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Abstract 

 
There is increase in the number of new types of cyber threats which actualizes the issues of their information 

transfer. This paper presents a secure encryption and decryption method using cyclic codes, inspired by the 

One-Time Pad cryptosystem, for smart grid communications. We convert plaintext into binary, chunk it into 

segments, and pad these to align with a generator polynomial. These segments are then transformed into 

polynomials, encrypted, and secured with a One-Time Pad. The decryption process reverses these steps, 

recovering the original plaintext. Our findings show that cyclic codes effectively maintain data integrity and 

security, demonstrating robustness. In a practical application, we securely transmitted the message "shed 

load" within a smart grid system. Cyclic codes provided a reliable and efficient means of securing data, 

accurately reversing the encryption steps and ensuring data fidelity. AES and RSA are more complex to 
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implement compared to the cyclic code encryption scheme. They require more computational resources for 

encryption and decryption. The cyclic code scheme is conceptually straightforward with polynomial 

operations. These results underscore the potential of cyclic codes to enhance smart grid communication 

security, offering a balance of security, efficiency, and robustness. 

 

 
Keywords: Cyclic codes; encryption; decryption. 

 

1 Introduction  
 

The advancement of information and telecommunication technologies has become so extensive that they now 

impact every aspect of our lives. Consequently, the demand for information security is continually increasing. 

 

While cyclic codes have been studied extensively in coding theory, their application in practical cryptography 

systems, especially in smart grids, is less explored. Traditional methods of securing smart grid communications 

may not adequately address the increasing threat in the digital world. 

 

 The intended recipient or decryption system receives the encrypted data (ciphertext) and acquires the necessary 

decryption key to decode the ciphertext. A decryption key must match the encryption key used during the 

encryption process [1]. 

 

The recipient applies the decryption algorithm to the ciphertext using the decryption key. The decryption 

algorithm reverses the transformation applied during encryption, recovering the original plaintext.  

 

According to Abdullah [2] AES is providing much more security compared to DES, 3DES and ECC. However 

the implementation of AES algorithms is facing complexities as result of lengthy of the keys. 

 

 In 1957 Prange introduced Binary cyclic codes have been the topic of hundreds of papers since. Cyclic codes 

are under going a lot of developments. 

 

In 1978, Mc Eliece proposed the first code-based cryptosystem. Original Mc Eliece cryptosystem was low in 

encryption rate and had large key size. Baldi et al, [3] improved the Mc Eliece cryptosystem by replacing the 

permutation matrix with dense transformation matrix. 

 

In a study by Calkavar. S. [4] he investigated the minimal codewords in the binary cyclic codes and obtained 

that: 

 

Let C be an [𝑛, 𝑘]-cyclic code over 𝐹2  with generator polynomial g(x) =  𝑔0 + 𝑔1𝑥 + ⋯ 𝑔𝑛−𝑘𝑥
𝑛−𝑘 of degree  

n-k. In the [𝑛, 𝑘]-binary cyclic codes C generated by g(x), there are altogether  2𝑘- 2 minimal codewords. He 

concluded that these results can be used for the secret sharing based on the binary cyclic codes. 

 

An encryption method based on cyclic BCH codes was developed by Petrenko et al [5]. They used RSA 

encryption algorithm and error correcting codes. In this cryptosystem cyclic codes were used for detection and  

correction of errors.  

 

Efficient method of constructing code-based cryptosystems was developed by Calkavur and Guzeltepe [6]. This 

approach is based on the One Time Pad cryptosystem. This approach is very fast and the keys are short. The 

method can be applied by different organizations to ensure data is securely transmitted. According to 

Bellovin.S.M. [7], Gilbert S.Vernam  and Joseph O. Mauborgne are credited to invention of One Time Pad. 

 

2. Preliminaries 
 

Definition: A code C is considered cyclic if it is a a linear code and any cyclic shift of a codeword is also a 

codeword. In other words, if 𝑎0 𝑎1 ⋯𝑎𝑛−1 ∈ C, then also 𝑎𝑛−1𝑎0 𝑎1 ⋯𝑎𝑛−2 ∈ C. 
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Definition: A k×n generator matrix G is formed by arranging the base vectors of the code C as rows of G. this 

matrix is referred to as generator matrix of the linear [𝑛, 𝑘]-code C. 

 

Definition: Encryption involves transforming plaintext into ciphertext using an encryption algorithm. 

