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Abstract

In this paper, a novel spectral collocation method usigehdre multi-wavelets as the basis functions is
presented to obtain the numerical solution of nonlineariémait differential equations. The fractional
derivative is described in the Caputo sense. The two-selzitons of Legendre multi-wavelets and the
properties of block pulse functions have been used in the ¢wvalwd the fractional integral operationgl
matrix and expansion coefficients of the nonlinear termghHerLegendre multi-wavelets. Due to the
aforementioned properties, the original differential equattoronverted into a nonlinear system |of
algebraic equations which can be solved by existing.tdbls numerical results are compared with exact
solutions and existing numerical solutions found in therdiure and demonstrate the validity and
applicability of the proposed method.

Keywords: Legendre multi-wavelets; fractional integral i@pi@nal matrix; two-scale relations; fractional
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1 Introduction

Fractional differential equation is a very effectivabol for the description of memory and hereditary
properties in various materials and processes [1-4], sudasdgliffusion and heat conduction in fractal
porous media. Although a lot of attentions have been paidastidnal calculus and a large literature for
solving fractional differential equation exists, thermain several challenges, and therefore, it is necessary
to improve the current methods or develop new ones. gritemissues are as follows: (i) how to accurately
represent fractional integral or differential operafdy, how to effectively deal with high nonlinearity and
(iii) how to significantly reduce the computational cost.

In the past two decades there has been a considerablesirigrthe wavelets methods in the numerical
solution of fractional differential equations. Waveletssggss orthogonality, compactly supported, and
ability to accurately represent a variety of functians operators at different levels of resolution. Moreover,
wavelets establish a connection with fast numerical algost [5]. Wavelets methods, such as Haar
wavelets [6-8], Chebyshev wavelets [9,10], CAS [11,12] ardiebdre wavelets [13-15] have been
successfully developed to solve the fractional orddemifitial equations and proved to be effective and
powerful in simulation of fractional phenomena. A detadedcription about wavelets methods in fractional
differential equations has been presented in referenceThé]main attraction of wavelets methods is that it
can exploit multi-level parallelism by employing the maultiale analysis and hierarchy structure of
Legendre wavelets.

As an extension of wavelets, multi-wavelets are a diswoous, orthogonal, compactly supported,
multiscale set of functions with vanishing moments andaggmmoximate a large class functions in L2 space
by using multiresolution analysis (MRA) in terms of tratess of linear combinations of the scaling function
vector. Sparse representation of differential and iategperators due to vanishing moments of the wavelets
is another property of multi-wavelets [17-23]. What's mahe, numerical methods using multi-wavelets as
basis are highly stable and the related computation is ecori@dii Legendre multi-wavelets [17] were
firstly developed in 1990 by Alpert to provide sparse reprasients of integral operator for the solution of
integral equations and have been successfully usedvio igartial differential equations [20-22]. It has been
proved that Legendre multi-wavelets can reduce the erra tevel below that of wavelets [23-24].
Comparing to Haar wavelets, Legendre multi-wavelets caverge more rapidly and produce piecewise
polynomial solutions of any order. What's more, the pridgerof piecewise polynomials can be used to
decrease the saving and computational complexity.

To the best of the authors’ knowledge, Legendre multi-wawdlave not been used previously for solving
fractional differential equation. Motivated and inspired lby bngoing research, we develop a new spectral
collocation method using Legendre multi-wavelets (named LMdhe solution of fractional differential
equation. The remainder of the paper is organized as followsection 2, we describe some preliminaries
about fractional calculus theory and also illustrate howednstruct Legendre multi-wavelets. Fractional
integral matrix and nonlinear terms approximation of Legendrigi-wavelets are derived in section 3. The
proposed method is detailed in section 4. Five examplesiae iy Section 5 to demonstrate the validity
and applicability of the proposed method. Finally the concludingriesrare given in Section 6.

2 Preliminaries and Notations

2.1 Fractional calculustheory

In this section, some mathematical preliminaries aboufrdwional calculus theory will be introduction.
The readers could see reference [25,26] for more detalgt fractional calculus theory.
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Definition 2.1: A real functiorh(x), x >0, is said to be in the spa@;, HMOR, if there exists a real
numberp > 4, such thah(x) = x"h,(x), whereh, (x) 0C(0,e), and it is said to be in the spaC8 if
and only it h(" 0C,, nON.

