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The Lower Ordovician Rose Run Sandstone is a potential CO2 storage reservoir in

theCentralAppalachianBasin innortheastKentuckywhere theKentuckyGeological

Survey’s 1 Hanson Aggregates research well penetrated it at drill depths of

1,000–1,009.5m. Average Rose Run porosity and permeability from core plugs

are 9.1% and 44.6mD, respectively. In situ reservoir properties were determined by

step-rate testing an 18.6-m interval bracketing the Rose Run. Pressure derivative

analysis of wellbore falloff pressure suggests that the Rose Run shares properties of

both dual-porosity and dual-permeability reservoirs, consistent with its mixed

lithologies. The Rose Run pore pressure was 9.3 MPa/km, 1.1 MPa/km

underpressured compared to the expected hydrostatic gradient of 10.4 MPa/km.

Average porosity of the Rose Run, at the industry-standard 7% porosity cutoff for

assessingCO2 storage capacity, calculated from27wells in the surrounding region,

was 11.6% and the average net reservoir thickness was 6.2m. Geomechanical

properties of the overlying Beekmantown Dolomite show that it would act as a

reservoirconfiningintervalduringCO2injection.TheestimatedP50supercriticalCO2

storagevolume is77.2 kt/km2, yieldingP50 storagecapacityof 165.7 Mt in the region.

By itself, an average surface area of 12.9 km2 would be required to store 1 Mt of

supercriticalCO2intheRoseRun,thuslackingthevolumetoactasastand-aloneCO2

storagereservoirinthisarea.Itcouldcontributetoastacked-reservoirstorageproject

developedinthelargerKnoxsection,however.CO2–brinerelativepermeability tests

suggest thatnearlyhalf of any supercriticalCO2 injected into theRoseRunwouldbe

residually trapped, and another portion would be trapped by mineral precipitation.

TheRoseRunintheKGS1HansonAggregateswell isveryclosetothesubsurfaceCO2

criticaldepth inthenortheastKentuckyregionandlacksanupdipreservoir trap.How

far and fast the mobile CO2 migration might occur at this site remains for future

research and reservoir modeling.
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Introduction and previous work

The Kentucky Geological Survey (KGS) operated and drilled

the 1 Hanson Aggregates stratigraphic research well to assess the

subsurface CO2 storage capacity in deep saline reservoirs of the

Middle Cambrian–Lower Ordovician Knox Group and

underlying strata in the Central Appalachian Basin in eastern

Kentucky (Bowersox et al., 2013; Bowersox et al., 2013; Bowersox

et al., 2017; Greb et al., 2017; Bowersox et al., 2018). All depths in

the well were measured from the drilling rig kelly bushing (KB)

which was 227.5 m above the sea level (2 m above the ground-

level elevation of 225.5 m). It was drilled in northern Carter

County, Kentucky, United States (Figure 1), at a location where

all potential reservoir and confining strata and Precambrian

basement could be penetrated at a total well depth (TD) less

than 1,525 m below the surface (Bowersox et al., 2013; Bowersox

et al., 2017; Bowersox et al., 2018). The 1 Hanson Aggregates well

reached a TD of 1,474 m in Precambrian Grenville gneiss and

successfully tested reservoir and in situ rock properties in both

the Knox and underlying Middle Cambrian strata (Bowersox

et al., 2017, Bowersox et al., 2018, Bowersox et al., 2019a;

Bowersox et al., 2019b; Greb et al., 2017; Figure 2).

The focus of this report is the Rose Run Sandstone

formation of the Knox Group, an important reservoir for

oil and gas production and liquid waste disposal in the U.S.

Midcontinent (Rike, 1992; Riley, 1992; Riley, 1994; Battelle

Memorial Institute, 2015) and candidate deep saline reservoir

for CO2 storage. Previous tests of the Rose Run’s capacity for

storing CO2 were conducted in the Battelle Memorial

Institute (Battelle) 1 American Electric Power (AEP) well

at the Mountaineer Power Plant on the Ohio River at New

Haven, West Virginia (Gupta et al., 2006; Lucier et al., 2006;

Gupta, 2008a; Gupta, 2008b; Lucier and Zoback, 2008),

118 km northeast of the 1 Hanson Aggregates (Figure 1,

location 2), and in the Ohio Division of Geological Survey

CO2 No. 1 well near Port Washington, Tuscarawas County,

Ohio (Wickstrom et al., 2011), about 250 km northwest of the

KGS 1 Hanson Aggregates well (Figure 1, location 3;

Figure 3).

This study reports the results of tests and analyses of the Rose

Run reservoir properties conducted in the KGS 1 Hanson

Aggregates well. We provide an estimate of the CO2 storage

capacity of the Rose Run in the KGS 1 Hanson Aggregates well

and the surrounding region that contributes to the evaluation of

subsurface CO2 storage along the Ohio River industrial corridor

(Gupta et al., 2006; Lucier et al., 2006; Gupta, 2008a; Gupta,

2008b), although there are no plans for its development in

foreseeable future.

