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Abstract 
 

In this study, we introduce some approaches, geometrical and algebraic, which help to give further 
understanding of symmetric spaces. Symmetric space is a very important field for understanding abstract 
and applied features of spaces. We have introduced Riemannian Manifold, Lie groups and Lie algebras, 
and some of their topological and algebraic properties, with some concentration on Lie algebras and root 
systems , which help classification and many applications of symmetric spaces. The paper is an attempt to 
explain some algebraic features of symmetric spaces and how to get some of their properties using 
algebraic approach, concluded with some results. 
 

 
Keywords: Topological spaces; metric spaces; topological manifold; Riemannian manifold; lie groups; lie 

algebras; root systems; homogeneous spaces; symmetric spaces. 
 

1 Introduction 
 
In studying spaces, one of the aims of this study is to introduce spaces that can suit some scientific 
application. Many scientific problems in various fields may have their own conditions that might not 
agree with the geometric structure and properties of some spaces familiar to mathematicians and 
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geometers. Many properties of symmetric spaces can be studied through their Lie algebras and root systems, 
and specially the problem of classification of symmetric spaces [1,2]. 
 
Various applications of Lie algebras and symmetric spaces in different fields, especially in physics. In 
mathematical context, in this paper we are treating some algebraic and topological properties of Lie algebras 
associated to symmetric spaces to make it possible for further understanding and carrying more applications 
[3-7]. 
 

2 Topological Spaces 
 
Toplogical spaces are mathematical structures that allow the formal definition of concepts such as 
convergence, connectedness and continuity. They appear virtually in every branch of modern mathematic 
and are central unifying notions. 

 
The branch of mathematics that studies toplogical spaces in their own right is called topology. 

 
Definition of topological spaces 2.1 
 
Let  � be a set, let  � be a collection of subsets such that 

 
1. The union of a family of sets which are elements of  � belongs to �. 
2. The intersection of a finite family of sets which are elements of � belongs to  �. 
3. The empty set∅ and the whole  � belong to  T. Then 

  
 T is called a topological structure or just a topology in �  
 The pair (�,�) is called a topological space. 
 The element of � is called point of this topological space. 
 The element of  � is called open set of the topological space (�,�) .The conditions in the definition 

above are called the axioms of topological structure. 

 
Examples 2.2 
 

1. A discrete topological space is a set with the topological structure which consists of all the subsets. 
2. The Euclidean spaces �� can be given a topology in the usual topology on��  , the basic open sets 

are the open balls. 

 

3 Metric Spaces 
 
Definition 3.1 
 
A metric space is a set with a function that satisfies. 
 
�: � × �  → �� that satisfies. 
 

1. �( �, �)    ≥ 0  and  �( �, �) = 0     if and only if   � = �  
2. �( �, �)    =  �(  �, �) = 0     for every  �, � ∈ �  
3. �( �, �)  + �( �,z )   ≥  �(  �,z ) triangle  inequality  

 
The pair (  �, �)   is called metric space. 
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Example 3.2 
 
The usual metric on �  (complex numbers) is the Euclidean metric determined by the modulus function 
((z, w)) → |z − w|. It is of course an extension to � ×  � of the Euclidean metric on �. We shall assume 
that � is endowed with it unless we state otherwise. 

 
Theorem 3.3 [8] 
 
Suppose(  �, �) is a metric space. The function is objective function from  � on to �(�). 

 
Theorem 3.4 [8] 
 
Suppose � is a metric space, Z is a metric subspace of  � and S⊆Z. Then S is a connected subset of � if and 
only if � is a connected subset of Z. 

 

4 Topological Manifold 
 
Euclidean space and their subspace  �� are the most important .The metric space  ��  serve as a topological 
model for Euclidean space �� , for finite dimensional vector spaces over � or � . It is natural enough that we 
are led to study those spaces which are locally like �� . We will consider spaces called manifolds, defined as 
follows. 

