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ABSTRACT 
 

In this work, we applied parametric Nikiforov-Uvarov method to analytically obtained eigen 
solutions to Schrodinger wave equation with Trigonometric Inversely Quadratic plus Coulombic 
Hyperbolic Potential. We obtain energy-Eigen equation and total normalised wave function 
expressed in terms of Jacobi polynomial. The numerical solutions produce positive and negative 
bound state energies which signifies that the potential is suitable for describing both particle and 
anti-particle. The numerical bound state energies decreases with an increase in quantum state with 
fixed orbital angular quantum number � =0, 1, 2 and 3. The numerical bound state energies 
decreases with an increase in the screening parameter � = 0.1, 0.2, 0.3, 0.4 and 0.5. The energy 
spectral diagrams show unique quantisation of the different energy levels. This potential reduces to 
Coulomb potential as a special case. The numerical solutions were carried out with algorithm 
implemented using MATLAB 8.0 software using the resulting energy-Eigen equation. 
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1. INTRODUCTION 
 
Eigen-solutions to relativistic and nonrelativistic 
wave equations has been of growing interest for 
decades because of its applications to some 
physical systems. The Schrodinger wave 
equation constitute the nonrelativistic wave 
equation while Klein-Gordon and Dirac 
constitutes the relativistic wave equations [1-8]. 
Most potentials are modelled and applied to 
solve some physical systems examples include: 
Morse potential, Tietz-Wei, pseudoharmonic, 
Deng-Fan, Kratzer –Feus, Mie-Type and many of 
exponential –type potentials [9-15]. Most of the 
hyperbolic and trigonometric potentials are 
applicable in nuclear and high energy physics 
[16-17]. Most recently, some physical potential 
has been modelled in trigonometric and 
hyperbolic potential well. Ikhdair [18] calculated a 
rotational and vibrational energies of diatomic 
molecules in Klein-Gordon equation using 
hyperbolic scalar and vector potentials by means 
of parametric generalisation of Nikiforov-Uvarov 
method. Dong et al. [19] examined quantum 
information entropies for a squared tangent 
potential where they calculated position Shannon 
and momentum entropies that satisfies Beckner, 
Bialynicki –Birula and Mycieslki (BBM) inequality 
as expected in existing literature. Sun et al. [20] 
calculated the position and momentum space 
information entropies using Asymmetric –
trigonometric Rosen –Morse potential. Most of 
the trigonometric and hyperbolic-type potentials 
belongs to Poschl-Teller family. Recently, Onate 
[21] examined bound state solutions of the 
Schrodinger equation with second Poschl-Teller-
like potential where he obtained vibrational 
partition function, mean energy and mean free 
energy. This Poschl-Teller like potential was 
expressed in form of hyperbolic cosh and sinh. 
Majority of trigonometric and hyperbolic 
potentials are applied in entropic measures to 
investigate position and momentum space 
entropies, squeeze state, expectation values and 
many others. In this work, we calculate 
analytically the bound state solutions of 
Schrodinger wave equation using a combined 
trigonometric and hyperbolic potentials called 
Trigonometric Inversely Quadratic Plus 
Coulombic Hyperbolic Potential (TIQPCHP) 
using Perkeris like approximation to the 
centrifugal term. This potential does not belong 
to Poschl-Teller like family due to its combination 

and that is why it is difficult for the authors to 
apply it to information entropic measures. The 
potential is applicable only for a physical system 
where the bound state energies obtained can be 
use to study to motion of quarks, mesons, 
neutrinos and other elementary particles in high 
energy physics. Shady and Alaraba [22] Studied 
the trigonometric Rosen-Morse potential using N-
radial Schrodinger equation to investigate the 
interaction between quark and antiquark. They 
result energy Eigen equation was use to 
calculate the mass of mesons like:                   
charmonium and bottomonium. Shady et al. [23] 
calculated the thermodynamic properties                          
of heavy mesons in nonrelativistic quark                     
model using Cornell potential within                                 
the framework of Nikiforov-Uvarov method.                   
Their result was applied to calculate                           
mass spectra of charmonium and bottomnium                             
as well as their thermodynamic                          
properties. Shady [24] studied heavy quarkonia 
and b c mesons in the Cornell potential with 
harmonic oscillator using N-dimensional 
Schrodinger wave equation where the mass 
spectra of charmonium and bottomnium were 
calculated as well. This manuscript is arranged 
as follows. Parametric Nikiforov-Uvarov method 
is discussed in Section 2.  Section 3 gives the 
radial solution of the proposed potential using 
parametric Nikiforov-Uvarov method where 
energy eigen equation and the total wave 
functions are obtained alongside with the special 
case. 
 
