
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: cezeliora@gmail.com, cd.ezeliora@unizik.edu.ng; 

 
 

Journal of Engineering Research and Reports 

 
15(1): 1-16, 2020; Article no.JERR.56495 
ISSN: 2582-2926 

 
 

 

 

Investigation and Optimization of Production 
Variables: A Case of Plastic Manufacturing  

Industry 
 

Chukwuemeka Daniel Ezeliora1*, Maryrose N. Umeh2 
and Anodebe Malachy Dilinna3 

 
1
Department of Industrial and Production Engineering, Nnamdi Azikiwe University, Awka, 

Anambra State, Nigeria. 
2
Department of Computer Science, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. 

3
Stellar House, 900 High Road, London, N170DP, UK. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/JERR/2020/v15i117134 
Editor(s): 

(1) Dr. Guang Yih Sheu, Chang-Jung Christian University, Taiwan. 
Reviewers: 

(1) Marco Benvenga, Universidade Paulista – UNIP, Brazil. 
(2) Francisco Alves Pinheiro, Federal University of São Francisco Valley, Brazil. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/56495 

 
 
 

Received 20 February 2020 
Accepted 25 April 2020 
Published 28 July 2020 

 
 

ABSTRACT 
 

The study evaluates and analysis the extrusion plastic production variables in Innoson Plastic 
Manufacturing Company, Nnewi, Anambra State, Nigeria. The research method adopted is the 
application of statistical tools and design of expert tools to evaluate and to analyze the influence of 
the variables. The statistical correlation of the variables is to understand the significant relationship 
between the variables. The parameters are all significance except time. This show that time is not 
significant in modeling the system. The use of design expert was applied to evaluate the extrusion 
plastic production variable to understand what the variables portray and its influence on production. 
The mixture design method of D-optimal Non-Simplex Screening model was used to optimize the 
production variables which entails that the best quantity of product that is to produce is 9204.461 
units. The results show that the industry should be conscious of highly influence input variable 
during production. 
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1. INTRODUCTION 
 

The production process is about refining a range 
of inputs into outputs. It deals with two major sets 
of materials. They are; the transforming materials 
and the transformed materials. The transforming 
materials include the buildings, machinery, 
computers, and people that carry out the 
transforming processes. The input materials are 
the raw materials in addition to its components 
that are transformed into finish products. The 
production process involves a cycle of materials 
relation in a production chain. At every stages of 
production process, some raw materials are 
added in the track of production. Adding value 
involves making a product more pleasing to the 
user. Adding value is not just about 
manufacturing, but includes the marketing 
process, advertising, promotion as well as 
distribution that make the end product more 
desirable. It is very important for businesses to 
identify the processes that add value, so that 
they can enhance these processes to the 
ongoing benefit of the business. Production is 
very critical to economic growth, prosperity and a 
higher standard of living. It is a catalyst for 
industrial and economic development. It’s 
satisfying economic want of individual, 
communities and nations by the production of 
things in workshops by utilizing men, materials, 
machines, money and methods [1]. 
Fundamentally, manufacturing can simply be 
described as value-adding processes by which 
raw materials of small utility is adding value to its 
process insufficient material properties and sizes, 
its finish shapes are rehabilitated into high utility 
and valued product with definite dimensions and 
forms [2]. The resources could be people, 
machines, computers and/or organized 
integration of one or more of the above 
mentioned [3]. To achieve higher efficiency, there 
must be an optimal distribution of these materials 
to activities of production. 
 
