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ABSTRACT 
 
T-cell-based methods using genetic engineering technology are considered the most advanced 
treatments in cancer therapy. Chimeric antigen receptor (CAR) T-cell therapy is an innovative 
immunotherapy wherein autologous T-cells are genetically modified to recognize and destroy cancer 
cells more effectively. CAR T-cell therapy has shown remarkable success in the treatment of CD19-
expressing hematologic malignancies. However, such extraordinary experience has not been 
translated to treatment of solid tumors, where its efficacy remains limited. This article gives an 
overview of these obstacles that CAR T-cells research needs to overcome to achieve efficient next-
generation T-cell therapy for solid malignancies. 
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1. INTRODUCTION 
 
One of the latest immunotherapy innovations in 
cancer treatment is to genetically modify T-cells 

to express a chimeric antigen receptor (CAR) 
that redirects patients’ T-cells to specifically 
target and destroy tumour cells. CAR is an 
engineered fusion protein composed of an 
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antigen recognition domain derived from a 
monoclonal antibody and intracellular T-cell 
signalling and costimulatory domains [1]. CAR 
recognizes the specific surface of peptide 
antigens on tumour cells in a major 
histocompatibility complex (MHC)-unrestricted 
manner [2]. The generation of CAR T-cells is 
complex. In brief, the enriched lymphocyte cells 
are taken from patients after being collected and 
sent to a specialized laboratory, where they are 
engineered to produce specific CARs on their 
surface. Before returning these cells to the 
patient, they are multiplied in a laboratory to 
obtain millions of modified cells [3]. A CAR 
sequence is introduced to T-cells using a plasmid 
or viral vector (e.g., adenovirus, retrovirus, or 
lentivirus) of which lentivirus has become the 
most common method of transducing human T-
cells [4]. Protocols for manufacturing large-scale 
CAR T-cells for medical use have now been 
established. Four clusters of differentiation 19 
(CD19) CAR T-cell therapies have been 
approved in the United States and other 
territories. The efficacy of the approved CAR T-
cells has been exceptional, with a remarkable 
impact on the survival of high-risk, bad-prognosis 
hematological malignancies, which has resulted 
in a significant expansion of clinical trials of CAR 
T-cells directed against multiple hematological 
antigens, such as CD19, CD20, and             
CD22 [5].  
 
CAR T-cells are in continuous development, with 
efforts being made to increase their efficacy. The 
first-generation CARs contain only one 
intracellular signalling domain, the zeta chain 
(CD3ζ), but this was insufficient to trigger CAR T-
cell expansion and engender continuous 
antitumor activity in vivo [5]. Therefore, better-
armed CARs containing additional costimulatory 
molecules, such as 4-1BB, CD28, CD27, OX40, 
ICOS, or RIAD, and some third or fourth-
generation CARs with two or more signalling 
domains have been developed [6].  
 
The associated toxicity must be taken into 
account when considering treatment with CAR T-
cells. CAR T-cell toxicities after treatment of 
hematological malignancy may positively 
correlate with infusion dosage. While mild or 
moderate adverse events (AEs) are easily 
medically managed, approximately 45%–50% of 
patients enrolled in the early CAR T-cell trials 
required intensive care management. A 
correlation also exists between the presence of 
cytokine release syndrome (CRS) and CAR T-
cell efficacy. The range of severity of CRS can 

range from flu-like constitutional symptoms, such 
as myalgia, headache, nausea, and anorexia, to 
capillary leak with hypoxia, hypotension, 
disseminated intravascular coagulation, and 
ultimately multi-organ failure [7].  
 
The second most clinically significant AE 
following CAR T-cells infusion is Immune Effector 
Cell-Associated Neurotoxicity Syndrome 
(ICANS), which typically occurs following CRS’s 
peak (often ≥ three days later) and rarely 
happens without antecedent CRS. Patients most 
commonly present with encephalopathy, with 
pertinent symptoms including aphasia, delirium, 
and confusion. Deaths due to CRS and ICANS 
have been reported, highlighting the gravity of 
these syndromes and the critical nature of 
appropriate early interventions [8]. The toxicities 
and optimum therapeutic dosage remain a topic 
for further research.   
 
Several clinical CAR T-cell therapy trials have 
been carried out in solid tumours after the great 
success in treating hematological malignancies. 
However, the results have been disappointing 
and varied, from “none” to “unsatisfactory” 
responses among different solid tumours. The 
study with the best outcomes reported that four 
of 19 patients with neuroblastoma achieved 
objective clinical responses, and three of them 
achieved complete remission after CAR-T cells 
treatment [9]. Another study reported modest 
response in ten recurrent glioblastoma adult 
patients treated with anti-EGFRvIII CAR-T cells. 
Nine patients achieved stable diseases and one 
reported progressive disease [10]. A meta-
analysis from 22 studies with 262 patients with 
different solid tumours was carried out to analyse 
the response rate of the CAR T-cell therapy. The 
solid tumours included in the study were 
neurological tumors, hepatobiliary, pancreatic, 
melanoma, sarcoma, gastrointestinal 
malignancies, prostate cancer, breast cancer and 
non-small-cell lung cancer. The overall response 
rate among the solid tumours scarcely reached 
9% (95% CI:4–16%) [11]. It is noteworthy that 
the route of administration appears to be 
essential for the efficacy of CNS tumours. A 
patient with recurrent multifocal glioblastoma 
received multiple infusions of CAR-engineered T-
cells targeting the tumour-associated antigen 
interleukin-13 receptor alpha 2 (IL13Rα2) 
through two intracranial delivery routes. After 
CAR T-cell treatment, regression of all 
intracranial and spinal tumours was               
observed, along with toxic effects of grade 3 or 
higher [12].  
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Three main hurdles that may explain the lack of 
efficacy of CAR T-cell therapies in solid tumours 
include:  
 