FIGURE 1
Location of the KGS 1 Hanson Aggregates well, northern Carter County, Kentucky. The study area is outlined by the gray box. Wells of interest
identified by numbered red circles: 1, KGS 1 Hanson Aggregates well, Carter County, Kentucky; 2, Battelle 1 AEP well, Mason County, West Virginia;
and 3, Ohio 1 CO2 well, Tuscarawas County, Ohio. The KGS 1 Hanson Aggregates well location was chosen northwest of the Kentucky River Fault
Zone (KRFZ) and Rome Trough where the entire Ordovician to Precambrian basement section could be penetrated at a drill depth less than
1,525 m. LFZ, Lexington Fault Zone; IPCFZ, Irvine-Paint Creek Fault Zone; RRFZ, Rockcastle River Fault Zone; LD, Lexington Dome; CA, Cincinnati
Arch; WA, Waverly Arch. Modified from Bowersox et al. (2018).
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Materials and methods

KGS collected a robust dataset of geophysical log data and

conventionalwhole coreandrotarysidewall coreanalyses fromthe

KGS 1 Hanson Aggregates well (discussed in detail in Bowersox

et al., 2018) to conduct this evaluation of the Rose Run. The Rose

Runwasaprimaryzoneof interest in theKGS1HansonAggregates

well for testing reservoir properties and estimating CO2 storage

capacity. This study reviews the reservoir properties of the Rose

Runinterpreted fromgeophysical electricandnuclear logs(electric

logs or logs), formation imaging logs, analyses of conventional

whole-diameter cores (Figure 2, Test 3) and rotary sidewall cores,

and in situ reservoir properties determined from step-rate testing

to estimate its CO2 storage capacity in northeast Kentucky. All

geophysical logs used in this evaluation, as well as core

photographs, are available free to the public through KGS’s Oil

and Gas Records Database at https://kgs.uky.edu/kygeode/

services/oilgas/, KGS Record Number 143577. Core analyses are

available on request from theKGSatContactKentuckyGeological

Survey, University of Kentucky (uky.edu).

Conventional whole core and rotary
sidewall core data

An 8.9-cm core was cut and recovered from the Rose Run in

the 1 Hanson Aggregates from 1,006 m through its base at

1,010 m, then to 1,024 m in the underlying Copper Ridge

Dolomite (Figure 2, Core 3). Above the core, sampling of the

Rose Run was supplemented with 12 rotary sidewall cores. Unless

otherwise noted, core analyses were performed by Core

Laboratories, Houston, Texas. These analyses of core plugs

and sidewall cores included routine porosity and permeability

for nine core plugs and one sidewall core; thin section

petrography and X-ray diffraction mineralogy (XRD), and

CO2-brine relative permeability of one core plug each.

Geomechanical properties were measured in two rotary

sidewall cores from the Beekmantown and one from the Rose

Run. Mercury-injection capillary pressure (MICP) test data of

one core plug from 1,009.3 m were provided by the Indiana

Geological Survey andWater Survey, and geomechanical analysis

of a core plug from the same depth was provided by Battelle.

Software used in this study

All software packages used during this study are commercial

releases, although not necessarily the most recent versions. Figures

not otherwise attributed to specific software packages, including

annotations and colored fills (Figures 1–3), were constructed using

CorelDRAW X7, Version 17.6.0.1021. All figures including logs

(Figure 2), contour maps (Figure 3), and cross sections (Figure 4)

were initially constructed using PETRA, Version 3.8.3, with

corrections, annotations, and labels, and graphic fills added in

CorelDRAW X7. Formation porosity calculated from the density

log, geomechanical properties, wellbore pressure profiles, and Rose

Run CO2 storage capacity were modeled using Quattro Pro X5,

Version 15.0.0.528. Graphs presented in this study were

constructed using Delta Graph 7, Version 7.5.0, with

annotations and fills added using CorelDRAW.

Rose Run geology

The geology of the Rose Run Sandstone in the northeast

Kentucky study area and adjacent Ohio and West Virginia is

summarized from Bowersox et al. (2021). The Rose Run lies near

the Cambrian–Ordovician boundary throughout much of the

Central Appalachian Basin in the study area. The KGS 1 Hanson

Aggregates well lies on the eastern flank of the Waverly Arch

(Woodward, 1961; Ettensohn, 1980; Figure 1), a low-relief

FIGURE 2
Correlated nuclear logs and lithostratigraphy of the Knox
Group and deeper strata in the KGS 1 Hanson Aggregates well.
Cored intervals are shown in the depth track and test intervals are
posted. Log curves shown are the gamma-ray (curve 1, left
track), wellbore caliper (curve 2, left track), neutron porosity (curve
3, right track), formation density (curve 4, right track), and density
porosity (curve 5 right track). Modified from Bowersox et al.
(2019a).
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forebulge of the Appalachian foreland basin associated with the

Taconic Orogeny (Root and Onasch, 1999). In the mapped study

area (Figure 3), the Rose Run is near-horizontal, occurring as a

single sand body overlying the Copper Ridge (Figures 2, 4), that

thins south of the KGS 1 Hanson Aggregates (Figures 4, 5). Well

cuttings, rotary sidewall cores, and whole cores from the Rose

Run in the KGS 1 Hanson Aggregates well showed it to be a white

to green–gray, fine-to medium-grained sandstone with

subrounded to rounded grains and dolomitic cement

(Bowersox et al., 2021). North of the study area, in the

Battelle 1 AEP well and in the Ohio Division of Geological

Survey CO2 No. 1 well (Figure 1); the Rose Run occurs as thin

sands interbedded with dolomite (Figure 6), whereas in central

Ohio along the Waverly Arch (Figure 1); the Rose Run may

consist of as many as four distinct sandstones with significant

porosity and permeability (Riley, 1992; Riley et al., 1993; Riley

et al., 2002) separated by dolomites (Riley et al., 2002; Wickstrom

et al., 2005; Gupta, 2006).