 
Definition 4.1 
 
A manifold  � of dimension  � , or �-manifold  is topological space  with the following  properties: 

 
I. � is Housdorff space. 

II. �  is locally Euclidean of dimension n and, 
III. � has a countable basis  of open  sets . 

 
As a matter of notion dim �  is used for the dimension of  � , when  

 
dim  =  0 , then  � is  a countable space  with discrete topology  

 
Example 4.2 
 
Define the circle �� = {� ∈ ℂ:|�| = 1}. Then for any fixed point � ∈ ��,write it as � =  �����  for a unique  
real number 0 ≤ � ≤ 1 , and define the map 

 
��:� → ����� . 

 

We note that �� maps the natural I� = (c −
�

�
, c +

�

�
) to the neighborhood of � given by s� −z ,⁄  and it is a 

homeomorphism. Then �� = ��|��

�� is a local coordinate chart near. By taking products of coordinate charts, 

we obtain charts for the Cartesian product of manifolds. Hence the Cartesian product is a manifold  
 
Theorem 4.3 [8] 
 
A topological manifold  �  is locally connected, locally compact, and a union of a countable collection of 
compact subsets; furthermore, it is normal and metrizable. 
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5 Riemannian Manifold 
 
In this section we introduce the notion of a Riemannian  manifold (�.�).The metric � provides us with an 
inner product on each tangent space an can be used to measure angels and the lengths of curve in the 
manifold .These terms are named after the German mathematician Bernhard Riemann. 
 
This defines a distance function and turns the manifold into a metric space in a natural way. 
 
Let �   be a smooth manifold, ��(�) denote the commutative ring of smooth function on � and ��(��) 
be the set of smooth vector fields on � forming a module over ��(�) .Put C�

�(TM) = ��(�) and for each 
positive integer 
 
 � ∈ �� let C�

�(TM) = ��(�) ⨂...⨂...⨂��(��) be the r-fold tensor product of ��(��) over ��(�). 
 
Definition 5.1 
 

a. A Riemannian manifold is a pair  (�.�) consisting of a smooth manifold � and a metric � on the 
tangent bundle, i.e., a smooth, symmetric positive definite (0,2) -tensor field on � .The tensor � is 
called a Riemannian metric on  . 

b. Two Riemannian manifolds ��, ��) (� = 1,2)  are said to be isometric if there exists a 
diffeomorphism Φ ∶ �� → �� such that  Φ∗�� = ��. 

 
Examples 5.2 
 
(1) (The Euclidean space):  The space  �� has a natural metric  
 

�� = (���)� + ⋯ + (���)�. 
 
The geometry of (��, ��)  is the classical Euclidean geometry. 
 
(2) (The hyperbolic plane): The Poincare model of the hyperbolic plan is the Riemannian manifold (�, �) 
where � is the unit open disk in the plane ��  and the metric � is given by  
 

� =
1

1 − �� − ��
(��� + ���). 

 
Theorem 5.3 (Fundental Theorem of Riemannian Geometry) 
 
Let  � be a Riemannian manifold, there exists a uniquely determined Riemannian connection on  �. 
 
Theorem 5.4 [8] 
 
A connected Riemannian manifold is a metric space with the metric �(p, �) = �������  of the lengths of 
curves of class �� from  � to  � its metric space topology and manifold topology agree. 
 

6 Lie Groups 
 
Definition 6.1 
 
A Lie group G is a group satisfying the well-known axioms of group, besides the mappings  � ×   � → �   
and � → ���   defined by (�, �) → �� and � → ��� 
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Respectively are both ��.  This definition implies that the Lie group � is a differentiable manifold. Lie 
groups are very important due to the fact that, their algebraic properties derive from group axioms, and their 
geometric properties derive from the identification of group operations with points in a topological space.  
 