1.  The presence of tumour-specific antigen 
and heterogenicity;  

2.  The limited trafficking of CAR T-cells to 
tumour sites; and  

3.  The immunosuppressive effect of tumour 
antigen density and the tumour 
microenvironment (TME).  

 
Concerning the first hurdle, the ideal target 
should be the tumour-specific antigens (TAA) 
expressed only on tumour cells. Unfortunately, 
they are rarely used as targets for CAR T-cells 
because of their scarcity. The TAA enriched in 
tumour cells and expressed at low levels in 
normal tissues, such as HER2, CEA, GD2, and 
mesothelin, are the first choice for CAR T-cell 
targets. However, the on-target/off-tumour 
toxicity has been an issue since low-expressed 
antigens in normal tissues can also be attacked 
by CAR T-cells [13]. Targeting neoantigens – the 
somatic mutations expressed only by tumour 
cells – might enable tumour destruction without 
causing undue damage to healthy tissues. 
However, there are significant challenges to 
targeting neoantigens with CAR T-cells, such as 
the heterogenicity and variability in antigen 
processing as well as the presentation of tumour 
targets and constant mutant evolution [14]. 
Another aspect to consider is that only very few 
neoantigens are immunogenic, and the driver 
mutations often exhibit early immune evasion 
mechanisms [15].   

 
Trafficking to the tumour does not seem to be a 
significant issue for hematologic tumours but is 
an issue for CAR T-cells targeting solid tumours. 
Most solid tumours present with a fibrotic stroma, 
which may make it more difficult for engineered 
T-cells to infiltrate. Also, T-cells will have to cross 
the tumour vasculature to access the target 
tissue. Several factors are involved in this step, 
including critical players in several aspects of the 
tumour progression, such as angiogenesis, 
metastasis, leukocyte migration into tumour sites, 
and chemokines. Some studies have shown that 
modifying CAR T-cells to express a chemokine 
receptor (e.g., CCR2, CCR4, or CXCR2) 
matching the chemokine secretion by the target 
tumour cells leads to improved T-cell homing into 
the tumour and enhanced antitumor efficacy In 
vivo [16]. Hypoxia, a feature of growing tumours 
of metabolic stress, suppresses T-cell 
responses, including lymphocyte abilities to 

migrate. Apart from hypoxic conditions, altered 
metabolic factors (e.g., reduced glucose, 
increased lactate) are likely to affect the T-cell 
motility within tumours [17].  
 

Once CAR T-cells have passed the stromal 
obstacles described above, they need to have 
productive contacts with malignant cells. Recent 
data has indicated that the density of the target 
antigen plays a critical role in CAR T-cell efficacy 
[18]. Logically, CAR T-cells would not establish 
productive immunologic synapses with malignant 
cells that have lost their target antigens. There is 
also an observation that tumour cells with 
decreased target antigen expression are not 
efficiently eliminated; CAR T-cell efficacy may 
require a higher antigen density at the cancer cell 
surface.  
 

CAR T-cells are insufficient to overcome all TME 
obstacles; therefore, it will be necessary to 
combine CAR T-cell treatments with various 
modifications aimed at overcoming the 
challenges posed by solid tumours. A new 
generation of CAR T-cell therapies targeting 
fibroblasts, T- regulatory cells, M2 macrophages, 
myeloid-derived suppressor cells, or CAR T-cells 
expressing pro-inflammatory cytokines are being 
investigated. Furthermore, the overexpression of 
chemokine receptors on CAR T-cells overcomes 
the obstacles of poor trafficking to tumour sites 
and may also present another therapy option 
[19]. 
 

2. CONCLUSION 
 

To date, CAR T-cell therapy has proven a great 
success in treating hematological malignancies; 
however, its therapeutic effect in solid 
malignancies remained unsatisfactory. It is 
expected that CAR T-cell therapy would achieve 
significant advances and sustainable success in 
the field of solid tumours via the genetically-
manipulated infused CAR T-cells, thought to 
provide limitless opportunities for changes and 
improvements to overcome main obstacles 
limiting CAR T-cell effectiveness. However, the 
modification of CAR T-cells to obtain better 
efficacy but may be associated with more 
toxicities. Therefore, the continuous development 
of CART T-cell therapies mandates a detailed 
rationale and refinement of preclinical models to 
predict efficacy and toxicity before their use in 
clinical trials. 
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