Reservoir properties and analysis

The 9.8 m-thick section of Rose Run was penetrated in the

KGS 1 Hanson Aggregates well at drilled depths of

1,000 m–1,009.8 m kB and was cored at depths from 1,005.8 m

to its base at 1,009.8 m (Figure 2). The cored section was

consisted of thin-bedded dolomitic quartz arenite with thin

clay beds near the base. XRD analysis of a core plug near the

base of the Rose Run at 1,008.1 m found 71.1% quartz, 20.9%

dolomite, and a total of 7.5% potassium feldspar, illite/smectite

clays, and mica. Dolomite volume in the Rose Run section was

determined from a crossplot of formation bulk density and

photoelectric factor from the density log (Schlumberger, 1987)

normalized to the mineralogy from the XRD analysis (Bowersox

et al., 2021). The average dolomite volume in the Rose Run above

1,006 m (3,300.5 ft) drilled depth was 6.8%, whereas the average

dolomite volume below 1,006 m averaged 15.3% (Bowersox et al.,

2021). Porosity of the Rose Run was calculated from the

FIGURE 3
Subsurface structural contours on top of the Rose Run Sandstone show gentle dip to the east (−0.8°) in the region northwest of the Kentucky
River Fault Zone. Wells shown on this and subsequent maps are those reaching the Precambrian basement. The evaluation region is outlined by the
dashed green line, and the updip limit of potential supercritical CO2 storage is shown by the dashed green contour at -714 m subsea elevation.
Contour interval is 200 m.
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formation density log (Alger et al., 1963; Schlumberger, 1972).

The matrix density of the Rose Run was most affected by the

dolomite content, and averaged 2.67 g/cm3 (Bowersox et al.,

2021). The formation fluid density of 1.06 g/cm3 was

determined from a water sample collected from the Rose Run

before the step-rate test (Bowersox et al., 2021). Porosity

calculated in the Rose Run averaged 11.2% in the KGS

1 Hanson Aggregates well (Bowersox et al., 2021). At the

industry-standard 7% porosity cutoff used for evaluating CO2

storage reservoirs (Medina et al., 2011), the average Rose Run

porosity in the 1 Hanson Aggregates was 12.3% and the net

reservoir thickness was 8.5 m. In the mapped 2,146 km2

evaluation region (Figures 3, 5), the average porosity was

11.4% in 23 wells and average net reservoir thickness was 6.2 m.

Regional porosity and permeability in the
Rose Run

Porosity and permeability measured in 108 core plugs from

the Rose Run in wells in Kentucky, Ohio, and West Virginia

(Figure 7) were compiled for assessing reservoir porosity and

permeability in the evaluation region around the KGS 1 Hanson

Aggregates well. Median porosity measured in the Rose Run core

plugs was 13.4% and median permeability is 57.6 mD (Bowersox

et al., 2021) and ranged from >20% in the KGS 1 Hanson

Aggregates well to <1% in the Hope Natural Gas 9,634 Power

Oil well in Wood County, West Virginia (Figure 7). Generally,

porosity and permeability in the Rose Run decrease with depth

(Battelle Memorial Institute, 2015; Bowersox et al., 2021,

Figure 6) suggesting compaction as the cause. Porosity

measurements and core descriptions from 17 wells drilled in

Kentucky, Ohio, and West Virginia suggest that porosity

reduction in cores from the Rose Run recovered from drilled

depths shallower than 1750 m (5,740 ft) appears to have been co-

dominated by compaction and diagenesis, whereas deeper than

1750 m (5,740 ft) drilled depth porosity-occluding diagenesis

appears to have dominated porosity reduction in the Rose

Run (Heald and Baker, 1977; Bowersox et al., 2021, Figure 6).

The Battelle 1 AEP well (Figures 6, 7) found 5.0 m of net

sandstone with porosity >6%, averaging 9.0% porosity, but with

permeabilities less than 70 mD, encountered in the 25.0 m-thick

Rose Run section (this study) in the well (Gupta, 2008a; Battelle

Memorial Institute, 2015). Likewise, 7.3 m of the net Rose Run

FIGURE 4
Stratigraphic cross section A–A′ of the Knox Group oriented approximately southeast–northeast. Datum is the base of the Rose Run. The Rose
Run thins into central and southwest Carter County, and then thickens into Rowan County (Figure 5). RN is the KGS record number and API is the well
API number.
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sandstone with porosity >6%, averaging 8% porosity, and

permeabilities less than 32 mD, were found in the 27.7 m-

thick Rose Run section (this study) in the Ohio No. 1 CO2

well (Wickstrom et al., 2011; Figures 6, 7). The Rose Run in both

wells occurs in multiple thin beds less than 3.5 m-thick,

(Figure 6), and neither well found reservoir properties in the

Rose Run sufficient to support stand-alone CO2 storage (see the

discussion in Bowersox et al., 2019a).