Examples 6.2 
 

i. The set �∗ of nonzero complex numbers is a 2-dimensional Lie group under complex multiplication 
which can be identified with ��(1, �). 

ii. The set ��(�, �)  of nonsingular � × �  matrices is a group with respect to matrix multiplication. . 
An � × �   matrix  � is nonsingular if and only if det � ≠ 0. If   �, � ∈  ��(�, �)  then both the 
maps(�, �) → �� and   � → ��� are   ��. Thus  ��(�, �)    is a Lie group.  

iii. The Euclidean space �� under addition is a group endowed with the smooth operations  (�, �) →
� + �   and � → ���  ∀  �, � ∈ ��    forms a Lie group. 

 
There are many other examples for Lie groups and their applications which can be seen in various 
references. The matrices in ��(�, �)     can be represented as  
 

� = ���(∑ ��
� ��)                                                                                                                         (6.1)  

 
Where ��  are the generators of what is called the Lie algebra of the Lie group and  �� are real parameters. For 
a Lie group the tangent space at the origin is spanned by the generators, considered as vector fields which 
are expressed as 
 

 � = ��(�)
�

 ���, where the partial derivatives  
�

 ��� form a basis for the vector field. If � is a generator of a lie 

group  � , then �   onto  �����   is the exponential map , which is a one - parameter subgroup, defining a 
curve  �(�) in the group manifold. For the curve  �(�) the tangent vector at the origin is given by  
 

�

��
���| � = �                                                                                                                                                  (6.2) 

 
The matrix exponential is very useful because it is always nonsingular since 
 
det(��)=   ���   is never zero. 
 

7. The Lie Algebra 
 
In this section, we review basic concepts of Lie algebras, besides some of their properties needed in studying 
symmetric spaces. To study a Lie algebra, we must know that it is a linearization of its original Lie group, so 
one remembers that a Lie group is a group provided that its two operations: multiplication and inversion are 
smooth maps. 
 
Definition 7.1 
 
A Lie algebra is a pair (�, [ , ])  where �  is a vector space and [  , ]  is a Lie bracket, [  , ]:� × � → � 
satisfying: 
 

(1) [�, �] =  −[�, �]                                      skew-symmetric. 
(2) [�� + ��, �] = �[�, �] + �[�, �]                a bilinear . 
(3) [�, [�, �]] + [�, [�, �]] + [�, [�, �]] = 0 

 
For all, � ��� � ∈ �. a Bianchi identity. 
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A Lie Bracket is a binary operation [  , ] on a vector space  � 
 
Example 7.2 
 
Let  � = �� , [  , ]:�� × �� → �� as proved that it is a Lie algebra. 
 
Example 7.3 
 
Let Ω(�) be the set of all vector fields on a manifold � . 
 
Define  [ � , � ] = �� − �� , 
 
Then [�, �] is a Lie bracket. 
 

A homeomorphism of Lie algebra  ℓ  is a linear map, ∶ ℓ → ℓ�  , preserving the bracket . This means that 
 
�[ℓ�, ℓ�] = [�(ℓ�), �(ℓ�)]  for any    (ℓ�, ℓ�) ∈ ℓ × ℓ . 
 
A Lie sub algebra of Lie algebra    ℓ is a sub-vector space � such that 
 
 [�, �] ⊆ � . An ideal of ℓ is a Lie subalgebra  � such that [�, ℓ] ⊆ �  
 
A vector subspace �  of  a Lie algebra  ℓ is  called a Lie sub algebra if   [�, ℓ] ⊆ �. 
 
Theorem 7.4 [9] 
 
Let �  be a Lie group and ℓ its Lie algebra: 
 

(1)  If � is a Lie subgroup of �, � is a Lie subalgebra of ℓ. 
(2)  If  � is a Lie subalgebra, there exists a unique Lie subgroup � of �  such that Lie algebra of � is 

isomorphic to � 
 
A Lie algebra is an algebraic structure whose main use is in studying geometric objects such as Lie groups 
and differentiable manifolds. Every Lie group � has a corresponding Lie algebra denoted by  � , it is the 
tangent space at the identity of the Lie group G . The Lie algebra generates a group through the exponential 
mapping. 