Optimization is simply achieving the highest 
possible performance under the given 
constraints, by maximizing desired factors as 
well as minimizing undesired ones [4]. The 
researches on related literature were also 
emphasized to express the empirical related 
works in the research. Christopher expressed 
that Manketti oil was used as a feedstock to 
create the biodiesel that was extracted from 
manketti nut. An alkali catalyst transesterification 
process was adopted [5]. A statistical model was 

developed to show a relationship with the 
process variables to the yield of fatty acid methyl 
ester (FAME) using a central composite design 
(CCD) by a response surface methodology. The 
process variables were reaction temperature x1, 
(30°C–65°C), amount of catalyst x2, (0.5–1.5 wt 
%), amount of methanol in the oil x3, (10–50 
wt%) and also the reaction time (30–90 min). The 
crucial fuel properties such as density, flash 
point, viscosity, with acid number were measured 
and compared with other types of biodiesel 
produced from wild nuts and American                
Society for Testing and Material (ASTM). From 
the results, the optimum conditions for the 
production of FAME obtained were as follows: 
Reaction temperature 55°C, reaction time 53 
min, amount of catalyst 1.02 wt%, and amount of 
methanol in the oil of 32 wt%. The best possible 
yield of FAME that can be formed is 98.3%.               
The result revealed that the significant fuel 
properties of the biodiesel formed in optimum 
circumstances met the biodiesel ASTM   
standard. 
 
Abdullah presents an experimental investigation 
into the effects of using bio-diesel on diesel 
engine performance and its emissions [6]. The 
bio-diesel fuels were produced from vegetable 
oils using the transesterification process with low 
molecular weight alcohols and sodium hydroxide 
then tested on a steady-state engine test rig 
using a Euro 4 four cylinder Compression Ignition 
(CI) engine. Production optimization was 
achieved by changing the variables which 
included methanol/oil molar ratio, NaOH catalyst 
concentration, reaction time, reaction 
temperature, as well as the rate of mixing to 
maximize bio-diesel yield. The method used was 
the response surface methodology. In addition, a 
second-order model was developed to calculate 
the bio-diesel yield if the production criteria are 
known. The model was validated using additional 
experimental testing. Christopher studied 
biodiesel was produced from waste cooking oil 
(WCO) using calcium oxide (CaO) as a 
heterogeneous catalyst [7]. The effect of 
experimental variables such as temperature, 
reaction time, methanol to oil ratio, and amount 
of catalyst was investigated. 
 
In summary, the reviewed literature has shown 
that the research area under investigation is new 
and genuine. The researchers however, proceed 
with the method used for the analysis of this 
research. 

https://www.researchgate.net/profile/Christopher_Enweremadu
https://www.sciencedirect.com/science/article/pii/S0016236112007806#%21
https://www.researchgate.net/profile/Christopher_Enweremadu
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The aim of this research work is to evaluate, 
analyze and to optimize the production             
variables of Innoson manufacturing extraction 
plastic products in Nnewi, Anambra State, 
Nigeria. 
 

2. MATERIALS AND METHODS 
 
The raw materials used in this research are PVC, 
stabilizer, calcium, steric acid, Titanium, pigment 
and its response material is 25 mm extrusion 
plastic pipes. The raw materials are to be mixed 
at a particular ratio. When melted and molded, it 
forms the finished material with 25 mm thickness 
and 12 feet long. 
 
The research was conducted at Innoson Plastic 
Manufacturing Company, Nnewi, Anambra State, 
Nigeria. The research was carried out within the 
period of 12

th
 November, 2019 to 15

th
 December, 

2019. 
 

2.1 Research Method 
 
The research method used for data analysis is 
the application of some statistical tools in                 
SPSS and Design Expert software to model, 
evaluate and analysis the production variables 
under study. Data was analyzed by using      
Mixture design model to optimize the actual 
quantity needed to be produced in the plastic 
under production using the appropriate            
variables over the month in the manufacturing 
industry. 
 

2.2 Experimental Design 
 
The design of the experiment is a scientific 
approach that combines the input parameters 
optimally to optimize the response of the 
objective, and this can be achieved through the 
use of computing devices like design experts. 
For an adequate polynomial approximation, 
experimental designs are used to collect the 
data. There are different types of experimental 
designs that include mixture design, taguchi 
design, D-optimal design, factorial design and 
Latin hypercube designs. The experimental 
design was developed using the design of expert 
version 10.0.1.0. However, the design type and 
study type used is the application of the mixture 
design method. The tool was used to determine 
the most appropriate model for the mix 
experiment and the statistical evaluation of the 
parameters. 
 