Mercury-injection capillary pressure

Mercury-injection capillary pressure (MICP) analysis is

widely used to model permeability in tight formations

(Comisky et al., 2007) because laminar flow theory predicts a

strong correlation between permeability and pore-throat

distribution (Brown, 2015). As with any empirical

relationship, there are multiple models for estimating

permeability from MICP data, whose results can differ

substantially (Brown, 2015). MICP data, however, are equally

applicable for calibrating porosity logs (Olson and Grigg, 2008)

and characterizing reservoir quality as well as identifying

reservoir flow units (Sneider and Bolger, 2008). Because

permeability in the Rose Run has been measured in core

plugs throughout the Central and Northern Appalachian

Basin (Battelle Memorial Institute, 2015), MICP was

conducted in one core plug from 1,009.3 m, near the base of

the Rose Run to characterize pore diameter distribution for

comparative flow modeling. Thin section petrography

performed on the core plug (Figure 8A) showed that

intergranular, intraconstituent (from dissolution of feldspar

grains), and oversize pores are the primary porosity types

(Heald and Baker, 1977; Riley et al., 2002; Wickstrom et al.,

2005) which were not occluded by silica overgrowths, pore-filling

dolomite cement, and authigenic K-spar. MICP analysis (Figures

8B,C) showed 75% of pore throats to be macro-to megapores

suggesting that CO2 injection may be possible at relatively lower

pressures than strata whose porosity falls in the meso-to

nanopore range (Figure 8B). A plot of the pore-throat

diameter versus the pore volume (Figure 8C) suggests that the

Rose Run in the KGS 1 Hanson Aggregates well would be capable

of oil and gas production (Sneider and Bolger, 2008). In fact, a

FIGURE 5
Isopach thickness of the Rose Run. In general, the Rose Run thickens and becomes more dolomitic to the southwest. Contour interval is 2 m.
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>2900-unit gas kick, about 30-times the background gas in the

wellbore, was encountered when the Rose Run was penetrated

at −1,000 m drilled depth while drilling with air. The gas entry

was stopped by filling the wellbore and circulating fresh water,

demonstrating a limited-volume low-pressure (<9.85 MPa, fresh

water hydrostatic pressure at 1,000 m drill depth) gas inclusion.

Reservoir pressures measured during step-rate testing found pore

pressure of 9.3 MPa/km, 1.1 MPa/km underpressured compared

to the expected hydrostatic gradient of 10.4 MPa/km.

Pressure falloff analysis

Following step-rate test completion, the pressure was

monitored for about 12 h, exhibiting a smooth falloff during

the monitoring period (Bowersox et al., 2021, Figure 11).

Pressure falloff was analyzed using the methodologies of

Matthews and Russell (1967) and Bourdet et al. (1989)

(Figures 9A,B). The wellbore entered radial flow early during

pressure falloff monitoring, about 0.5 h after shut-in. The average

permeability of the test interval was calculated as described in

Horner (1951) and Matthews and Russell (1967).

kmD � 162.6qβμ/mh, (1)

where q is the average injection rate of 5,728 barrels per day

(911 m3/d) during the test, β is the formation volume factor of the

reservoir water (1.0 reservoir barrels per stock-tank barrel), μ is

the viscosity of the formation water (0.94 centipoise for

90,000 mg/l water under reservoir conditions (Matthews and

Russell, 1967), m is the slope of the semi-log plot of the pressure

falloff curve during radial flow, 1.31 MPa (190 psi) per cycle

(Figure 9A), and h is the test interval height (18.6 m, 61 ft). The

average Rose Run test interval permeability calculated from

pressure falloff data is 75.5 mD (Bowersox et al., 2019b),

nearly identical to the median air permeability of 70.0 mD

measured in nine core plugs and rotary sidewall cores from

the Rose Run.

The skin factor, a dimensionless variable, relates the pressure

drop in a well predicted by Darcy’s law to the dimensionless rate

of flow (van Everdingen, 1953; Matthews and Russell, 1967):

s � (kh/141.2qβμ)Δpskin, (2)

where s is the skin factor, Δpskin is the pressure change from the

skin factor, and the rest of the terms are from Eq. 1. The skin

FIGURE 6
Comparison of the Rose Run sections in the KGS 1 Hanson Aggregates well, Battelle 1 AEP well, and Ohio CO2 No. 1 well (Figure 1). Depths are
meters below the rig kelly bushing. The Rose Run section thickens to the northeast where thick, porous sand beds (yellow fill) are separated by a
middle section of thin, low-porosity sand and dolomite beds. Log curves shown are the gamma-ray (curve 1, left track), PE curve (curve 2, right track),
neutron porosity (curve 3right track), formation density (curve 4, right track), and density porosity (curve 5, right track). Dashed line A is a 7%
porosity (yellow fill) cutoff, and D is the dolomitic section in the downdip Rose Run wells.
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factor in a wellbore will range from −6 to 6 (Harstock and

Warren, 1961; Matthews and Russell, 1967), where skin

factor < −2 is indicative of wellbore flow enhancement by

hydraulic fracturing (Matthews and Russell, 1967). The skin

factor calculated from pressure falloff in the KGS 1 Hanson

Aggregates well is −3.59 (Bowersox et al., 2019b), confirming

wellbore fracturing observed during the step-rate test.