 
Example 7.5 
 
The Lie algebra � of   �� as a Lie group  is again where [�, �] = 0   ∀�, � ∈ � 

 
Thus the Lie bracket for the Lie algebra of any abelian group is zero.  

 
Definition 7.6 (Ideals) 
 
An ideal  � of a Lie algebra �  is a sub algebra such that   [ɡ , I ]⊂ I, also an abelian ideal satisfies [I , I ]= 0  

 
Ideals in Lie algebras perform like normal subgroups in group theory, they can be used in analyzing the 
structure of Lie algebras and in constructing quotient algebras. Also a Lie algebra is abelian if and only if its 
center Z(�) = � this is because the center Z(�) = {Z ∈ �| [X, Z] = 0  , ∀� , Z ∈ �} is also an ideal of �, and 
� is abelian if [X , Y  ] = 0 , ∀ � , Y ∈ �.  
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Definition 7.7 (Simple and semi simple Lie algebras) 
 
A simple Lie algebra  � has no proper ideals or in other words, a simple Lie algebra has no ideals except 
itself and 0 and [�, �, ] ≠ 0     .   
 
A semisimple Lie algebra is the direct sum of simple algebras , and has no proper abelian ideal. If  � is 
simple then Z (� ) = 0 and [�, �, ] = �. When a Lie algebra � is not simple, we can factor out a nonzero 
proper ideal � to get a Lie algebra of smaller dimension, which we call it a quotient algebra, denoted by 

 
�

ℎ�   . 

 
Definition 7.8 (Derived algebra) 
 
It is the collection of all linear combinations of [X , Y  ] ∀�, � ∈ �  and it is denoted by  [�, �]. It is also an 
ideal and determines whether the Lie algebra is abelian or not, in fact we can say that  the Lie algebra � is 
abelian if and only if its derived algebra is the zero vector. 
 
Definition 7.9 (Solvable Lie algebra) 
 
A Lie algebra ɡ is solvable if its derived series goes down to zero that is �(�) = 0 for some  � ∈ � 
 
We remark that any abelian Lie algebra is solvable and any simple algebra is nonsalable .The following 
proposition gives some facts about solvability: 
 
Proposition 7.10 [10] 
 

i Given � is a solvable Lie algebra, then all sub algebras and homomorphic images of � are also 
solvable. 

ii If � is a solvable ideal of a Lie algebra �  such that  
�

��  is solvable, then ɡ is solvable as well.  

iii Suppose  � and �  are solvable ideals of a Lie algebra �  , then  � + �  is solvable.  
 
Definition 7.11 (The radical) 
 
In the Lie algebra  � , the unique maximal solvable ideal is called the radical of � denoted rad �. Suppose � 
is an arbitrary Lie algebra , � is an ideal included  in no larger solvable ideal , and   any � other solvable 
ideal of  � . Using maximality and Prop.3.10 we have � + �  = � , which means � ⊂ � h and � is unique. It 
can be shown that a Lie algebra   �  is semisimple if rad  �  = 0 and a simple algebra �   is also semisimple 
but the converse is not true.  
 
Definition 7.12 (Nilpotent Lie algebras) 
 
A Lie algebra ɡ is called nilpotent if ɡ (n) = 0 for some n∈ℕ where ɡ (n) is an element the descending central 
series written as  
 

�� = �,   �� = [�, �] ,  �� = [�,   ��] , … … , �� = [�, ����]. 
 
Any Abelian Lie algebra is nilpotent since  �� = [�, �] = 0  and all nilpotent Lie algebras are solvable [9].  
 