Table 1 shows the production variables 
experimental runs used for this design. 
 
Table 2 shows a parametric Pearson correlation 
analysis of the variables. It shows that all the 
input process parameters are significance to the 
response parameter. 

 
Table 3 shows a non-parametric Spearman and 
Kendall’s tau_b correlation analyses of the 
variables. The analyses show that all the input 
process parameters have high significance to the 
response parameter. 

Table 1. Production variables of the parameters 
 

Std Run Component 
1 

Component 
2 

Component 
3 

Component 
4 

Component 
5 

Component 
6 

Response 
1 

  A:PVC (kg) B:Sterbilizer 
(kg) 

C:Calcium 
(kg) 

D:Steric 
(kg) 

E:Titanium 
(kg) 

F:Pigment 
(kg) 

Output 

  kg kg kg kg kg kg Units 

1 1 17101.8 578 310 5 5 0.2 8060 

10 2 17048.8 578 310 58 5 0.2 7600 

8 3 17053.4 578 310 58 0.4 0.2 10822 

3 4 17352 52 535.6 58 0.4 2 6020 

12 5 14414.8 52 3470 58 5 0.2 2340 

7 6 13891.6 578 3470 58 0.4 2 6510 

5 7 17100 578 310 5 5 2 14310 

6 8 17106.4 578 310 5 0.4 0.2 6820 

11 9 14472.4 52 3470 5 0.4 0.2 7750 

2 10 17352 52 531 58 5 2 4560 

4 11 13891.6 578 3470 58 0.4 2 1280 

9 12 13940 578 3470 5 5 2 2860 
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Table 2. Pearson parametric correlations analysis for the variables 
 

 Time PVC Stabilizer Calcium Steric Titanium Pigment Output 

Time Pearson correlation 1 .297 .296 .296 .290 .287 .271 .296 
Sig. (2-tailed)  .349 .350 .350 .360 .366 .394 .350 
N 12 12 12 12 12 12 12 12 

PVC Pearson correlation .297 1 1.000
**
 1.000

**
 1.000

**
 .960

**
 .945

**
 1.000

**
 

Sig. (2-tailed) .349  .000 .000 .000 .000 .000 .000 
N 12 12 12 12 12 12 12 12 

Stabilizer Pearson correlation .296 1.000
**
 1 1.000

**
 1.000

**
 .961

**
 .944

**
 1.000

**
 

Sig. (2-tailed) .350 .000  .000 .000 .000 .000 .000 
N 12 12 12 12 12 12 12 12 

Calcium Pearson correlation .296 1.000
**
 1.000

**
 1 1.000

**
 .961

**
 .944

**
 1.000

**
 

Sig. (2-tailed) .350 .000 .000  .000 .000 .000 .000 
N 12 12 12 12 12 12 12 12 

Steric Pearson correlation .290 1.000
**
 1.000

**
 1.000

**
 1 .960

**
 .943

**
 1.000

**
 

Sig. (2-tailed) .360 .000 .000 .000  .000 .000 .000 
N 12 12 12 12 12 12 12 12 

Titanium Pearson correlation .287 .960
**
 .961

**
 .961

**
 .960

**
 1 .847

**
 .961

**
 

Sig. (2-tailed) .366 .000 .000 .000 .000  .001 .000 
N 12 12 12 12 12 12 12 12 

Pigment Pearson correlation .271 .945
**
 .944

**
 .944

**
 .943

**
 .847

**
 1 .944

**
 

Sig. (2-tailed) .394 .000 .000 .000 .000 .001  .000 
N 12 12 12 12 12 12 12 12 

Output Pearson correlation .296 1.000
**
 1.000

**
 1.000

**
 1.000

**
 .961

**
 .944

**
 1 

Sig. (2-tailed) .350 .000 .000 .000 .000 .000 .000  
N 12 12 12 12 12 12 12 12 
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Table 3. Nonparametric correlations 
 

