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Abstract

Aims/ Objectives: In this paper, making use the Hadamard product , we introduce drive
several interesting subordination results for a new class of analytic function. Furthermore, we
mention some known and new results, which follow as special cases of our results.
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1 Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let K denote the class of functions
f(z) ∈ A which are convex in U and let S(k, α) denote the subclass of A which satisfies the following
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inequality (see [1, 2, 3, 4])

Re

(
zf

′
(z)

f(z)
+ k

z2f
′′
(z)

f(z)

)
> α (k ≥ 0; 0 ≤ α < 1; z ∈ U) .

The Hadamard product (or convolution) (f ∗ g)(z) of the functions f(z) and g(z), that is, if f(z) is
given by (1.1) and g(z) is given by

g(z) = z +

∞∑
n=2

bnz
n (bn ≥ 0) , (1.2)

is defined by:

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z). (1.3)

If f and g are analytic functions in U, we say that f is subordinate to g, written f ≺ g if there
exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for
all z ∈ U, such that f(z) = g(w(z)), z ∈ U. Furthermore, if the function g is univalent in U, then
we have the following equivalence (cf., e.g., [5, 6]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Definition 1.1. (Subordinating Factor Sequence ) [7]. A sequence {dn}∞n=1 of complex numbers
is said to be a subordinating factor sequence if, whenever f of the form (1.1) is analytic, univalent
and convex in U, we have the subordination given by

∞∑
n=1

dnanz
n ≺ f(z) (z ∈ U; a1 = 1). (1.4)

For 0 ≤ α < 1, k ≥ 0 and for all z ∈ U, let H(f, g;α, k) denote the subclass of A consisting of
functions f(z) of the form (1.1) and g(z) of the form (1.2) and satisfying the analytic criterion:

Re

{
z(f ∗ g)

′
(z)

(f ∗ g)(z) + k
z2 (f ∗ g)

′′
(z)

(f ∗ g)(z)

}
> α. (1.5)

The class was introduce and studied by Aouf et al. (see [8]). We note that for suitable choice of g,
we obtain the following subclasses studied by various authors.

(1) If we take g(z) = z
1−z

, then the class H(f, z
1−z

;α, k) reduces to the class S(k, α) (see [3]);
(2) If we take g(z) = z

1−z
and k = 0, then the class H(f, z

1−z
;α, 0) reduces to the class S∗(α) (see

[9]);
(3) If we take g(z) = z

(1−z)2
and k = 0, then the class H(f, z

(1−z)2
;α, 0) reduces to the class K(α)

(see [9]);
(4) If we take

g(z) = z +

∞∑
n=2

σnz
n (1.6)

(or bn = σn), where

σn =
ΘΓ(α1 +A1(n− 1)).......Γ(αq +Aq(n− 1))

(n− 1)!Γ(β1 +B1(n− 1)).......Γ(βs +Bs(n− 1))
(1.7)

(αi, Ai > 0, i = 1, .....q;βj , Bj > 0, j = 1, ..., s; q ≤ s+ 1; q, s ∈ N,N = {1, 2, 3, ....})
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and

Θ =

(
s
j=0Γ (βj)

)
(qi=0Γ (αi))

, (1.8)

then the class H(f, z +
∞∑

n=2

σnz
n;α, k) reduces to the class W q

s (α, k) (see [10])

=

{
f ∈ A : Re

{
z (W q

s f(z))
′

W q
s f(z)

+ k
z2 (W q

s f(z))
′′

W q
s f(z)

}
> α, 0 ≤

α < 1; k ≥ 0; q, s ∈ N; z ∈ U} , (1.9)

where W q
s f(z) is the Wright,s generalized hypergeometric function (see [11, 12]) which contains

well known operators such as the Dziok-Srivastava operator (see [13, 14]), the Carlson-Shaffer
linear operator (see [15]), the Bernardi-Libera-Livingston operator (see [16, 17, 18]), Srivastava -
Owa fractional derivative operator (see [19]), the Ruscheweyh derivative operator (see [20]) and the
Noor integral operator of n-th order (see [21]);

(4) If we take

g(z) = z +

∞∑
n=2

(
l + 1 + µ(n− 1)

l + 1

)m

zn (1.10)