Ciphertext is unintelligible and unreadable to unauthorized users or entities.  

 

Definition: Decryption process is done using decryption algorithm that is converting ciphertext, which is 

encrypted or encoded data, back into its original plaintext form, making it readable and intelligible to authorized 

users. 

 

Theorem: 

 

Let C ≠ {𝟎} be a cyclic code of length n over F. 

 

(1) Let g(x) be a monic code polynomial of minimal degree in C. Then g(x) is uniquely determined in C, and 

 

C = {𝑞(𝑥)𝑔(𝑥)|𝑞(𝑥) ∈ 𝐹[𝑥]𝑛−𝑟}, 
 

Where  

 

r = deg (g(x)),in particular, C has dimension n-r. 

(2) The polynomial g(x) divides 𝑥𝑛 − 1 in F[𝑥]. 
 

PROOF. As C≠ {𝟎}, it contains nonzero code polynomial, each of which has a unique monic scalar multiple. 

Thus there is a monic polynomial g(x) in C of minimal degree. Let this degree be r, unique even if g(x) is not. 

By remarks preceding the theorem, the set of polynomials 

 

𝐶0= {𝑞(𝑥)𝑔(𝑥)|𝑞(𝑥) ∈ 𝐹[𝑥]𝑛−𝑟} 
 

Is certainly contained in C, since it is composed of those multiples of the code polynomial g(x) with the 

additional property of having degree less than n. Under addition and scalar multiplication 𝐶0 is an F-vector 

space of dimension n-r. The polynomial g(x) is unique monic polynomial of degree r in 𝐶0. 

 

To prove (1), we must show that every code polynomial c(x) is an F[x]- multiple of g(x) and so belongs to the 

set 𝐶0. By the Division Algorithm we have 

 

C(x) = q(x)g(x) + r(x), 

 

for some q(x), r(x)∈ F[𝑥] with deg (r(x)) < r = deg (g(x)), therefore 

 

r(x) = c(x) - q(x)g(x) 

 

By defination c(x) ∈ C and q(x)g(x) is in 𝐶0 (as c(x) has degree less than n). Thus by linearity, the right hand 

side of this equation is in C, hence the remainder term r(x) is in C. If r(x) was nonzero, then it would have a 

monic scalar multiple belonging to C and of smaller degree than r. But this would contradict the original choice 

of g(x). Therefore r(x) = 0 and c(x) = q(x)g(x), as required. 

 

 Next let 

 

𝑥𝑛 −  1 = h(x)g(x) + s(x) 

 

for some s(x) of degree less than deg(g(x)). Then, as before, 

 

s(x) = (-h(x)g(x) (mod 𝑥𝑛 −  1) 

 

belongs to C. Again, if s(x) is not zero, then it has a monic scalar multiple belonging to C and smaller degree 

than that of g(x), a contradiction. Thus s(x) = 0 and g(x)h(x) = 𝑥𝑛 −  1, as in (2). 
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The polynomial g(x) is called the generator polynomial for the code C. 

 

The polynomial h(x) ∈ F[𝑥] determined by 

 

g(x)h(x) = 𝑥𝑛 −  1 

 

is the check polynomial of C. 

 

One of the earliest types of codes applied in practice were cyclic codes, which were created using shift registers. 

In 1957, Prange observed that these cyclic codes possess a complex and rich algebraic structure. 

 

The linear code C of length n is a cyclic code if it is invariant under a cyclic code shift 

 

C = (𝑐0, 𝑐1, 𝑐2. . . , 𝑐𝑛−2, 𝑐𝑛−1) ∈ 𝐂 

 

If and only if 

 

C̃ = (𝑐𝑛−1, 𝑐0, 𝑐1. . . , 𝑐𝑛−3, 𝑐𝑛−2) ∈ 𝐂 . 

 

Since C is invariant under this single right cyclic shift, it remains invariant under any number of right cyclic 

shifts through iteration. Since a single left cyclic shift is the same as n - 1 right cyclic shifts, C is also invariant 

under a single left cyclic if and only if it is invariant under all cyclic shift. Consequently, the linear code C is 

cyclic precisely when it is invariant under all cyclic shifts. 

