 0.445292 0.445293 
0.9 0.452686 0.442021 0.442021 0.418733 0.417682 0.417682 
1.0 0.439646 0.427584 0.427583 0.393598 0.393108 0.393108 

 
We solved the problem by applying the method described in Section 4. Fig. 2 exhibits the numerical results 
for different values of αααα  with r=3 and J=4. The L2 errors for αααα =1.0 and αααα =2.0 are shown in Table 2. 
From Fig. 2, one can see that LMW can achieve a good approximation with the exact solution for αααα =1.0 
and αααα =2.0. In Table 3, we compare our numerical results with those obtained by the shifted fractional-order 
Jacobi orthogonal functions (SFJTM) [34] and by the Jacobi operational matrix method (JOM) [33]. From 
Table 3, it is clear that LMW can achieve a good approximation of solution nearly the same as SFJTM and 
better than JOM. 
 

Table 4. L2 errors of Example 3 for different values of r and J 
 

r J =1 J =2 J =3 J =4 J =5 J =6 J =7 
2 0.0134 0.0048 0.0017 6.2198e-4 2.2195e-4 7.9073e-05 2.8133e-05 
3 0.0014 5.4055e-4 2.0460e-4 7.5963e-5 2.7894e-5 1.0168e-05 5.5354e-15 
4 9.7490e-4 3.6690e-4 1.3642e-4 5.0248e-5 1.8373e-5 4.4024e-15 6.3071e-15 
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Example 3. Consider the composite fractional oscillation equation [14]. 
 

( ) ( ) ( )+ = +
Γ

0.25 2 1.75 42
2.75

D u x u x x x ,                                                                                      (68) 

 

with the initial condition ( ) =0 0u  and the exact solution is ( ) = 2u x x . 

 
Table 4 show the L2 errors of example 3 for different values of r and J. It is also support the conclusion that 
the accuracy of LMW is improving with the increase of r and J and converge rapidly. It can be found that 
LMW can converge to the exact solution with large values of r and J. This is because that the exact solution 
exists in first guess defined in Eq. (56) and the error of fractional integral operator is smaller than the 
tolerance in Matlab function fsolve( ). 
 
Example 4. Consider the following nonlinear fractional Riccati equation [10,36,37]: 
 

( ) ( )+ =α 2 1D u x u x , < ≤α0 1 , < <0 1x ,                                                                                 (69) 

 

subject to the initial state ( ) =0 0u .The exact solution of this problem, when α=1, is

( ) ( ) ( )= − +2 21 1x xu x e e . 

 
Fig. 3 exhibits the approximate solutions of Example 4 for difference α with r=3 and J=6. It can be found 
that LMW’s solution is in very good agreement with the exact solution for α=1.00. Therefore, numerical 
results for α=0.25, 0.50 and 0.75 are also credible. Table 5 compares LMW with variational iteration method 
using fractional-order Legendre Functions [36]. It can be found that our result is as accurate as those in Ref 
[36] in the case of α=1.00 and nearly the same for α=0.25, 0.50 and 0.75. This demonstrates the importance 
of presented numerical scheme in solving nonlinear fractional differential equations. 

 

 
 

Fig. 3. Numerical solutions of example 4 for difference αααα  
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Table 5. Numerical results of Example 4 for r=3 and J=6 with comparison to Ref. [36] 
 

x αααα =0.50 αααα =0.75 αααα =1.00 
Ref. [36] LMW Ref. [36] LMW Ref. [36] LMW Exact 

0.1 0.330108 0.330107  0.190101 0.190100  0.099668 0.099668  0.099668 
0.2 0.436839 0.436839  0.309976 0.309975  0.197375 0.197375  0.197375 
0.3 0.504889 0.504890  0.404615 0.404614  0.291313 0.291312  0.291313 
0.4 0.553782 0.553782  0.481632 0.481631  0.379949 0.379949  0.379949 
0.5 0.591195 0.591194  0.545090 0.545089  0.462117 0.462117  0.462117 
0.6 0.621014 0.621014  0.597783 0.597783  0.537050 0.537049  0.53705 
0.7 0.645485 0.645486  0.641820 0.641820  0.604368 0.604367  0.604368 
0.8 0.666020 0.666019  0.678850 0.678849  0.664037 0.664037  0.664037 
0.9 0.683554 0.683552  0.710175 0.710175  0.716298 0.716298  0.716298 

 
Example  5. Consider fractional Riccati equation [36,37]. 
 

( ) ( ) ( )− + = < ≤α α22 1, 0 1D u x u x u x ,                                                                                      (70) 

 

subject to the initial condition ( ) =0 0u , for 1α =  the exact solution is 

( ) ( ) ( )( ) = + + − + 
 

1
1 2 tanh 2 log 2 1 2 1

2
u x x . 

 

 
 

Fig. 4. Numerical solutions of example 5 for difference α 
 

Fig. 4 gives approximation solution of fractional Riccati differential equation for Example 5. From Fig. 4 it 
can found that the numerical solution is in very good agreement with the exact solution when 1.0α = . 
Therefore, it should be hold that the solution for 0.25α = , 0.50 and 0.75 is also credible. Table 6 compares 
the results of LMW with those obtained by variational iteration method using fractional-order Legendre 
Functions. It can be found that our result is more accurate than that in Ref [36] for 1.0α = . So it can hold 
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that LMW’s results are better for 0.25α = , 0.50 and 0.75. This demonstrates the importance of presented 
numerical scheme in solving nonlinear fractional differential equations. 

 
Table 6. Numerical results of Example 5 for r=4 and J=5 with comparison to Ref. [36] 

 
x α=0.50 α=0.75 α=1.0 

Ref[36] LMW Ref[36] LMW Ref[36] LMW exact 
0.1 0.592833 0.592785 0.245446 0.245443 0.110308 0.110300 0.110295 
0.2 0.933104 0.933200 0.475051 0.475108 0.241990 0.241983 0.241976 
0.3 1.174069 1.173996 0.710050 0.710032 0.395119 0.395111 0.395104 
0.4 1.346694 1.346661 0.938523 0.938543 0.567830 0.567819 0.567812 
0.5 1.473790 1.473890 1.149016 1.149066 0.756032 0.756020 0.756014 
0.6 1.570577 1.570573 1.334339 1.334336 0.953583 0.953571 0.953566 
0.7 1.646302 1.646199 1.491949 1.491927 1.152968 1.152953 1.152946 
0.8 1.706644 1.706880 1.622950 1.622992 1.346381 1.346367 1.346363 
0.9 1.756349 1.756643 1.730575 1.730612 1.526927 1.526914 1.526911 

 

6 Conclusion 
 
In this work Legendre multi-wavelets operational matrix of fractional order integration is derived and used 
to solve fractional differential equations. By using the two-scales difference relations of Legendre multi-
wavelets and properties of BPFs, the operational matrices of fractional integration and nonlinear term 
expansion coefficients vector are derived. Consequently, the solution of fractional differential equation is 
converted to the solution of a sparse nonlinear system of algebraic equations. The achieved results are 
compared with exact solutions and with the solutions obtained by some other numerical methods. The 
numerical results show that LMW is accuracy and applicable even for small values of r and J. what’s more, 
LMW can get the exact solution when exact solution exists in first guess defined in Eq. (56) and the                       
error of fractional integral operator is smaller than the tolerance in Matlab function f solve( ). It is worth 
mentioning that the proposed algorithms can be extended to solve a number of fractional partial differential 
equations. 
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