A pressure derivative curve (Bourdet et al., 1989) was plotted

against dimensionless equivalent time (Agarwal, 1979, 1980) to

help determine the wellbore storage period, transition to radial

flow, and reservoir type (Figure 9B). A comparison of the

pressure derivative curve in Figure 9B to type curves (Ehlig-

Economides, 1988; Bourdet et al., 1989; Deruyck et al., 1992)

suggests the Rose Run in the KGS 1 Hanson Aggregates well

shares properties of both dual-porosity and dual-permeability

reservoirs, consistent with the mixed lithologies in the test

interval.

Rose Run CO2 storage capacity

The reservoir volume required to store a volume of

supercritical CO2 (hereinafter CO2 or supercritical CO2,

depending on context) in a deep saline reservoir requires five

data points: reservoir height, porosity, temperature, pressure, and

formation-water salinity. The CO2 temperature/pressure phase-

change boundaries (adapted from Freund et al. (2005)) at

expected depths were estimated from bottomhole

temperatures and pressures measured wells in the region

surrounding the KGS 1 Hanson Aggregates well and the three

step-rate tests in the well (Bowersox et al., 2021). However, the

depth to the CO2 critical point for subsurface storage can usually

be estimated from reservoir hydrostatic pressure and regional

geothermal gradients, ubiquitous underpressured reservoirs in

Kentucky (Takacs et al., 2010) and with the low geothermal

gradient (see the discussion in Bowersox et al. (2013)) push the

depth to the CO2 critical point much deeper in the subsurface.

The top of the Rose Run was penetrated in the KGS 1 Hanson

Aggregates well at a depth of 1,000 m (−772 m subsea elevation).

The CO2 critical pressure and temperature (7.39 MPa, 1,072 psi;

Freund et al., 2005) reached at a drill depth of 795 m (−567 m

subsea elevation) in the KGS 1 Hanson Aggregates well. The

critical temperature, however (31.1; C; Freund et al., 2005), is not

reached until a drill depth of 942 m (−714 m subsea elevation), or

58 m above the top of the Rose Run in the KGS 1 Hanson

Aggregates well (Figure 10). Thus, the depth required to reach the

CO2 critical point temperature limits the reservoir area available

for CO2 storage in the northeast Kentucky evaluation region.

Average porosity and net reservoir thickness (hnet) in the

Rose Run in the 1 Hanson Aggregates well and 2,145 km2

(828 mi2) evaluation region (Figure 10) were calculated using

the industry-standard 7% porosity cutoff (Medina et al., 2011) to

compute the CO2 storage capacity. At the 7% porosity cutoff,

average porosity in the evaluation region is 11.6% and hnet is

6.2 m (20 ft). The density of supercritical CO2 under Rose Run

reservoir conditions of temperature and pressure is 768 kg/m3

(Peace Software, 2017). Supercritical CO2 storage capacity in a

deep saline reservoir was calculated using the methodology of

Goodman et al. (2011).

GCO2 � AtφThgρCO2Esaline, (3)
where GCO2 is the estimated supercritical CO2 storage volume

(kt/km2), At is the surface area of the storage reservoir (km
2), φT

is the average regional reservoir porosity (fractional) at the 7%

porosity cutoff, hg (m) is the average net reservoir thickness

(Figure 10), ρCO2 is the density of supercritical CO2 under

reservoir conditions of pressure and temperature (kg/m3), and

FIGURE 7
Comparison of porosity and permeability of core plugs from
the Rose Run in selected wells in Kentucky, West Virginia, and
Ohio. Porosity and permeability generally fall in the range for
potential CO2 storage where porosity is greater than 7%, the
industry-standard cutoff for CO2 storage (Medina et al., 2011), and
1mD permeability. Sources: Ferguson and Bosworth 1Wright well,
KGS Oil and Gas Database, Record Number 2210; KGS 1 Hanson
Aggregates well, KGS Oil and Gas Database, Record Number
143577; Nu Corp Energy 1 Trepanier well, McNealey (1991); Ohio
1 CO2 well, Wickstrom et al. (2011); Battelle 1 AEP well, Joel
Sminchak, Battelle Memorial Institute, personal communication,
24 July 2019; Hope Natural Gas 9,634 Power Oil well, Woodward
(1961). Core plug locations for the Rose Run in the KGS 1 Hanson
Aggregates well are shown in Bowersox et al. (2021, Figure 5).
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Esaline is the reservoir lithology-weighted CO2 storage efficiency

factor. The reservoir pore volume (φThg) at the 7% porosity

cutoff was calculated for 27 wells in the evaluation region, and

then the total reservoir volume calculated in Petra.

Although the CO2 storage efficiency factor accounts for

unsuitable reservoir rock by lithology (Goodman et al., 2011),

applying a 7% porosity cutoff ensures a conservative evaluation

of storage capacity. The storage efficiency factor, in practice, is

applied as a range of probable storage efficiencies which vary for

different reservoir lithologies (U.S. Department of Energy, Office

of Fossil Energy, National Energy Technology Laboratory, 2015).