Definition 7.13 (Nilpotent Endomorphism) 
 
An adjoint representation ad x i as an endomorphism in the Lie algebra ɡ is a nilpotent endomorphism if ad x 
ad x1 2 ...ad x n (y )=0 ∀x i , y ∈ ɡ . Or in another way [x1,[x2 ,[...[x n , y ]...]=0. 
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We say that an element x∈ ɡ is ad-nilpotent if it has a nilpotent endomorphism so if ɡ is nilpotent , then all 
of its elements are adnilpotent.  
 
Engel’s Theorem 7.14 [9] 
 
If all elements of ɡ are ad-nilpotent, then ɡ is nilpotent. 
 
This theorem is very important because it helps us to show that a Lie algebra is nilpotent without directly 
calculating its descending central series.  
 
Proposition 7.15 [10]  
 

i) Suppose ɡ is a nilpotent Lie algebra . Then all subalgebras and homomorphic images of ɡ are also 
nilpotent.  

ii) If ɡ / Z(ɡ) is nilpotent , then ɡ is nilpotent as well. 
iii) If ɡ is nilpotent and nonzero, then Z (ɡ) ≠ 0. 

 
Definition 7.16 (The killing form) 
 
It is the symmetric bilinear denoted k (x y,) and can be found using the adjoint representation, where k(x y,) = 
tr (���, ���) for x y, ∈ ɡ. 
 
A killing form is nondegenerate if its radical r = 0, where r = {x ∈ ɡ | k (x y,) = 0 ∀ y ∈ �}. A nondegenerate 
Killing form gives useful information as for example in Cartan’s first and second criteria. Also we have 
Weyl theorem [10] which states that a simple Lie algebra ɡ is compact  ,if and only if the killing form on ɡ is 
negative definite, otherwise it is noncompact and this very useful in studying symmetric spaces. Also to 
determine the solvability of a Lie algebra we can use Cartan’s first criterion as follows: 
 
Theorem 7.17 [9] (Cartan’s first criterion) 
 
A Lie algebra ɡ is solvable if and only if k (x y,) = 0 for all x ∈[ ɡ, ɡ], y ∈ ɡ. 
 
We use Cartan’s second criterion to determine if a Lie algebra is semisimple or not as follows: 
 
Theorem 7.18 [9] (Cartan’s second criterion) 
 
A Lie algebra ɡ is semisimple if and only if its killing form is nondegenerate. 
 
When we study the structure of a Lie algebra , its solvability and simplicity are helpful in this field , and also 
when we can decompose the Lie algebra into simple ideals or using its semi simplicity. 
 

8 Root Systems 
 
Before we introduce root systems of Lie algebras we give some preliminary notions which help in 
understanding the required ideas. Also it is worth mentioning that root systems are very effective tools which 
are used in classifying and studying the structure of Lie algebras. 
 
Cartan subalgebras 8.1 
 
A cartan sub algebra  of � is sub algebra �  �� �  satisfying the  following condition 
 

(i) �  is a maximal a belian sub algebra of �  
(ii) for each � ∈ �  the endomorphism ad � �� �   is semisimple  
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Definition: 
 
The element   � ∈ �    is called   regular if 
 

dim �(H, o) =  min �dim  � (x, o)�, x ∈ � .  
 
Theorem 8.2 [9] 
 
Let �� be a regular element in �  .�ℎ��   �( ��, 0) is a cartan subalgebra of �.  
 

Lemma 8.3 [9] 
 
The algebra � is abelian and infact a maximal a belian sub algebra of �. 
 

Definition 8.4 
 
Let  �  be lie algebra. Alin subalgebra � �� �  is a cartan sub algebra  of � if 
 

(i) �  is enilpotent lie algebra  
(ii) � is equal to it's own normalizer 

 

9 Symmetric Spaces 
 
Symmetric spaces are of great importance for several branches of mathematics. Any symmetric space has its 
own special geometry, such as Euclidean, elliptic & hyperbolic geometry etc. 
 