Definition 2.2: Riemann-Liouville fractional integral operatorJ{ ) of ordera =0, of a function
fOC,, u=2-1lisdefined as,

3% (x) = ria)j:(x ~7)"*t(r)dr, x>0,

3% (x) =f(x),

(1)

in which I (a) is the well known Gamma function.

Definition 2.3 The fractional derivative cbf(x) in the Caputo sense is defined as [27].

1 X f(m)(f) d >0 m-1<a<m
. X) = r(m_a)'[o (X_{)a-mﬂ {1 (a ) )
i "t (x) | )
ox™

wheref :R - R, X - f(x)denotes a continuous (but not necessarily differentiable) fumctio

Lemmal Letn-1<a<n, nON, x>0, hOCj], p#>-1.Then

n k

ana — _ = ) [+ X_
(37D7)h(x) =h(x) 2h (0 )k!. ®)
2.2 Legendre multi-wavelets

In this section, Legendre multi-wavelets are introducedl ssme useful properties are also described. A
detailed description about Legendre multi-wavelets candeiseeference [17-19].

2.2.1 Legendre multi-wavelets

Legendre scaling functions are defined on the interval [@s Ipllows:
k k+1
P2m+1 221 (2(2°x-k)-1), = <sx<s—=
i (x) =V o (2(2x-K) 1), 2 SN (4)
0, otherwise

wherem =0, 1 2,--,r-1, k=0, 1--,2’ ~1land J =0, 1 2., Here, L, (x) are the well-known
Legendre polynomials of orden.
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Legendre scaling function vector and Legendre multi-wavedetsor in subspace¥, =V, OW,_, are
defined as

, (x) = [@’,o (%)or=o g ()l oy (X)L (X)} (5)
and
qJJ (X) = [(‘f,o (X),-“,@’(—)l(x“ ‘/’g,o (X)-"'-‘/’(;;)l(x) [, ©6)
. [//;)710 (X),...,[//J':io (X) |-'"-‘//;),LG,l(X):"’n‘//;jzn,l(x)] )
respectively.
Legendre scaling function vect@®, (t) satisfies a two-scale equation of the form
1
o, (x)=> HYo, (2x - k), @)
k=0
where H® is a finite set of matrices,
The two-scale relation of Legendre multi-wavelets veiggiven in the following form
W, (x)=3 c¥o, (2x k). (®)

k=0

where ¥, (x) is the vector of corresponding wavelet functions.t!$® Legendre multi-wavelets can be
constructed by Legendre scaling functions by twoeseguation Eg. (8).

A function f(x) in Vi can be approximated by using the Legendre scaling funa®ns

22-1r-1

() =P (x) = X > ey () =C70, (x), ©

k=0 m=0
and the decomposition of (x) has an equivalent Legendre multi-wavelets given by

f(x)=P,f(x)= i{cg}(;ﬁo (x) +§22__:ldj”sz//j"l’k (x)} =D'¥, (x), (10)
where

Clle :<f(x)'¢k>' dfl :<f(x),z//;?k>, (11)

in which (.,.)denotes the stander inner product of the Hilbert spaodC and D are N x1 vectors with
N =r2’ given by
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cr :[cs,o,---,c;;f ~~~lc?,(m)v"'cii?a)} "
and

D' =[d§,or--,dé,;1,|dS,ou--,d{,,;l |""’|d§)—lo""’d;:io ,...,dj’_le_ly...,d;:izH_l]_ (13)
The operatoP; is named as the orthogonal projection of functionto spacev, .

For example the cubic Legendre scaling functions consisiuoffiinctions are given in the following:

#(x)=1 0=<x<1
¢}(x)=x/§(2x—1), 0sx<1
¢f(x)=\/§(6x2—6x+1), 0<sx<1l’ ()
@ (x) =4/7(20x* -30x* +12x-1), 0<x <1

The corresponding Legendre multi-wavelgts(x), ¢/*(x), ¢ (x)and¢* (x) have the form as