Kendall's tau_b Time Correlation coefficient 1.000 .182 .182 .182 .168 .201 .260 .182 

Sig. (2-tailed) . .411 .411 .411 .450 .392 .279 .411 

N 12 12 12 12 12 12 12 12 

PVC Correlation coefficient .182 1.000 1.000
**
 1.000

**
 .992

**
 .905

**
 .816

**
 1.000

**
 

Sig. (2-tailed) .411 . . . .000 .000 .001 . 

N 12 12 12 12 12 12 12 12 

Stabilizer Correlation coefficient .182 1.000
**
 1.000 1.000

**
 .992

**
 .905

**
 .816

**
 1.000

**
 

Sig. (2-tailed) .411 . . . .000 .000 .001 . 

N 12 12 12 12 12 12 12 12 

Calcium Correlation coefficient .182 1.000
**
 1.000

**
 1.000 .992

**
 .905

**
 .816

**
 1.000

**
 

Sig. (2-tailed) .411 . . . .000 .000 .001 . 

N 12 12 12 12 12 12 12 12 

Steric Correlation coefficient .168 .992
**
 .992

**
 .992

**
 1.000 .895

**
 .823

**
 .992

**
 

Sig. (2-tailed) .450 .000 .000 .000 . .000 .001 .000 

N 12 12 12 12 12 12 12 12 

Titanium Correlation coefficient .201 .905
**
 .905

**
 .905

**
 .895

**
 1.000 .800

**
 .905

**
 

Sig. (2-tailed) .392 .000 .000 .000 .000 . .002 .000 

N 12 12 12 12 12 12 12 12 

Pigment Correlation coefficient .260 .816
**
 .816

**
 .816

**
 .823

**
 .800

**
 1.000 .816

**
 

Sig. (2-tailed) .279 .001 .001 .001 .001 .002 . .001 

N 12 12 12 12 12 12 12 12 

Output Correlation coefficient .182 1.000
**
 1.000

**
 1.000

**
 .992

**
 .905

**
 .816

**
 1.000 

Sig. (2-tailed) .411 . . . .000 .000 .001 . 

N 12 12 12 12 12 12 12 12 

Spearman's rho Time Correlation coefficient 1.000 .189 .189 .189 .179 .238 .277 .189 

Sig. (2-tailed) . .557 .557 .557 .579 .456 .383 .557 

N 12 12 12 12 12 12 12 12 

PVC Correlation coefficient .189 1.000 1.000
**
 1.000

**
 .998

**
 .968

**
 .895

**
 1.000

**
 

Sig. (2-tailed) .557 . . . .000 .000 .000 . 

N 12 12 12 12 12 12 12 12 

Stabilizer Correlation coefficient .189 1.000
**
 1.000 1.000

**
 .998

**
 .968

**
 .895

**
 1.000

**
 

Sig. (2-tailed) .557 . . . .000 .000 .000 . 

N 12 12 12 12 12 12 12 12 
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Calcium Correlation coefficient .189 1.000
**
 1.000