We present the numerical calculations of the 
bound state energies in Section 4 and their 
corresponding energy spectral diagrams. The 
analytical calculations of the normalisation 
constant is presented in Section 5. The results 
and discussions are presented in section 6 while 
the article is concluded in Section 7. 
 
The potential model consider in this work is given 
as:  
 

            (1) 

 
where A and B are real constant and   the 
screening and adjustable parameter which 
determines the strength of the potential. The 
potential plot of equation (1) is given as.  
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Fig. 1. The potential plot for TIQPCHP 
 
The Pekeris type approximation to the centrifugal term is defined as  
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The graph of equation (2) for various values of the screening parameter is given below 
 

 
 

Fig. 2. The Perkeris type approximation 
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2. BRIEF REVIEW OF PARAMETRIC NIKIFOROV-UVAROV (NU) METHOD 
 
Nikiforov-Uvarov method can either be parametric or conventional. The NU method is based on 
reducing second order linear differential equation to a generalized equation of hyper-geometric type 
and provides exact solutions in terms of special orthogonal functions like Jacobi and Laguerre as well 
as corresponding energy eigen values [25-33]. The parametric NU differential equation is given as  
 

21 2
1 2 32 2

3 3

1
( ) ( ) ( ) 0

(1 ) (1 )

c c s
s s s s s

s c s s c s
  


             

                                  (3) 

 
The parametric constants are obtained as follows 
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The parametric energy-eigen equation is given as  
 

 2 5 9 3 8 3 7 3 8 8 9(2 1) (2 1) ( 1) 2 2 0c n n c n c c c n n c c c c c c           .              (5) 

 
The total wave function is given as 
 

13 10 1112 ( , )
3 3( ) ( ) ( ) (1 ) (1 2 )c c cc

n n ns s s N s c s P c s      .                                                      (6)  

 

3. THE RADIAL SOLUTION OF SCHRODINGER WAVE EQUATION USING THE 
PROPOSED POTENTIAL 

 
One dimensional Schrodinger wave equation is given as 
 

2 2

2 2 2

( ) 2 ( 1)
( ) ( ) 0

2

d R r l l
E V r R r

dr r





 
    

 




                                                                    (7) 

 



 
 
 
 

Okon et al.; PSIJ, 24(3): 61-75, 2020; Article no.PSIJ.57303 
 
 

 
65 

 

Substituting  (1) into (7) gives 
 

2 2
0

2 2 2 2

sin( ) 2 cosh ( 1)
( ) 0

2

vd R r A l l
E B R r

dr r r r

 



 
      

 




.                                   (8) 

 
Substituting (2) into (1) gives 
 

     

22 2 2
0

2 22 2

sin( ) 2 cosh ( 1)
( ) 0

11 2 1
rr r

vd R r A l l
E B R r

dr ee e
 

    


 

 
      

   




.                   (9) 

 

Let 
rs e  then 
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(10) 

 

Equation (10) can further be reduce to  
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Where 
2 2 0

1 22 2 2 2 2 2

2 2 sin 2 cosh 2
, , ,nlE v A B     

   
  

    
   

.                                   (12) 

 
Comparing  (11) to (3) and by using (4), the following parametric constant can be obtain 
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The energy eigen equation can be calculated by substituting equations (13) and (14) into (5) gives  
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Substituting (12) into (15) gives the energy eigen equation as 
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.                (16) 

 
Using (6), the total wave function for the proposed potential is given by 
 

   (17) 
 
3.1 Special Case 
 
Coulomb potential: Substituting 1, 0A B   into equation (1), the potential reduces to Coulomb 

potential ( )
A

V r
r

  and the corresponding eigen energy equation is  
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.          (18) 

 