—\/g(zzw -216x% + 56X —3), 0<x <%
¢ (x) =

: (15)
/E(224x3 - 456x2 + 296X —61), lox<a
17 2
1 , , 1
2—1(1680x -1320x2 + 270X —11), 0<x< >
¥(x) = : . : (16)
= (1680x3 —3720x%2 +2670X — 619), Z<x<1
21 2
- /%(25&3 —174x% + 30X —1), 0<x <%
W?(x) = : (17)

35 (256x3 —-594x2 + 450x —111), lox<r
17 2

=) 2 . o
\/3(420x3 -1014x2 +804x — 209), lox<
21 2

which are determined using Egs. (7) and (8). The mattfikandG® for r = 4 are defined as [24].
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1 0 0 0
B T
2 2
HO = M5 1 and G =
o -2 = o
4 4
V721 V351
8 8 8 8

The elementahi(v of matrixH® andg of matrix GV

1) _ i+j . (0
hi(,j) - (_1) hi(,J)
and
gi(’11) = (_1)'*“K gi(,?)’
respectively.

2.2.2 Transition matrix of L egendre multi-wavelets

Eq. (7) can be rewritten as
o =HOD,,
whereH, , k=1 2---,J is a(rzk’l,rzk) matrix.
Similarly, Eqg. (8) can be rewritten as
Y =G, .
whereG, , k =1 2,---,J is a(rzk'l,rzk) matrix.

From Egs. (22) and (23), one can have

lI',J = G¢J+1 1

YRR

1 f
V21 2 . (9)

A
i &

can be calculated by using the following formulae

(20)

(21)

(22)

(23)

(24)

where G is(N x N) transit matrix and can be calculated as follows [23].

[ Hlezx'”xHJ
Glez x"'xHJ

GJ-Z xHJ-lx"'xHJ
GJ-leJ
G

L J INxN

(25)
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Relations (24) and (25) can be used to develop the fagithlgs for transition between different scales of
the multiresolution analysis. It's worth mentioning thheé ttransition operator between coefficients and
values is sparse and possess hierarchy structure.

2.3 Block-Pulse functions

The N-set of block-pulse functions is defined hﬁ]l) as follows

(i-1)1 il
N

<x<—,

b, (x)=1" (26)
0

,  otherwise,
wherei =1 2, N . The functionsh(x) are disjoint and orthogonal. That is, fard[0,1) and
i, J:l 2,..., N

(27)

and

[!b,(x)b, (x)={N" "7, (28)

The orthogonality property of block-pulse functions is oi#di from the disjointness property for
i=1 2, N.Itis also known that for arbitrary absolutely integeafiinctionf (x) on [0,1) can be
expanded in block-pulse functions:

F(x)=€'B, (x). (29)
in which

& =[f.f, 0] (30)
And

By (%) =[:(x).b, (x).+by (x)], (31)

(x)dx . (32)

So the disjointness property of BPF's follows

B, (x)B} (x)€ = diag(§)B, (x) . (33)
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3 Nonlinear Term Approximation and Fractional Integral of Legendre
Multi-wavelets

3.1 Nonlinear term approximation
The Legendre scale functions can be expanded\gtet of block-pulse functions as
D, (x) =®,,,B, (x). (34)
whereN =27r .
Taking the collocation points as following

X :ﬂ, |:l 2,

, N -+, N. (35)
TheN-square Legendre matri®, ., is defined as:

Oy 2[0(x) @(x) - O(x,)] (36)
and

W, (x)=G®,,,(x) = GD,,\B, (). @37)

The operational matrix of product of Legendre multi-wawelkeictor¥, (x) can be obtained by using the
properties of BPFs. Lef(x) andf, (x) are two absolutely integrable functions, which careqganded in

Legendre multi-wavelets ds(x) = F'W, (x) andf, (x) =F, W, (x), respectively.
From Eg. (37), we have

f.(x) =F'¥, (x) =F'G®,,B(x)

: 38
£, (x) =¥, (x) =FI GO, B (x) 9
By employing Lemma 1 in [28] and Eqg. (38), we get
f,(x)f,(x) = (FG®,,, OF GO, )B(x)
= (T GOy, OF GO, )inv(G®,,, )G®,,B(x), 139

(
= (FG®,,, OF GO, )inv(GD,., )W, ()

whereA OB = (a.. b..) is the Hadamara products of matix= (a..) andB = (b) . Here and after
170 N xN T JNxN 1 /NxN

we denotd’, ., = GO,

NxN NxN *

Fig. 1 shows the sparse structure of matricesid W,,, . It can be found that the transition matrideand