 

Proposition: 

  

If C is the cyclic code of length n with check polynomial h(x), then 

 

C = {𝑐(𝑥) ∈ 𝐹[𝑥]𝑛 | 𝑐(𝑥)ℎ(𝑥)  =  0 ( 𝑚𝑜𝑑𝑥𝑛 −  1)  } 
 

Proof: 

 

Indeed if c(x) ∈  C, then by theorem1 there is a q(x) with c(x) = q(x)g(x). But then 

 

c(x)h(x) = q(x)g(x) = q(x)(𝑥𝑛 −  1) = 0( mod𝑥𝑛 −  1). 

 

Now consider an arbitrary polynomial c(x) ∈ F[𝑥]𝑛 with  

 

c(x)h(x) = p(x)(𝑥𝑛 −  1) 

 

Then 

    

c(x)h(x) = p(x)(𝑥𝑛 −  1)= p(x)g(x)h(x), 

 

Hence  

 

 (c(x) - p(x)g(x))h(x) = 0 

 

As g(x)h(x) =  𝑥𝑛 −  1,we  do not have h(x) = 0 .Hence 

 

c(x) - p(x)g(x) = 0 

 

And c(x) = p(x)g(x),as required. 

 

With generator polynomial g(x) = ∑ 𝑔𝑗𝑥
𝑗𝑟

𝑗=0  for the cyclic code C, then construction of a generator matrix for C 

is simple, consider 
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G = 

[
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0
𝑔𝑟

⋱
⋱
. . .

   

0
0
⋱
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⋯

   

⋯
⋯
⋱
⋱

𝑔𝑟−1

   

0
0
⋮
⋮

𝑔𝑟]
 
 
 
 

  

 

The matrix G has n columns and k = n-r rows; so the first row, row 𝑔0, finishes with a string of 0’s of length k-1. 

Each successive row is cyclic shift of the previous row: 𝑔𝑖 =  𝑔̅ for  

 

I = 1,…,k-1. As g(x)h(x) = 𝑥𝑛 − 1,We have 

 

𝑔0ℎ0 =  𝑔(0)ℎ(0)  =  0𝑛 − 1 ≠ 0 

 

Particularly 𝑔0 ≠ 0 (and ℎ0 ≠  0), therefore G is echelon form. Specifically, the k = dim(C) rows of G are 

linearly indipendent. Obviously, the rows of G belong to C, thus G serves as generator matrix for C, often 

referred to as the cyclic generator matrix of C.  

 

Secret key cryptosystem: 

 

A cryptosystem is referred to as a secret key cryptosystem if a shared piece of confidential information (the key) 

is agreed upon beforehand by the parties wishing to communicate securely. There are several fundamental types 

of secret key cryptosystems: 

 

1. Substitution-based cryptosystems: These systems replace the characters of the plaintext with different 

characters. 

2. Monoalphabetic cryptosystems: These use a fixed substitution where each character is always replaced by 

the same symbol or group of symbols. 

3. Polyalphabetic cryptosystems: In these systems, the substitution changes continually throughout the 

encryption process. 

4. Transposition-based cryptosystems: These systems rearrange the characters of the plaintext, such as 

transforming "permission" to "impression." 

5. Stream cryptosystems: Each block of plaintext is encrypted using a different key. Stream cryptosystems 

are often more suitable for certain applications, such as telecommunications, because they are typically 

simpler to implement, faster, and do not propagate errors. 

6. Block cryptosystems: The same key is used to encrypt arbitrarily long plaintext, processing it in blocks. 

 

One time pad cryptosystem:- a cryptosystem for encoding data using a key of the same length as the data. If m is 

the plaintext, s is the key and c is the cryptotext, then the encryption algorithm 𝑒𝑠  𝑖𝑠  𝑐 =   𝑒𝑠(m) = m+s   and 

the decryption algorithm 𝑑𝑠 is m =  𝑑𝑠(𝑐)  = d+s 

 

3 Application of Cyclic Codes over  𝐆𝐅𝟐 to Encryption of Data 
 

An encryption using One Time Pad cryptosystem constructed by Calkavur and Guzeltepe [6] will be used here. 

The encryption scheme consists of the following parameters.   