P10 and P90 values provide a nominal range of efficiency values

defining the lower and upper bounds of plausible supercritical

CO2 storage volumes about a most-likely P50 value. The

estimated P50 supercritical CO2 storage volume for the Rose

Run in the northeast Kentucky evaluation region (Figure 10) is

77.2 kt/km2 (220,000 short tons/mi2), 165.7 Mt (1.8 × 108 short

tons) in the 2,145 km2 (828mi2) evaluation region, with a P10–P90
range of 40.8 kt/km2 (116,500 short tons/mi2) to 132.4 kt/km2

(378,000 short tons/mi2), or 87.6–284.1 Mt (9.7 × 107—3.1 × 108

short tons) in the evaluation region. The surface area required to

store the estimated P50 supercritical CO2 volume in the Rose Run

is 12.9 km2/Mt (−4.5 mi2/million short tons), or 388.4 km2

(150 mi2) of surface area to store 30 Mt (33 million short

tons) of CO2 generated during the life span of a coal-fired

electrical generating plant.

CO2 storage confining intervals

The Rose Run is overlain by 60 m of dense dolomites of the

Beekmantown, 1.2 m of sandy carbonates correlated to the

Middle Ordovician St. Peter Sandstone, 24.4 m of dolomites of

the Wells Creek Formation, 166 m of dolomites of the Upper

Ordovician High Bridge Group, 82 m of limestones of the

Lexington Limestone, and 249 m of mixed Upper Ordovician

shales and limestones (Bowersox et al., 2018). The Beekmantown

Dolomite, lying immediately above the Rose Run (Figure 2)

commonly has overall low porosity and permeability with thin

porous and permeable intervals except near the top where

paleokarst locally causes significant porosity and permeability

(Gupta et al., 2006; Greb et al., 2009; Wickstrom et al., 2011; Greb

FIGURE 8
Thin section photomicrograph of a core plug from the Rose Run from 1,008.1 m under plane polar light, and (B), (C), Mercury-Injection Capillary
Pressure (MICP) analysis of a core plug from 1,009.3 m. Core plug locations for the Rose Run in the KGS 1 Hanson Aggregates well are shown in
Bowersox et al. (2021, Figure 5). (A).Mineral grains in the thin section are identifiedwith capital letters (Q, quartz; Ks, potassium feldspar; D, dolomite).
Subrounded to rounded quartz grains show silica and potassium feldspar overgrowths and pressure dissolution at grain boundaries. (B). MICP
was conducted for one core plug near the base of the Rose Run to characterize pore diameter distribution. The bulk of the pore diameters fall into the
macro-tomegapore range suggesting that supercritical CO2may be injected at relatively lower pressures than strata whose pores fall into themeso-
to nanopore range. Themedian pore-throat radius was 9.04 μm,well within themacropore range, and core plug permeability was 289 mD. (C). Most
pore volume in the KGS 1 Hanson Aggregates well falls in range of 10–100 µm. Pore-throat diameter versus pore volume suggests that the Rose Run
in the KGS 1 Hanson Aggregates well, pores with throat diameters >2 µm, would be capable of oil and gas production in a conventional hydrocarbon
reservoir.
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et al., 2012). Although the Beekmantown was not sampled for

porosity and permeability, analysis by Bowersox et al. (2021,

Figure 10) demonstrated that its geomechanical strength, about

double that of the Rose Run, is sufficient for confinement of

stored CO2 if the Rose Run fractures during injection (Bowersox

et al., 2021).

Shales of the Upper Ordovician section are correlated to the

Clays Ferry and Kope Formations which are commonly

considered regional sealing layers (Greb and Anderson, 2010).

Four core plugs from Clays Ferry–Kope Formation sampled

between 634.0 and 652.1 m (−405.0 m and −423.1 m subsea

elevation, respectively) have permeabilities from 1.93 × 10−7 mD

to 4.94 × 10−9 mD (mean of 7.411 × 10−8 mD) and Swanson

permeabilities from mercury injection analyses ranging from

3.71 × 10−5 mD to 6.0 × 10−5 mD (mean of 4.9 × 10−5 mD),

suggesting this may be an effective sealing interval CO2

migration. The permeability of the Clays Ferry–Kope interval,

however, may be sufficiently low to be a CO2 confining interval,

but shallower than the critical depth for storing supercritical CO2

(at −714 m subsea elevation, 942 m kB drilled depth in the KGS

1 Hanson Aggregates well) in northeast Kentucky and adjacent

regions. In the shallow subsurface, the Lower Mississippian

Sunbury Shale (4.6-m thick) occurs at 125 m drill depth, and

the Upper Devonian Ohio Shale (106.4-m thick) occurs at

170.4 m drill depth, where these organic-rich shales form part

of another widely recognized, regional confining interval (Casey,

1992; Casey, 1996; Wickstrom et al., 2011). Careful monitoring

and management of CO2 injection pressures will mitigate the

likelihood of vertical CO2 migration from the Rose Run.

CO2–brine relative permeability

CO2–brine fluid mixtures can present complicated

multiphase flow conditions in a storage reservoir (Sminchak

et al., 2009), however; CO2 solubility in an aqueous phase is very

low and can be neglected from mixing rules at temperatures less

than 100 C (Spycher et al., 2003; Hassanzadeh et al., 2008).