WY,... are sparse and possess hierarchy structure which caad®isave memory cost.
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LMW _Transit_Matrix r= 4,J= 5 LMW_PHI2BPF_Matrix r= 4,J= 5

nz = 2816 nz = 3072
Fig. 1. Sparse structure of matricesof T and W,

3.2 Thefractional integral operator of L egendre multi-wavelets
The Legendre multi-wavelets can be expandedihrset of block-pulse functions as

W(x)=¥,.B(x). (40)

NxN
The fractional integral of block-pulse function vector cambiten as
(I"B)(x) = PgB(x) (41)

wherePy is given in [29] and is defined as

14 & 4
1 1 14 - &
pPP=——— |0 0 1 - , 42
® N7 T(a+2) L 5“j3 2
0 0 O 1
in which
&=(i+1)" -2+ (i -2)"". 143

The fractional integral of vecto®; (x) and ®, (x) can be expressed as
(IGQJ)(X):PZQJ (x). (I”"PJ)(X):P[Z’HJJ (x). (44)

where P;’ and P; are operational matrices of fractional integral faegendre scaling functions and

Legendre multi-wavelets, respectively. The maﬁ’§< can be obtained by the following process.
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By using Eq. (34)

(’aq’J)(X) = ("aq’NxNB)(X) = meN (‘WB)(X) = ¢NxNPgB(X) = d’NxNPg(DKfLNd’J (x)

: (45)
So
P = O Py (46)
From Egs. (24) and (44), we have
(1°w,)(x) =G (1°®,.,) (x) = GP{®, ., (x) = GPIG™'®, (x). (47)
Finally, we obtain
P! =GP!G™, (48)
4 Numerical Method and Convergence Analysis
4.1 Description of numerical method
Consider the following initial value problem:
Du(x)+N[u(x)]+L[u(x)]=g(x), a>0, (49)
u(k)(O):ck, k=0, 1 2 -, m-1 m-1<a<m, (50)

wherelL is a linear operatof\ is a nonlinear operator, a2 is the Caputo fractional derivative of order
a.

Applying the fractional integral operatdf to both sides of (49) and using Lemma 1, yields

u(x)+I"’(N[u(x)]+L[u(x)]—R(x)):0, a>0, (51)
in which R (x) = :z;:u(k) (0*)%+g(x) :

To solve the problemy(x) andR(x) are approximated by Legendre multi-wavelets as
u(x) =D, (x), R(x) =R™W, (x). (52)
Now for the nonlinear pan [u (x)] by nonlinear term approximation described in Section 3.1, we ha
N[u(x)]=N"¥,(x). (53)

For the linear part, we have

10
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L[u(x)]=L"w, (x) =aD™¥, (x). (54)
whereL = aD has a linear relation with anda is constant.
Substituting Eqg. (52)-(54) into Eq. (49), we can get a sysfeatgebraic equations as

D" +(N"+L"-R")P; =0, a >0, (55)

According to the Wu’'s [30] technology for determining theiatiiteration value, the first guess can be
determined as

n-1 tk

Uy (%) = 24 (07)5 437 (G (4)) (56)

where g, (X) is the fractional component @f(x) with respect tox. The coefficient matrib®™ can be

computed by using the MATLAB function fsolve( ) or theethod described in [31]. The power of LMW

depends on the occurrence of the exact solution in Eq. (8bhe accurate representation of fractional
integral. If the exact solution exists, LMW can converge ¥asy to the exact solution. What's more, for the
linear fractional equation, the solution can be obtained lbyvfing equation,

D' =R'P; (1+aP;)". (57
)

where | is an identical matrix.

4.2 Convergence analysis

Theorem 4.1. Suppose that the functiofi(x):[0,] — R and f(x)OC™*[0] . Then Pf(x)
approximates with mean error bounded as follows [19]:

[t (x) =Pyt (x)| <M (r.3), (58)
in which

1 1
(r _1)! 2(J+2)(r—1)—1

M(r,J) = SUP, g0 |f =) (x)| . (59)

Theorem 4.2. Suppose that the functidi{x):[0,1] -~ R andf(x)OC'™*[0,1]. ThenP,f(x) converges
tof.