4. NUMERICAL BOUND STATE ENERGIES FOR THE PROPOSE POTENTIAL 
 
We implemented MATLAB algorithm using equation (16) with different orbital angular quantum 

number. We adopted the following fixed real constant parameters 0 0.1, 0.2, 1,v A B     

with adjustable screening parameter varying from 0.1  to 0.5  
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Table 1. Numerical bound state energy for Schrodinger equation for 0.1   
 

n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

0 0 0.1988204727 0 1 0.1999999965 0 2 0.1998631421 0 3 0.1996901744 
1 0 0.1987136453 1 1 0.1965293766 1 2 0.1950075124 1 3 0.1939584923 
2 0 0.1931126507 2 1 0.1887438717 2 2 0.1855561554 2 3 0.1832039211 
3 0 0.1845598182 3 1 0.1779319895 3 2 0.1727791340 3 3 0.1687576855 
4 0 0.1733752330 4 1 0.1644126026 4 2 0.1571120530 4 3 0.1511761068 
5 0 0.1596385566 5 1 0.1482951488 5 2 0.1387369852 5 3 0.1307250413 
6 0 0.1433772158 6 1 0.1296253900 6 2 0.1177409515 6 3 0.1075445468 
7 0 0.1246027028 7 1 0.1084252044 7 2 0.0941698004 7 3 0.0817140994 
8 0 0.1033205198 8 1 0.0847061215 8 2 0.0680495506 8 3 0.0532815201 

 

Table 2. Numerical bound state energy for Schrodinger equation for 0.2   
 

n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

0 0 0.1999984632 0 1 0.1987832390 0 2 0.1978162235 0 3 0.1972223087 
1 0 0.1884735507 1 1 0.1800456405 1 2 0.1747666840 1 3 0.1712798400 
2 0 0.1638342365 2 1 0.1471631221 2 2 0.1352643859 2 3 0.1266136009 
3 0 0.1287155386 3 1 0.1030751656 3 2 0.0832175806 3 3 0.0678250792 
4 0 0.8345598137 4 1 0.4851130356 4 2 0.0199680137 4 3 -0.0031618892 
5 0 0.2814049825 5 1 -0.1627768503 5 2 -0.0539231424 5 3 -0.0854276430 
6 0 -0.3720153621 6 1 -0.9118682655 6 2 -0.1381875593 6 3 -0.1784875761 
7 0 -0.1125577772 7 1 -0.1761658974 7 2 -0.2326838163 7 3 -0.2820666437 
8 0 -0.1979223018 8 1 -0.2711884160 8 2 -0.3373316374 8 3 -0.3959993274 

 

Table 3. Numerical bound state energy for Schrodinger equation for 0.3   
 

n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

0 0 0.1986991473 0 1 0.19517448620 0 2 0.1933538980 0 3 0.1923217286 
1 0 0.1679348678 1 1 0.15006268400 1 2 0.1390423109 1 3 0.1318348023 
2 0 0.1112581315 2 1 0.07495527010 2 2 0.0489886205 2 3 0.0301646895 
3 0 0.0315464186 3 1  -0.02483780344 3 2  -0.0687913845 3 3 -0.1028374075 
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n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

4 0 -0.0708236177 4 1 -0.14799502020 4 2 -0.2115431940 4 3 -0.2630509874 
5 0 -0.1957567623 5 1 -0.29406139620 5 2 -0.3781140516 5 3 -0.4485056936 
6 0 -0.3432199437 6 1 -0.46284628620 6 2 -0.5679525195 6 3 -0.6581630196 
7 0 -0.5131992250 7 1 -0.65425841230 7 2 -0.7807678720 7 3 -0.8914334487 
8 0 -0.7056879062 8 1 -0.86824962030 8 2 -1.0163950400 8 3 -1.1479621610 

 

Table 4. Numerical bound state energy for Schrodinger equation for 0.4   
 

n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

0 0 0.1950785721 0 1 0.1892493492 0 2 0.1865274182 0 3 0.1850271879 
1 0 0.1370418660 1 1 0.1066569946 1 2 0.0879157225 1 3 0.0756971120 
2 0 0.0351078134 2 1 -0.0278558252 2 2 -0.0731998599 2 3 -0.1060631653 
3 0 -0.1074476165 3 1 -0.2058533884 3 2 -0.2832046614 3 3 -0.3431599046 
4 0 -0.2901881662 4 1 -0.4252306301 4 2 -0.5374159217 4 3 -0.6284401940 
5 0 -0.5130027767 5 1 -0.6852617097 5 2 -0.8338727521 5 3 -0.9584825974 
6 0 -0.7758527203 6 1 -0.9856421918 6 2 -1.1716367390 6 3 -1.3314833890 
7 0 -1.0787216340 7 1 -1.3262262170 7 2 -1.5502129830 7 3 -1.7464184890 
8 0 -1.4216016360 8 1 -1.7069367970 8 2 -1.9693204180 8 3 -2.2026714360 