CO2–brine relative permeability was tested in a core plug from

1,009.6 m at the base of the Rose Run. Relative permeability

measured during the drainage phase of the core plug testing is

shown in Figure 11. Effective permeability to CO2 in this sample

is 24.6 mD, or less than half of the median air permeability in the

Rose Run. Estimated residually trapped CO2 in the Rose Run

section was calculated as described in Burnside and Naylor

(2014).

R% � (St/S max) × 100, (4)

where St is the trapped CO2 saturation, the residual saturation

where relative permeability to CO2 is zero, and Smax is the

maximum CO2 saturation reached in the test. In this core

plug, R is 47.3%, thus nearly half of any CO2 that may be

injected into the Rose Run in a well similar to the KGS

1 Hanson Aggregates well, may be residually trapped. This is

within the range of R in the Maryville and Basal sands in the KGS

1 Hanson Aggregates well (Bowersox et al., 2017; 2019a) and

greater than the residually trapped CO2 in a Mount Simon

Sandstone core (R = 38.9%) from the Illinois Basin (Burnside

and Naylor, 2014).

Discussion

As a known saline reservoir in parts of Ohio and Kentucky,

the Rose Run Sandstone has been a regional target for potential

carbon sequestration (Zerai et al., 2006; Greb et al., 2009;

FIGURE 9
Pressure transient analysis of the step-rate test data. (A). Log-
log plot of bottomhole falloff pressure delta-p (dp) plotted against
Agarwal dimensionless equivalent time (Agarwal, 1979, 1980). The
wellbore entered radial flow shortly after falloff pressure
monitoring began, as shown in Bowersox et al. (2021, Figure 11).
Test interval permeability calculated from the pressure falloff data
was 75.5 mD with a −3.59 skin factor indicative of wellbore flow
enhancement by hydraulic fracturing, consistent with the step-
rate test response. (B) Derivative pressure (dp/dt) plotted against
Agarwal dimensionless equivalent time. Pressure-gauge data have
been resampled at five-reading intervals to reduce noise in the
data. The wellbore entered radial flow about 0.5 h after shut-in.
The pressure derivative curve suggests the Rose Run in the KGS
1 Hanson Aggregates well shares flow properties of both dual-
porosity and dual-permeability reservoirs, consistent with the
mixed sand–dolomite lithologies in the test interval.
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Venteris et al., 2009; Greb and Solis, 2010; Greb et al., 2012).

Wickstrom et al. (2010) estimated 11 Gt (12.1 B short tons) of

volumetric CO2 storage potential in deep saline reservoirs in

eastern Kentucky, of which the Rose Run, assuming 10 m of net

sand with 8% average porosity, was estimated to have potential

CO2 storage capacity of 5.4 Gt (−6 B short tons). Throughout the

area evaluated for CO2 sequestration by the Midwest Regional

Carbon Sequestration Partnership (MRCSP), fracture porosity

was the least common type of porosity observed in Rose Run

cores (Wickstrom et al., 2010), consistent with observations of

this study.

The Rose Run in the KGS 1 Hanson Aggregates well and

surrounding evaluation region has good porosity and

permeability (Figure 8) and good injectivity (Bowersox et al.,

2021), but does not have sufficient reservoir volume to serve as a

large-volume (30-million ton) CO2 storage reservoir (Figure 10).

The Beekmantown and overlying strata have sufficient

geomechanical strength, about double that of the Rose Run

(Bowersox et al., 2021), and low porosity and permeability as

measured in core plugs and rotary sidewall cores from the

Battelle 1 ARP well (Joel Sminchak, Battelle, unpublished

data) averaging 1.25% porosity and <0.001 mD permeability,

respectively, to ensure confinement of stored CO2, thus the Rose

Run could contribute to a stacked-storage reservoir (discussed in

Hovorka, 2013; Raziperchikolaee et al., 2019).

The comparison of Rose Run CO2 storage capacity in the

KGS 1 Hanson Aggregates well and the Battelle 1 AEP well and

Ohio 1 CO2 well tests.

Gupta (2008a) found the Rose Run to be unsuitable for CO2

storage downdip at the Battelle 1 AEP test well site in West

Virginia where there are three primary differences when

compared to the KGS 1 Hanson Aggregates well: i. The Rose

Run in the Battelle 1 AEP well lies at a much greater drilled depth

(2,365–2,387 m), about 1,364 m deeper than in the KGS

1 Hanson Aggregates well (Figure 6), and would thus require

much greater injection pressure (Lucier et al., 2006), ii. The logs

through the 22 m Rose Run stratigraphic interval show 13.1 m of

net sand (as used in this study) interbedded with thin dolomite

beds (Figure 6) versus a single sand body as found in the KGS

1 Hanson Aggregates well, and iii. The Rose Run in the Battelle

FIGURE 10
Isopach thickness contours of the net Rose Run storage reservoir in the evaluation area at 7% porosity cutoff. Average net reservoir thickness in
the 2145-km2 area is 6.2 m, and average porosity in the Rose Run reservoir ≥7% is 11.6%.
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1 AEP well has much lower porosity (Figure 7) compared to the