Proof. Let Pf (x) =y} = i{cgfong‘o (x) +J§2 _ldsz//j”fk (x)} be a sequence of partial sums, we have
m 0

=0 =0 k=

11
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Jﬁ%mumwwf mmmmu%- (60)

Without loss of generality, assuming that>r, and J, > J,, then we can get

HZ oo@“o )+ S dngn, (x)}—i{c%(xh S S anur, (x)}

=0 k=0 m=0 i=0 k=0

|vi

2

- |5 et 00+ & Sanun

m=r, j=J; k=0 (61)
(et )+ £ Eenon (0 S e 09+ £ E o (0]
—mz;{|000| +Zz_;>|djk|}

So, adN =r2’ _ o, from Bessel’'s inequality and Theorem 4.1, we have

e5af + Z Zld A
£ I

vi =y | <y (9 -vi ]+ ly (9 -vs | sM(n.2.) +M(r,.3,). 62)

J-12/-1

It can be found thari {|c{,‘70|2 +>
m=0 j=0

j.k

|dF“ |2} is convergent, thusy{; } is a Cauchy sequence.
k=0

Further

<f()-"myJ%“k()> (f(x). i (x)) -

<’!‘|m yJ ﬁ]‘nk >
(mil
=0

i (x) . (x )J- 63

r

k=0 m=0

It implies that sequencey{ } converge tof (x) .

Theorem 4.3. Assume thaf (x) 0C*[0,1], andM >0, Ox0(0,1), [f'(x)[<M, asN - =, §'B(X)

is point-wise convergent tb( )W|th error bounded as follows [28,32].

If(x)-€78, (x)] < 2. (64)

12
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Theorem 4.1, 4.2 and 4.3 give the guarantee of converger®ELM/M. It is clear that the approximation
will be more accurate N is increased.

5 Applications and Results

In this section, we first give two linear examples witla@solution to analysis the accuracy of LMW with
difference values of andJ, and then use three examples to demonstrate the vaiityapplicability of
LMW in the solution of nonlinear fractional differential edions. It should be note that linear examples are
solved by using Eqg. (57) while the nonlinear cases using Maifection fsolve( ).

Tablel. L, error of example 1 for different valuesof r and J

rJ=2 J=3 J=4 J=5 J=6 J=7 J=8

2 0.0041 0.0015 5.2449e-4 1.8684e-4 6.6467e-5 2.3621e-5 8.3868e-6
3 4.0370e-4 1.4915e-4 5.4740e-5 1.9973e-5 7.2508e-6 2.6209e-6  974393e
4 2.6530e-4 9.8094e-5 3.5978e-5 1.3111e-5 4.7531e-6 1.7158e-6 671719

Example 1. Consider the composite fractional oscillation equation [13].

D*®u(x)+u(x)=-x* - x* =0, (65)

with the initial conditioru (0) = 0 and the exact solution is(x) = x*.

Table 1 shows thk, error of example 1 for different valuesroindJ. It is easy to deduce that the accuracy
of LMW is improving with the increase ofandJ and converge rapidly which depend on the accuracy of the
integral of fraction-order. It is worth mentioning that thietained results agree well with exact solutions
even for small values afandJ.

Example 2. Consider the following fractional linear equation [13,3-35].

D(x)+u(x)=0, 0<x<1 0<a<2, (66)

u(0)=1 u'(0) =0, (67)

a\K
The exact solution of this problemu'éx) = i%
k=0

Table2. L, errorsfor example 2

r a J=4 J=5 J=6 J=7 J=8

3 1 4.8361e-05 1.7182e-05 6.0904e-06 2.1561e-06 7.6280e-07
2 2.0809e-05 7.3880e-06 2.6177e-06 9.2652e-07 3.2776e-07

4 1 3.1739e-05 1.1219e-05 3.9663e-06 1.4023e-06 4.9578e-07
2 1.3633e-05 4.8198e-06 1.7040e-06 6.0246e-07 2.1300e-07

13
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0.9

0.8

0.7

u(x)

06r +  o=1.00 exact solution

o =1.00 LMW solution
a=1.25 LMW solution
a=1.50 LMW solution
a=1.75 LMW solution
o =2.00 exact solution
0 =2.00 LMW solution

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0.5+

04r|

Fig. 2. Numerical solutions of example 2 for difference a

Table 3. Numerical results of Example 2 for a =0.50 and 0.75 with r=3 and J=5

a 0.50 0.75

X JOM [33]  SFJTM [34] LMW JOM [33] _ SFJTM [34] LMW

01  0.73735! 0.72357: 0.72358! 0.83014! 0.82825. 0.82825!