**
 1.000 .998

**
 .968

**
 .895

**
 1.000

**
 

Sig. (2-tailed) .557 . . . .000 .000 .000 . 
N 12 12 12 12 12 12 12 12 

Steric Correlation coefficient .179 .998
**
 .998

**
 .998

**
 1.000 .957

**
 .896

**
 .998

**
 

Sig. (2-tailed) .579 .000 .000 .000 . .000 .000 .000 
N 12 12 12 12 12 12 12 12 

Titanium Correlation coefficient .238 .968
**
 .968

**
 .968

**
 .957

**
 1.000 .848

**
 .968

**
 

Sig. (2-tailed) .456 .000 .000 .000 .000 . .000 .000 
N 12 12 12 12 12 12 12 12 

Pigment Correlation coefficient .277 .895
**
 .895

**
 .895

**
 .896

**
 .848

**
 1.000 .895

**
 

Sig. (2-tailed) .383 .000 .000 .000 .000 .000 . .000 
N 12 12 12 12 12 12 12 12 

Output Correlation coefficient .189 1.000
**
 1.000

**
 1.000

**
 .998

**
 .968

**
 .895

**
 1.000 

Sig. (2-tailed) .557 . . . .000 .000 .000 . 
N 12 12 12 12 12 12 12 12 
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3. OPTIMIZATION OF THE SOLUTIONS 
 

Table 4 shows that the model F-value of 7.24 
implies the model are significant. There is                 
only a 2.27% chance that an F-value this                   
large could occur due to noise. Values of                 
"Prob > F" less than 0.0500 indicate model terms 
are significant. In this case, C is a significant 
model term. Values greater than 0.1000                
indicate the model terms are not significant. If 
there are many insignificant model terms                  
(not counting those required to support 
hierarchy), model reduction may improve your 
model. 
 
The "Lack of Fit F-value" of 0.14 implies the Lack 
of Fit is not significant relative to the pure error. 
There is a 97.47% chance that a "Lack of Fit F-
value" this large could occur due to noise. Non-
significant lack of fit is good -- we want the model 
to fit. 
 

Table 5 shows that the Predicted R-Squared of 
0.1248 is not as close to the Adjusted R-Squared 
of 0.3620 as one might normally expect; i.e. the 
difference is more than 0.2. This indicates a large 
block effect or a possible problem with the model 
and/or data. Things to consider are model 
reduction, response transformation, outliers. All 
empirical models should be tested by doing 
confirmation runs. 
 
Adequate Precision measures the signal to noise 
ratio. A ratio of 3.93 indicates an inadequate 
signal. 
 
Fig. 1 shows that calcium is the most important 
variable among the production variables under 
study. 
 

The Piepel Plot helps to trace the deviation of the 
raw material variables from its reference point as 
shown in Fig. 2. 
 

Table 4. Analysis of variance 
 

Source Sum of df Mean F p-value  

 squares  square value Prob > F  

Model 2.16 1 2.16 7.24 0.0227 Significant 

C-Calcium (kg) 2.16 1 2.16 7.24 0.0227  

Residual 2.98 10 0.30    

Lack of Fit 1.66 9 0.18 0.14 0.9747 Not significant 

Pure Error 1.32 1 1.32    

Cor Total 5.14 11     

 

 
 

Fig. 1. User define mixture design analysis 
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Table 5. Model summary analysis 
 

Std. Dev. 0.55  R-Squared 0.4200 

Mean 8.61  Adj R-Squared 0.3620 

C.V. % 6.34  Pred R-Squared 0.1248 

PRESS 4.50  Adeq Precision 3.934 

-2 Log Likelihood 17.35  BIC 22.32 

   AICc 22.68 

 

 
 

Fig. 2. Trace analysis of the components 
 

 
 

Fig. 3. Two component design analysis 
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The two components mix analysis helps to show 
the level of the variables effect to the production 
output as shown in Fig. 3. 
 
Fig. 4 shows the predicted and the actual plot 
which reveals their variations from the production 
output. 
 
In Fig. 5, the normal plot of the residuals shows 
that the plot is along the mean of the residual, 

which shows that there were no much errors 
between the actual data and the predicted 
variables. 
 
In Fig. 6, cook’s distance analysis shows that 
their plots is between zero and one which shows 
that all the data used will be able to model the 
production. If any runs exceed below zero or 
above one, that means that there is a problem on 
the data used on that runs. 