KGS 1 Hanson Aggregates well. Analysis of 31 plugs (Figure 7)

from conventional whole cores from the Battelle 1 AEP well

shows average porosity in the Rose Run of 6.3% and average

permeability of 12 mD (Gupta, 2008b), and one core plug at

2,369.8 m with 10.4% porosity and 49 mD permeability (Gupta

2006). Average permeability calculated from a “straddle packer”

test of the Rose Run in the Battelle 1 AEP well, assuming a 10.7 m

composite productive sandstone section, is 8.2 mD (Spane et al.,

2006) versus 57.4 mD calculated from the step-rate test in the

KGS 1 Hanson Aggregates well (above). Average porosity

calculated from the density log in the 25 m Rose Run section

in the Battelle 1 AEP well is 4.1%, and average porosity is 8.5% in

the 6.1 m of net sand with porosity ≥7% (as used in this study).

CO2 storage capacity was calculated for the Rose Run in the

Battelle 1 AEP well using the methodology of Goodman et al.

(2011), with supercritical CO2 density adjusted for reservoir

temperature (this study) and pressure (Lucier et al., 2006) at

an average depth of 2,375 m. P50 CO2 storage capacity of the Rose

Run in the Battelle 1 AEP well was 59.2 kt/km2 (290,000 short

tons/mi2), or about 77% of the supercritical CO2 storage capacity

of the KGS 1 Hanson Aggregates well (above).

The Rose Run in the Ohio 1 CO2 well was penetrated in the

interval of 2,247–2,288 m (Wickstrom et al., 2011), depths only

slightly shallower than in the Battelle 1 AEP well. The Rose Run

in the Ohio 1 CO2 well is equally unsuitable as the Battelle 1 AEP

well, with the same reservoir issues: depth, thin sands

(Wickstrom et al., 2011), and low porosity (Figure 6). The

review of the formation density log in Wickstrom et al. (2011,

figure three0) shows only 5.5 m of net sand with porosity >7% in

the 40.8-m Rose Run section. Analysis of 10 rotary sidewall cores

from sandstones in the Rose Run interval of the Ohio 1 CO2 well

yielded an average of 7.0% porosity, with a range of 3.3%–10.7%,

and average permeability of 5.1 mD in a range of

0.0034–31.6 mD, respectively (Wickstrom et al., 2011). Thus,

the Rose Run in the KGS 1 Hanson Aggregates well, Battelle

1 AEP well, and Ohio 1 CO2 well all lack sufficient CO2 storage

capacity to support stand-alone large-volume CO2 storage (see

the discussion in Bowersox et al., 2019a), but could serve as part

of a stacked-storage reservoir.

No Rose Run reservoir trap in northeast
Kentucky

This research demonstrates that the reservoir properties of

the Rose Run are sufficient for it to contribute to supercritical

CO2 storage in the Central Appalachian Basin, however, further

modeling is needed to determine how much any future injected

CO2 might migrate. Although the overlying Beekmantown has

sufficient geomechanical properties and low enough porosity and

permeability to bar vertical migration of CO2 injected into the

Rose Run, the Rose Run in the KGS 1 Hanson Aggregates well is

thin (Figures 2, 4, 6) and lies only 58 m (190 ft) below the

subsurface CO2 critical depth in northeast Kentucky

(Figure 10). No vertical or lateral reservoir traps are

recognized updip of the KGS 1 Hanson Aggregates well.

Although the CO2–brine relative permeability test suggests

that nearly half of any supercritical CO2 injected into the

Rose Run in the KGS 1 Hanson Aggregates well would be

residually trapped, and another portion of injected CO2 would

be trapped bymineral precipitation (Zhu et al., 2013), the balance

of the CO2 would be mobile and migrate updip. How far and how

fast CO2 migration may occur remains for additional research

and reservoir modeling.

Conclusion

The tests of the Rose Run in the KGS 1 Hanson Aggregates

well demonstrated that its reservoir properties are suitable for

long-term CO2 storage and vertical confinement by the overlying

Beekmantown. Reservoir properties, Rose Run and

Beekmantown geomechanical properties, and injectivity tests

were all favorable for using the Rose Run for CO2 storage,

although there are no plans to carry out this in foreseeable

future. Because the Rose Run is thin and would require a

large reservoir area to have sufficient capacity to store CO2, it

would only provide a CO2 storage contribution as part of a

FIGURE 11
CO2–brine relative permeability tests of the Rose Run in the
1 Hanson Aggregates. Relative permeability to brine (krBrine) is
shown in blue and to CO2 (krCO2) in green. Maximum CO2

saturation (Smax) and residual CO2 saturation (St) points are
posted. Capillary trapping efficiency, the percentage of residually
trapped CO2 in the Rose Run (R % = (St/Smax) × 100; Burnside and
Naylor, 2014), is 47.3%. That is, almost half of the CO2 injected into
the Rose Run would be trapped in the pore space and unable to
migrate out of the reservoir in the event of a seal failure.
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stacked-reservoir project. The lack of an updip, lateral reservoir

trap, however, appears to preclude supercritical CO2 storage in

the Rose Run in the northeast Kentucky evaluation region.

Additional research and modeling will be necessary to

determine if the Rose Run is entirely excluded from

supercritical CO2 storage in the Central Appalachian Basin of

northeast Kentucky.
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