0.2  0.633468 0.643788 0.643789 0.731281 0.732585 0.732588
03  0.593029 0.592018 0.592019 0.660086 0.660337 0.660339
04  0.56316 0.55360! 0.55360! 0.60378! 0.60212. 0.60212;

05  0.512164 0.523157 0.523156 0.552192 0.553603 0.553603
0.6  0.49954: 0.49802! 0.49802: 0.51205: 0.51228! 0.51228!

0.7  0.485038 0.476703 0.476703 0.477957 0.476555 0.476555
0.8  0.447227 0.458246 0.458246 0.44395 0.445292 0.445293
0.8  0.45268 0.44202: 0.44202: 0.41873: 0.41768: 0.41768:

1.0  0.439646 0.427584 0.427583 0.393598 0.393108 0.393108

We solved the problem by applying the method described itio8et Fig. 2 exhibits the numerical results
for different values ofa with r=3 and J=4. Thel, errors fora =1.0 anda =2.0 are shown in Table 2.
From Fig. 2, one can see that LMW can achieve a good approxinvaith the exact solution foar =1.0
and a =2.0. In Table 3, we compare our numerical results witise obtained by the shifted fractional-order
Jacobi orthogonal functions (SFJTM) [34] and by the Jacobi tipeah matrix method (JOM) [33]. From

Table 3, it is clear that LMW can achieve a good agpration of solution nearly the same as SFJTM and
better than JOM.

Table4. L, errorsof Example 3for different valuesof r and J

r J=1 J=2 J=3 J=4 J=5 J=6 J=7

2 0.0134 0.0048 0.0017 6.2198e-4 2.2195e-4 7.9073e-05 2.8133e-05
3 0.001¢ 5.4055-4 2.0460+-4 7.5963¢5 2.7894+5 1.0168+-05  5.5354+15

4 9.7490e-4  3.6690e-4 1.3642e-4 5.0248e-5 1.8373e-5 4.4024e-15 6.3071e-15
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Example 3. Consider the composite fractional oscillation equation [14].

0.25 2 _ 2 1.75 4
D%*u(x)+u (X)_—r(2.75)x +x*, (68)

with the initial conditioru(0) =0 and the exact solution is(x) = x*.

Table 4 show thé, errors of example 3 for different valuesraindJ. It is also support the conclusion that
the accuracy of LMW is improving with the increaser &ndJ and converge rapidly. It can be found that
LMW can converge to the exact solution with large vabfasandJ. This is because that the exact solution
exists in first guess defined in Eq. (56) and the errofragftional integral operator is smaller than the
tolerance in Matlab function fsolve( ).

Example 4. Consider the following nonlinear fractional Riccati equatib®, $6,37]:

Du(x)+u®(x)=1,0<a<1,0<x<1, (69)

subject to the initial stateu(O):0 .The exact solution of this problem, when=1, is
u(x)= (e2X —1)/(e2X +1) )

Fig. 3 exhibits the approximate solutions of Examplerdifferencea with r=3 andJ=6. It can be found
that LMW'’s solution is in very good agreement with the exatit®m for «=1.00. Therefore, numerical
results fora=0.25, 0.50 and 0.75 are also credible. Table 5 compares iWWariational iteration method
using fractional-order Legendre Functions [36]. It can be fabatour result is as accurate as those in Ref
[36] in the case o&#=1.00and nearly the same far0.25, 0.50 and 0.75. This demonstrates the importance
of presented numerical scheme in solving nonlinear tnaatidifferential equations.

r=3 J=6
0.8 T

0.7+

0.6

0.5

u(x)

0.4

0.3

a=0.25 LMW solution
a=0.50 LMW solution | -
o=0.75 LMW solution
*  a=1.00 exact solution | |
a=1.00 LMW solution

0.2

0.1r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. Numerical solutions of example 4 for differencea
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Table 5. Numerical results of Example 4 for r=3 and J=6 with comparison to Ref. [36]