(or bn =
(

l+1+µ(n−1)
l+1

)m
, m ∈ N0 = N∪{0} , µ ≥ 0, l ≥ 0), then the classH(f, z+

∞∑
n=2

(
l+1+µ(n−1)

l+1

)m
zn;

α, k) reduces to the class m(µ, l, α, k) (see [8]):

=

{
f ∈ A : Re

{
z(Im(µ, l)f(z))

′

Im(µ, l)f(z)
+ k

z2(Im(µ, l)f(z))
′′

Im(µ, l)f(z)

}
> α,

0 ≤ α < 1; k ≥ 0; m ∈ N0; µ, l ≥ 0, z ∈ U
}
, (1.11)

where Im(γ, l)f(z) is the extended multiplier transformation (see [22]), for l = 0,γ ≥ 0, the operator
Im(γ, 0) = Dm

γ was introduced and studied by Al-Oboudi (see [23]) and for l = γ = 0, the operator
Im(0, 0) = Dm, where Dm is Salagean differential operator see. [24].

2 Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that, 0 ≤ α < 1, k ≥
0, n ≥ 2, z ∈ U and g(z) is defined by (1.2). To prove our main results we shall need the following
lemmas.

Lemma 2.1. [7]. The sequence {dn}∞n=1 is a subordinating factor sequence if and only if

Re

{
1 + 2

∞∑
n=1

dnz
n

}
> 0 , (z ∈ U). (2.1)

Lemma 2.2. [8]. Let the function f (z) defined by (1.1) satisfy the following condition:

∞∑
n=2

(
kn2 + n− kn− α

)
bn |an| ≤ 1− α. (2.2)

Then f (z) ∈ H(f, g;α, k).
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Let H∗(f, g;α, k) denote the class of functions f(z) ∈ A whose coefficients satisfy the condition
(2.2). We note that H∗(f, g;α, k) ⊆ H(f, g;α, k), S∗(k, α) ⊆ S(k, α),W ∗q

s (α, k) ⊆ W q
s (α, k) and

∗
m(µ, l, α, k) ⊆m (µ, l, α, k).

Theorem 2.3. Let f ∈ H∗(f, g;α, k), bn ≥ b2 > 0 (n ≥ 2). Then for every convex function ϕ ∈ K,
we have

(2k − α+ 2) b2
2[(2k − α+ 2) b2 + (1− α)]

(f ∗ ϕ)(z) ≺ ϕ(z), (2.3)

and

Re{f(z)} > − (2k − α+ 2) b2 + (1− α)

(2k − α+ 2) b2
. (2.4)

The constant
(2k − α+ 2) b2

2[(2k − α+ 2) b2 + (1− α)]
is the best estimate.

Proof.

Let f (z) ∈ H∗(f, g;α, k) and let ϕ(z) = z +
∞∑

n=2

cnz
n ∈ K. Then we have

(2k − α+ 2) b2
2[(2k − α+ 2) b2 + (1− α)]

(f ∗ ϕ)(z)

=
(2k − α+ 2) b2

2[(2k − α+ 2) b2 + (1− α)]

(
z +

∞∑
n=2

ancnz
n

)
. (2.5)

Thus, by Definition 1, the subordination result (2.3) will hold true if the sequence{
(2k − α+ 2) b2

2[(2k − α+ 2) b2 + (1− α)]
an

}∞

n=1

, (2.6)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is equivalent to the
following inequality:

Re

{
1 +

∞∑
n=1

(2k − α+ 2) b2
[(2k − α+ 2) b2 + (1− α)]

anz
n

}
> 0. (2.7)

Now, since (
kn2 + n− kn− α

)
bn,

is an increasing function of n (n ≥ 2), we have

Re

{
1 +

∞∑
n=1

(2k − α+ 2) b2
(2k − α+ 2) b2 + (1− α)

anz
n

}

= Re

{
1 +

(2k − α+ 2) b2
(2k − α+ 2) b2 + (1− α)

z

+
1

(2k − α+ 2) b2 + (1− α)