 

 
 

Fig. 4. Predicted and actual analysis of the variables 
 

 
 

Fig. 5. Normal residual plot analysis 
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Fig. 6. Cook’s distance analysis 
 

 
 

Fig. 7. 3D surface plot analysis of the variables 
 
Fig. 7 showed the 3D surface plot shows the 
effect of the variables in production system. It 
describes the variations of the input and output 
parameters in production of plastic extrusion 
products. 
 

3.1 Optimization of the Production 
Variables 

 

Fig. 8 showed the numerical criteria analysis for 
the optimization of the input and output variables. 
The degree of importance for these variables will 
also be signified. 
 

In Table 6, the optimization solution report 
reveals that the model found eleven (11) 

Solutions, but the selected desired solution is the 
first solution with desirability of 95.1% and 
production output of 9204.461 units of plastic 
extrusion pipe products. The input parameters 
with the symbol * has no effect on the 
optimization results. 

 
Fig. 9 express the graphical results of                   
the optimal solutions selected as it’s in          
Table 6. 

 
Fig. 10 express the rate of desirability of all the 
variables under investigation. The result shows 
that calcium is most desired in extrusion plastic 
pipe production. 
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Fig. 11 shows the user define mixture design 
method shows the approximation of the 
desirability on the optimal solution in the 
production system. 

Fig. 12 showed the user define mixture               
method shows the approximation of the output 
on the optimal solution in the production       
system. 

 

 
 

Fig. 8. Numerical criteria analysis of the variables 
 

 
 

Fig. 9. Optimal numerical solution of the variables 
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Table 6. Reports on optimization solutions 
 

Number PVC (kg) Sterbilizer (kg) Calcium (kg) Steric (kg)* Titanium (kg)* Pigment (kg) Output Desirability  

1 17095.383 534.069 310.000 58.000 0.549 1.999 9204.461 0.951 Selected 
2 17352.000 277.102 310.000 58.000 1.292 1.606 9204.461 0.951  
3 17159.314 489.967 310.000 38.758 0.400 1.561 9204.461 0.951  
4 17248.383 424.528 310.000 15.167 0.400 1.522 9204.461 0.951  
5 17300.893 374.844 310.000 9.373 3.407 1.483 9204.461 0.951  
6 17352.000 245.103 390.888 9.491 0.518 2.000 9000.102 0.949  
7 17351.988 218.397 393.858 28.912 4.845 2.000 8992.686 0.949  
8 17352.000 148.152 456.849 37.859 3.139 2.000 8836.820 0.947  
9 17352.000 91.145 545.168 8.944 0.742 2.000 8622.819 0.944  
10 16587.382 278.088 1126.485 5.646 0.400 2.000 7337.915 0.926  
11 16048.754 309.490 1607.388 31.474 2.693 0.200 6420.971 0.911  
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Fig. 10. Desirability solutions 
 

 
 

Fig. 11. Desirability user defined solution 
 

 
 

Fig. 12. Predicted optimal solution of the user defined mixture design analysis 
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Fig. 13. Overlay plot showing the predicted optimal solutions 
 
The overlay plot in Fig. 13 shows the optimal 
solutions of both the input and output parameters 
in the production variables. 
 

4. RESULTS AND DISCUSSION 
 
The results discuss were focused on the 
evaluation, analysis and optimization of the 
production variables, the results, tables, figures 
and charts developed during the analysis of the 
research. The data is a mixture of the plastic 
production raw material and the unit quantity of 
the finished plastic extrusion pipe produced over 
any given month. The data was evaluated, 
analyzed and optimized. Pearson correlation was 
used to express the correlations of the variables. 
All mixture components are highly correlated with 
the production quantity except time of mixture. 
This reveals that time is not a component that 
influences the production variables and 
production quantity. This also shows that time 
are not necessary to be used in modelling the 
production variables of the plastic extrusion pipe. 
The used of Kendall’ a tau_b and Spearman’s 
rho models were applied to validate the 
correlations of Pearson model. The application of 
analysis of variance (ANOVA) reveals that the 
variables are significance to model the 
production variables of the system. However, the 
Predicted R-Squared" of 0.1248 is not as close 
to the "Adj R-Squared" of 0.3620 as one might 
normally expect; i.e. the difference is more than 
0.2. This may indicate a large block effect or a 
possible problem with your model and/or data. 
 