X a =050 a =075 a =1.00
Ref. [36] LMW Ref. [36] LMW Ref.[36] LMW Exact

0.1 0330108  0.330107  0.190101  0.190100  0.099668 0.099668  0.099668
0.2 0.43683*  0.43683¢  0.30997(  0.30997¢  0.19737' 0.19737¢  0.19737'

0.3 0504889  0.504890  0.404615  0.404614  0.291313 0.291312  0.291313
0.4 0553782 0553782 0481632 0481631  0.379949 0.379949  0.379949
0.E 0.59119! 0591194  0.54509(  0.54508¢  0.46211° 0.462117  0.46211

0.6 0621014  0.621014 0597783 0597783  0.537050 0.537049  0.53705
0.7 0.64548'  0.64548¢  0.64182(  0.64182C  0.60436! 0.604367  0.60436!

0.8 0.666020  0.666019  0.678850  0.678849  0.664037 0.664037  0.664037
09 0683554  0.683552 0710175 0710175  0.716298 0.716298  0.716298

Example 5. Consider fractional Riccati equation [36,37].
DU (x)-2u(x)+u®(x) =1 0<a<1, (70)

subject to the initial condiion u(0)=0 , for a=1 the exact solution is

u(x) =1+ \/Etanh{\/zx +%Iog((\/§ —1)/(\/5 +1))} :

1.8

u(x)

a=0.25 LMW solution | +
0 =0.50 LMW solution
0a=0.75 LMW solution
*  a=1.00 exact solution
a=1.00 LMW solution

0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Numerical solutions of example 5 for difference a

Fig. 4 gives approximation solution of fractional Riccatfetiéntial equation for Example 5. From Fig. 4 it
can found that the numerical solution is in very good egent with the exact solution when=1.0.
Therefore, it should be hold that the solution o= 0.25, 0.50 and 0.75 is also credible. Table 6 compares
the results of LMW with those obtained by variationataten method using fractional-order Legendre
Functions. It can be found that our result is more aceuhan that in Ref [36] foor =1.0. So it can hold
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that LMW's results are better far =0.25, 0.50 and 0.75. This demonstrates the importanceesiepted
numerical scheme in solving nonlinear fractional differémtipuations.

Table 6. Numerical results of Example 5for r=4 and J=5 with comparison to Ref. [36]

X a=0.50 a=0.75 a=1.0
Ref[36] LMW Ref[36] LMW Ref[36] LMW exact

0.1 0.59283: 0.59278! 0.24544 0.24544: 0.11030:! 0.11030 0.11029!

0.2 0.933104 0.933200 0.475051 0.475108 0.241990 0.241983 0.241976
0.3 1.17406! 1.17399I 0.71005! 0.71003: 0.39511! 0.39511: 0.39510:-

0.4 1.346694 1.346661 0.938523 0.938543 0.567830 0.567819 0.567812
0.5 1.473790 1.473890 1.149016 1.149066 0.756032 0.756020 0.756014
0.€ 1.57057 1.57057. 1.33433! 1.33433l 0.95358: 0.95357: 0.95356I

0.7 1.646302 1.646199 1.491949 1.491927 1.152968 1.152953 1.152946
0.8 1.70664- 1.70688! 1.62295I 1.62299. 1.34638: 1.34636° 1.34636.

0.9 1.756349 1.756643 1.730575 1.730612 1.526927 1.526914 1.526911

6 Conclusion

In this work Legendre multi-wavelets operational matri¥rettional order integration is derived and used
to solve fractional differential equations. By using the teales difference relations of Legendre multi-
wavelets and properties of BPFs, the operational cestrof fractional integration and nonlinear term
expansion coefficients vector are derived. Consequentlysahgion of fractional differential equation is
converted to the solution of a sparse nonlinear system ebmlig equations. The achieved results are
compared with exact solutions and with the solutions obtainedobye other numerical methods. The
numerical results show that LMW is accuracy and appkceten for small values ofandJ. what's more,
LMW can get the exact solution when exact solution eistéirst guess defined in Eqg. (56) and the
error of fractional integral operator is smallearththe tolerance in Matlab function f solve( ). It is Wwort
mentioning that the proposed algorithms can be extendedvi® @alumber of fractional partial differential
equations.
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