We can consider symmetric spaces from different points of view. In this paper we consider their algebraic 
features by considering Lie groups and their Lie algebras as algebraic approach to symmetric spaces. In fact 
a symmetric space can be considered as a Lie group � with a certain involution ℴ, or a homogeneous space 
�

��  where � is a Lie group and  � its isotropy subgroup. In the above sections we have discussed the 

important features and properties of Lie groups and their Lie algebras which help in disclosing some 
algebraic features of symmetric spaces. Also in this paper we cannot discuss all features such as types of 
symmetric spaces and their classification, but we gave introductory notions which help in future work in this 
field.  
 

Involutive automorphism 9.1 
 
Let ɡ be a Lie algebra , the linear automorphism  σ: �→ �  is called an involutive automorphism if  it 
satisfies σ2 =I ( the identity ) but σ  ≠I , that is σ has  eigenvalues ±1 and it splits the algebra � into 
orthogonal subspaces corresponding  to these eigenvalues. 
 

Symmetric subalgebra 9.2 
 
If  � is a compact simple Lie algebra , σ is an involutive automorphism of ɡ and ɡ = ɧ⊕P  satisfying   σ(X ) 
=X  for X ∈ ɧ  , σ(X ) = −X for � ∈ �  ɧ is a sub algebra , but  � is not , and the following relations hold: 
 
[ɧ , ɧ ] ⊂ ɧ   ,   [ɧ , P ] ⊂P ,  [ P , P ] ⊂ ɧ                                                                                                   (9,2) 
 
A subalgebra ɧ satisfying (9,2) is called symmetric subalgebra.  
 

Cartan decomposition & symmetric spaces 9.3 
 
Using what is known as Weyl unitary trick, that is by multiplying the elements in P by � we get a new 
noncompact algebra ɡ* = ɧ ⊕iP, this is called a Cartan decomposition and ɧ is a maximal compact 
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subalgebra of �∗ . The Lie groups corresponding to the Lie algebras ɡ & ɡ* are  �  and  � the isotropy 
subgroup of the Lie group  � . Generally the coset space � �⁄  is the set of subsets of   � of the form  �� , 
for  � ∈ �  , �    acts on this coset space , that is the symmetric space. 
 
Theorem 9.4 [9] 
 
Any symmetric space S determines a Cartan decomposition on the Lie algebra of Killing fields. Vice versa, 
to any Lie algebra ɡ with Cartan decomposition ɡ = ɧ ⊕P there exists a unique simply connected symmetric 
space  � =  � �⁄  where   � is the simply connected Lie group with Lie algebra ɡ and �  the connected 
subgroup with Lie algebra ɧ. 
 
Example 9.5 
 
Let �  =  � ∪ (�, �)  be the group of unitary complex matrices with determinant +1. The algebra ɡ= SU (n, 
ℂ) of this Lie group consists of complex antihermitian matrices of zero trace. � ∈ � Can be written as 
� = � + ��  where �  is real skew – symmetric and traceless and B is real, symmetric and traceless. 
Therefore ɡ = ɧ ⊕P where ɧ is the compact connected subalgebra  ��(�, �)  consisting of real, skew – 
symmetric and traceless matrices and P is the subspace of matrices of the form iB , where B is real, 
symmetric and traceless. P is not a sub algebra. �∗  = ɧ ⊕iP where iP is the subspace of real, symmetric and 
traceless matrices B. The Lie algebra �∗ = ��(�, �) is the set of � × � real matrices of zero trace and 
generates the linear group of transformations represented by real � × � matrices of unit determinant.  
 
The involutive automorphism that splits the algebra ɡ is defined by the complex conjugation σ= �, and for  
�∗ the involutive automorphism is defined by 
 
 ℴ� = (��)�� for ∈ �∗. The decomposition �∗= ɧ ⊕iP is the usual decomposition of a ��(�, �)  matrix in 

symmetric and skew – symmetric parts Now  � ��  = SU (n, ℂ) / ��(�, �)  is a symmetric space of compact 

type and the related symmetric space of non – compact type is 
 

�∗ �⁄   = ��(�, �)   ��(�, �)⁄ . 
 