 

Table 5. Numerical bound state energy for Schrodinger equation for 0.5   
 

n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  n  l  ( )nE eV  

0 0 0.1892880088 0 1 0.1810855670 0 2 0.1773899226 0 3 0.175379002 
1 0 0.0957818770 1 1 0.0499155408 1 2 0.0214744600 1 3 0.002945097 
2 0 -0.0648119310 2 1 -0.1612265357 2 2 -0.2312188139 2 3 -0.281982601 
3 0 -0.2886485251 3 1 -0.4399886032 3 2 -0.5599630539 3 3 -0.653061466 
4 0 -0.5752077683 4 1 -0.7832804604 4 2 -0.9576230433 4 3 -1.099263876 
5 0 -0.9243563897 5 1 -1.1900350610 5 2 -1.4212092400 5 3 -1.615313492 
6 0 -1.3360477450 6 1 -1.6598044440 6 2 -1.9492903790 6 3 -2.198428115 
7 0 -1.8102620790 7 1 -2.1923738420 7 2 -2.5411114120 7 3 -2.847027866 
8 0 -2.3469898600 8 1 -2.7876298390 8 2 -3.1962434310 8 3 -3.560161581 
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Fig. 3. Bound state energy spectral diagram for 0.1   
 

 
Fig. 4. Bound state energy spectral diagram for 0.2   
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Fig. 5. Bound state energy spectral diagram for 0.3   
 

 
 

Fig. 6. Bound state energy spectral diagram for 0.4   
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Fig. 7. Bound state energy spectral diagram for 0.5   
 

5. ANALYTICAL CALCULATION OF NORMALIZATION CONSTANT  
 

The total wave function is given in equation (17). Considering equation (17), let 
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 Equation (17) simplify to 
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               .                                        (19) 

 

Jacobi polynomial can be express in the form 
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.                                         (20) 

 

The Jacobi polynomial of equation (17) can then be expressed as 
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The wave function express in hypergeometric polynomial is given as  
 

   
 
 

 2 11
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 (22) 

 
To normalize a wave function then 
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      .                                                                                    (23)  

 

Substituting equation (22) into (23) and recalling that  
rs e   gives  
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     (24)    

 

Considering  the transformation 1 2z s   , then the boundary of integration changes from 

   0,1 1, 1   from s to z coordinate  respectively., equation (24) can be written as  
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Considering the standard integral 
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Expressing equation (25) in terms of (26) gives   
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Therefore, the normalization constant 
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Substituting equation (28) into (22) gives the complete total wave function as 
 

 
   

   
 

 
 

 

2 11

1 3

1 1
1 3 1 3

2 2
2 2

1 3

1

2 1 1 2 1

1

2 ! 2 2 2 2 2
1

2 2 2 1

2 2
, 4 4 ,2 2 ;

! 2 2

M MM
nl M M

n M M n M M n
s S s

M n n M

n M
F n n M M M s

n M

  
   

 


     
   

    

  
    

 

.       (29) 

 

6. RESULTS AND DISCUSSION 
 
The numerical results obtain in Tables 2 to 5 has 
both positive and negative bound state values 
which shows that the potential is suitable for 
describing both particle and anti-particle as 
applied to elementary particles in High energy 
physics. Table 1 has positive bound state            
values which is useful in describing a particle like 
neutrino. The numerical tables show that the 
bound state energies decrease with an             
increase in quantum state and also decreases 
with an increase in the adjustable screening 
parameter. The numerical bound state spectral 
diagrams as shown in Figs. 3 to 7 show unique 
quantization of different energy level which is in 
consonance to the report in existing literature 
[34]. The propose exhibit both attractive or 
repulsive property because it is a combination of 
both short and long range potential. The 
developed potential is very applicable in             
particle and high energy physics. This        
potential also reduces to a well -known Coulomb 
potential. 

 
7. CONCLUSION 
 
In this work, we have applied the concept of 
parametric NU method to analytically calculate 
the bound state solutions of Schrodinger wave 
equation using TIQPCHP. The numerical 
calculations were carried out for different 
quantum state which shows unique quantization 
of different energy level. We also obtained the 
energy-Eigen equation and normalized wave 
function expressed in hypergeometric Jacobi 
polynomial. The numerical result also decreases 
with an increase in quantum state. The study of 
trigonometric and hyperbolic potential has 
application in high energy physics. 
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