∞∑
n=2

(2k − α+ 2) b2anz
n

}

≥ 1− (2k − α+ 2) b2
(2k − α+ 2) b2 + (1− α)

r

−(
1

(2k − α+ 2) b2 + (1− α)

∞∑
n=2

(
kn2 + n− kn− α

)
bn |an| rn)

140



Adwan; ARJOM, 16(10): 137-143, 2020; Article no.ARJOM.62033

> 1− (2k − α+ 2) b2
(2k − α+ 2) b2 + (1− α)

r − (1− α)

(2k − α+ 2) b2 + (1− α)
r

= 1− r > 0 (|z| = r < 1),

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.7) holds true in U. This proves
the inequality (2.3). The inequality (2.4) follows from (2.3) by taking the convex function ϕ(z) =

z
1−z

= z +
∞∑

n=2

zn ∈ K. To prove the sharpness of the constant
(2k − α+ 2) b2

2 [(2k − α+ 2) b2 + (1− α)]
, we

consider the function f0(z) ∈ H∗(f, g;α, k) given by

f0(z) = z − (1− α)

(2k − α+ 2) b2
z2. (2.8)

Thus from (2.3), we have

(2k − α+ 2) b2
2 [(2k − α+ 2) b2 + (1− α)]

f0(z) ≺
z

1− z
. (2.9)

Moreover, it can easily be verified for the function f0(z) given by (2.8) that

min
|z|≤r

{
Re

(2k − α+ 2) b2
2 [(2k − α+ 2) b2 + (1− α)]

f0(z)

}
= −1

2
. (2.10)

This show that the constant
(2k − α+ 2) b2

2 [(2k − α+ 2) b2 + (1− α)]
is the best possible. This completes the

proof of Theorem 1.

Putting g(z) = z +
∞∑

n=2

σnz
n, where σn is defined by (1.7), in Lemma 2 and Theorem 1, we obtain

the following corollary:

Corollary 2.4. Let f defined by (1.1) be in the class W ∗q
s (α, k) and satisfy the condition

∞∑
n=2

(
kn2 + n− kn− α

)
σn |an| ≤ 1 − α.

Then for every function ϕ ∈ K, we have

(2k − α+ 2)σ2

2[(2k − α+ 2)σ2 + (1− α)]
(f ∗ ϕ)(z) ≺ ϕ(z),

and

Re{f(z)} > − (2k − α+ 2)σ2 + (1− α)

(2k − α+ 2)σ2
.

The constant
(2k − α+ 2)σ2

2[(2k − α+ 2)σ2 + (1− α)]
is the best estimate.

Putting g(z) = z +
∞∑

n=2

(
l+1+µ(n−1)

l+1

)m
zn, in Lemma 2 and Theorem 1, we obtain the following

corollary:

Corollary 2.5. Let f defined by (1.1) be in the class ∗
m(µ, l, α, k) and satisfy the condition

∞∑
n=2

(
kn2 + n− kn− α

)( l + 1 + µ(n− 1)

l + 1

)m

|an| ≤ 1 − α.
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Then for every function ϕ ∈ K, we have

(2k − α+ 2)
(

l+1+µ
l+1

)m
2[(2k − α+ 2)

(
l+1+µ
l+1

)m
+ (1− α)]

(f ∗ ϕ)(z) ≺ ϕ(z),

and

Re{f(z)} > −
(2k − α+ 2)

(
l+1+µ
l+1

)m
+ (1− α)

(2k − α+ 2)
(

l+1+µ
l+1

)m .

The constant
(2k − α+ 2)

(
l+1+µ
l+1

)m
2[(2k − α+ 2)

(
l+1+µ
l+1

)m
+ (1− α)]

is the best estimate.

Remark 2.1. (i) Putting g(z) = z
1−z

(or bn = 1) and k = 0 in Theorem 1, we obtain the result
obtained by Frasin [[25], Corollary 2.3 ];

(ii) Putting g(z) = z
(1−z)2

and k = 0 in Theorem 1,we obtain the result obtained by Frasin [[25],

Corollary 2.6].

3 Conclusions

In this work we presented some new drive several interesting subordination results for a new class
of analytic function defined by convolution. This theorem leave open several possibilities that are
worth investigating.
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