In this manner we can speak about different types of symmetric spaces especially for groups of matrices 
which has many applications. 
 

10 More Features 
 
Here we gave some notions of algebraic and geometric features of symmetric spaces. In fact a symmetric 
space is a Riemannian manifold in which the geodesic symmetry at each point is an isometry in a normal 
neighborhood of the point (Local property). Symmetric spaces are locally symmetric where the geodesic 
symmetries are global isometries. 
 

Definition 10.1 (The rank) 
 
The rank of a symmetric space � is the dimension of the largest abelian subalgebra of  � , where � = ɧ⊕. 
 

Theorem 10.2 [9] 
 
A complete, locally symmetric , simply connected Riemannian manifold is a symmetric space. 
 

Examples 10.3 
 
The Euclidean n- Space  �� , The n- sphere ��   and the hyperbolic space ��  are standard examples of 
symmetric spaces, also these examples can be used for introducing more symmetric spaces and their 
properties. 
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Real forms in symmetric spaces 10.4 
 
Real forms can be classified according to all the involutive automorphisms of the Lie algebra, satisfying σ2 

=I . We have two distinctive real forms which are the normal real form and the compact real form. 
 
The normal real form of the algebra  ��  which is also the least compact real form, consists of the subspaces 

containing real coefficients  ��  & ��. It has a metric with respect the   bases {��, �±�}. 
 
The compact real form of �� is obtained by the Weyl unitary trick: 
 

 = �
(������)

√�
� .� = � ��� ,

�(������)

√�
�                                                                                                        (10,1) 

 
All real forms of any complex Lie algebra can be classified with characters lying between the character of 
the normal real form and the compact real form. This can be done just by enumerating all the involutive 
automorphisms of its compact real form . If ɡ is the compact real form of a complex semisimple Lie 
algebra�� �∗ runs through all its associated noncompact real forms �∗ ,  ’ ∗ , ... with corresponding maximal 
compact subgroups ɧ, ɧ’ and complementary subspaces ��, � �,, …as σ runs through all the involutive 
automorphisms of ɡ . Also a complex algebra and all its real forms (the compact and all non-compact ones) 
correspond to the same root lattice and Dynkin diagram. 
 

�∗ �⁄   = ��(�, �)   ��(�, �)  ⁄  
 
Example 10.5 
 
The normal real form of the complex algebra ��   =  ��(�, �) is the non-compact algebra �∗   = ��(�, �). 
This algebra can be decomposed as ɧ ⊕ �� where ɧ is the algebra consisting of real , skew – symmetric and 
traceless  � × � matrices and �� is the algebra consisting of real , symmetric and traceless � × � matrices. 
Using the Weyl unitary trick, this algebra form the compact real form of  ��, ��(�, �) = � = ɧ ⊕ ��.  
 
Applying some involutive automorphisms to the elements of the compact real form  � , we can construct all 
the various non-compact real forms ɡ*, ɡ’*, 
 

11 Main Results 
 

1. The elements of a Lie group can act as transformations on the elements of the symmetric space. 
2. If M is a symmetric space, its group of isometries � has a Lie group structure and we can obtain all 

information of M from �. If the point p∈M, � the isotropy subgroup at p and ɡ is the Lie algebra of 
G , then the Lie algebra ɧ of � is a subalgebra of ɡ having a complementary subspace  �  such that 
ɡ = ɧ ⊕  �, [ɧ , ɧ ] ⊂ ɧ, [ɧ , �] ⊂ � and  

 
 [�, � ] ⊂  �  , and so the triple (ɡ , ɧ , � ) gives characterization of symmetric spaces. 

 
3. Every Lie algebra corresponds to a given root system and each symmetric space corresponds to a 

restricted root system. 
4. We can have several different spaces derived from the same Lie algebra. 
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