 

✓ Set up 

✓ Key Generation 

✓ Encryption  

✓ Decryption   

         

Key Generation Procedure: 

 

1. Select a codeword m from a cyclic code of length n with generation matrix g(x) of degree r. 

2. Compute a cyclic shift of the codeword is denotet s. 

3. Calculate c = m + s. 

4. The plaintext is m and the private key is s 
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Encryption: 

 

⚫ ,Plaintext ; 𝑚𝑖 = 𝑎1(𝑥)𝑔(𝑥), where 0 ≤ i ≤ 𝑝𝑛−𝑟 

⚫ .Key: 𝑠𝑖 = 𝑥𝑡𝑎𝑖(x)g(x), where t is the number of shift and s = 𝑠1𝑠2….𝑠𝑛 .  
⚫ Ciphertext: 𝑐𝑖 = 𝑚𝑖 + si. 

 

Assume that 𝑎𝑖(𝑥)𝑔(𝑥) ≠  𝑎𝑗(𝑥)𝑔(𝑥)    for i≠ 𝑗,0≤ i , j ≤  𝑝𝑛−𝑟 

 

Decryption: 

 

⚫ Ciphertext: 𝑐𝑖 

⚫ Plaintext: 𝑚𝑖 = 𝑐𝑖 + (𝑝 − 1)𝑠𝑖 

 

Correctness: The correctness of the encryption scheme depends on the structure of a cyclic code. It is known 

that any cyclic shift of a cyclic code remains a codeword. Each cyclic shift of a codeword serves as a key, and 

this key has the same length as the plaintext. Additionally, the key is used only once. 

 

 In a smart grid system, the controller communicates various types of messages to different components to 

ensure efficient, reliable, and secure grid operation. The smart grid is an upgraded version of the 20th-century 

electrical grid, incorporating two-way communications and distributed intelligent devices [8]. These two-way 

flows of electricity and information can enhance the delivery network. 

 

 Here are some examples of communication messages sent by the controller to the smart grid; Load Control 

Commands like, load shedding-this is a Command to reduce or disconnect certain loads to prevent overloading 

the grid. We take the example of ‘shed load’ and communicate the message from controller to smart grid [9]. 

 

The first step is to convert a plaintext ‘shed load’ to binary, followed by putting it to one message string, chunk 

the message to 7 bits to able to use the proposed generator polynomial, encrypt the codewords add OTP then 

decrypt it back to the original plaintext [10]. 

 

List 1. Examples of communication messages sent by the controller to the smart grid 

 

Character ASCII Binary 

s 115 01110011 

h 104 01101000 

e 101 01100101 

d 100 01100100 

space 32 00100000 

l 108 01101100 

o 111 01101111 

a 97 01100001 

d 100 01100100 

 

01110011 01101000 01100101 01100100 00100000 01101100 01101111 01100001 01100100 

Remove the spaces to make it one string. 

 

011100110110100001100101011001000010000001101100011011110110000101100100 

 

Divide the message to 7 bits string and pad the last codeword to have 7 bits: 

 

0111001, 1011010, 0001100, 1010110, 0100001, 0000001, 1011000, 1101111, 0110000, 1011001, 0000000 

converted to polynomials they will be 𝑥5 + 𝑥4 + 𝑥3 + 1, 𝑥6 + 𝑥4 + 𝑥3 + 𝑥, 𝑥3 + 𝑥2, 𝑥6 + 𝑥4 + 𝑥2 + 𝑥,𝑥5 +
1,1,𝑥6 + 𝑥4 + 𝑥3, 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1, 𝑥5 + 𝑥4,𝑥6 + 𝑥4 + 𝑥3 + 1, 0 

 

Encryption scheme used based on these codewords is given in the following 

 

𝑚𝑖= 𝑎𝑖(𝑥)𝑔(𝑥), 𝑠𝑖 = 𝑥𝑡𝑎𝑖(𝑥)𝑔(𝑥), (𝑙𝑒𝑡 𝑡 = 1), 𝑐𝑖 = 𝑚𝑖 + 𝑠𝑖 , 1 ≤ 𝑖 ≤ 11 
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Now we use this encryption scheme by using the generator polynomial g(x) = 1 + x + 𝑥3 

 

m1 = a1(x)g(x)  =   (1+𝑥 + 𝑥3)(𝑥5 + 𝑥4 + 𝑥3 + 1) = 0 = 0000000 

𝑠1= xa1(x)g(x)  = x(0) = 0 = 0000000 

𝑐1 = 𝑚1 + 𝑠1 = 0+0 = 0 = 0000000 

𝑚2 = 𝑎2(𝑥)𝑔(𝑥) = (𝑥6 + 𝑥4 + 𝑥3 + 𝑥) (1+𝑥 + 𝑥3) = 𝑥5+ 𝑥4 + 𝑥3 + 𝑥 = 0111010 

𝑠2 = 𝑥𝑎2(𝑥)𝑔(𝑥)  =  𝑥 (𝑥5 + 𝑥4 + 𝑥3 + 𝑥) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 = 1110100 