The user-defined mixture analysis shows that 
calcium is of high importance the production 

when compared with other variables. The Piepel 
Plot helps to trace the deviation of the raw 
material variables from its reference point. The 
two components mix analysis helps to show the 
level of the effect of the variable to the production 
output. The predicted and the actual plot reveals 
their variations from the production output, while 
the normal plot of the residuals that the plot is 
along the mean of the residual, which shows that 
there was not much errors between the actual 
data and the predicted variables. The cook’s 
distance analysis also shows that their plots is 
between zero and one which shows that all the 
data used will be able to model the production. If 
any runs exceed below zero or above one, that 
means that there is a problem on the data used 
on that runs. The 3D surface plot shows the 
effect of the variables in production system. 
 
Finally, the application of the user-defined 
mixture design optimization model expresses 
that the optimal solution quantity that is best to 
produce every month is 9204.461 units of plastic 
extrusion pipes. And the best quantity for the 
PVC, stabilizer, calcium, steric, titanium and 
pigment raw material variables to be used are 
117095.383 kg, 534.069 kg, 310 kg, 58 kg, 0.549 
kg and 1.999 kg respectively over the months of 
production. However, the optimal solutions give 
desirability of 0.951 or 95.1%. 
 
Furthermore, several researchers have revealed 
several authors research work in optimization of 
the products production system. Ezeliora et al. 
[8] revealed the Niger bar soap mix proportion, to 
determine the most appropriate raw materials 
and mix ratio that will yield the most appropriate 

Design-Expert® Software
Component Coding: Actual
Highs/Lows inverted by U_Pseudo coding
Original Scale
Overlay Plot

Output
Design Points

X1 = A: PVC (kg)
X2 = B: Sterbilizer (kg)
X3 = C: Calcium (kg)

Actual Components
D: Steric (kg) = 58
E: Titanium (kg) = 0.549316
F: Pigment (kg) = 1.9991

A: PVC (kg) (kg)
13891.5

B: Sterbilizer (kg) (kg)

-2882.55

C: Calcium (kg) (kg)

9.45159

3470 578

17352

Overlay Plot

2

Output:   9203.74 
X1  17095.4 
X2  534.069 
X3  310 



 
 
 
 

Ezeliora et al.; JERR, 15(1): 1-16, 2020; Article no.JERR.56495 
 
 

 
15 

 

soap production quality and quantity. Upendra et 
al. [9] study a mixture experiment of the process 
variables in which the response is assumed to 
depend on the relative proportions of the 
ingredients present in the mixture and not on the 
total amount of the mixture. Ezeliora and Ejikeme 
[10] studied the optimal monthly production 
mixture of the process variables to its response 
variable for 40 mm diameter of plastic pipe 
product in Louis Carter manufacturing industry. 
Okolie et al. [11] improves the productivity of 
Soap mix using Response Surface to optimize 
the soap production mix using the previous 
production data. This related empirical literatures 
revealed that this research serves a knowledge 
gap to optimize the production mix of other 
company’s plastic pipe product. 
 

5. CONCLUSION 
 

Having revealed the production variables, it is 
obvious that the optimization system is the 
gateway to ensure the best in the production 
system and in industrialization sectors. The 
evaluation and analysis of production variables 
have revealed that the optimal solutions of the 
system have 95.1 percent desirability. However, 
the optimal solution for the production output is 
9204.461 units of plastic extrusion pipes. Finally, 
the results were recommended to the case 
company, to ensure efficient and more preferred 
production in their industry. 
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