𝑐2 = 𝑚2 + 𝑠2 = (𝑥5+ 𝑥4 + 𝑥3 + 𝑥)+ (𝑥6 + 𝑥5 + 𝑥4 + 𝑥2) = 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 = 1001110 

𝑚3= a3(x)g(x)  = (𝑥3 + 𝑥2)(𝑥3 + 𝑥 + 1) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 = 1110100  

𝑠3 = 𝑥a3(x)g(x)  =  𝑥(𝑥6 + 𝑥5 + 𝑥4  + 𝑥2) = 𝑥6 + 𝑥5 + 𝑥3 + 1= 1101001 

𝑐3 = m3 + s3  =  (𝑥6 + 𝑥5 + 𝑥4 + 𝑥2) + (𝑥6 + 𝑥5 + 𝑥3 + 1) = 𝑥4 + 𝑥3 + 𝑥2 + 1= 0011101 

𝑚4= a4(x)g(x) = ( 𝑥6 + 𝑥4 + 𝑥2 + 𝑥)(𝑥3 + 𝑥 + 1) = 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 = 1001110 

𝑠4 = 𝑥a4(x)g(x) = x(𝑥6 + 𝑥3 + 𝑥2 + 𝑥) = (𝑥4 + 𝑥3 + 𝑥2 + 1) = 0011101 

𝑐4 = 𝑚4 + 𝑐4 = 1010011 

𝑚5 = a5(x)g(x) =  (𝑥5 + 1)(𝑥3 + 𝑥 + 1) = 𝑥6 + 𝑥5 + 𝑥3 + 1 = 1101001 

𝑠5 = xa5(x)g(x) =  𝑥(𝑥6 + 𝑥5 + 𝑥3 + 1) = 𝑥6 + 𝑥4 + 𝑥 + 1= 1010011 

𝑐5 =  𝑚5 + 𝑠5 = 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 = 0111010 

𝑚6 = a6(x)g(x) = 1(𝑥3 + 𝑥 + 1) = 𝑥3 + 𝑥 + 1) = 0001011 

𝑠6= xa6(x)g(x) = x(𝑥3 + 𝑥 + 1)= 𝑥4 + 𝑥2 + 𝑥 = 0010110 

𝑐6 = 𝑚6 + 𝑠6 = ( 𝑥3 + 𝑥 + 1)+(𝑥4 + 𝑥2 + 𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 1= 0011101 

𝑚7 = a7(x)g(x)  =  (x6 + x4 + x3)(𝑥3 + 𝑥 + 1) = 𝑥5 + 𝑥3 + 𝑥2 = 0101100 

𝑠7 = xa7(x)g(x)   =  x( 𝑥5 + 𝑥3 + 𝑥2) = 𝑥6 + 𝑥4 + 𝑥3 = 1011000 

𝑐7 =( 𝑥5 + 𝑥3 + 𝑥2) +(𝑥6 + 𝑥4 + 𝑥3) = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 = 1110100 

𝑚8 = a8(x)g(x) = ( 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1) (𝑥3 + 𝑥 + 1) = 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 = 1001110 

𝑠8 = xa8(x)g(x) = x( 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 = 𝑥4 + 𝑥3 + 𝑥2 + 1 = 0011101 

𝑐8 = 𝑚8 + 𝑠8 = x6 + 𝑥4 + 𝑥 + 1  = 1010011 

𝑚9 = a9(x)g(x) = (𝑥5 + 𝑥4) (𝑥3 + 𝑥 + 1) = 𝑥6 + 𝑥4 + 𝑥 + 1 = 1010011 

𝑠9 = xa9(x)g(x) =  x( 𝑥6 + 𝑥4 + 𝑥 + 1 ) = 𝑥5 + 𝑥2 + 𝑥 + 1= 0101011 

𝑐9 = 𝑚9 + 𝑠9 = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 =1110100 

𝑚10 = a10(x)g(x) = ( x6 + x4 + x3 + 1)(𝑥3 + 𝑥 + 1) = 𝑥5 + 𝑥3 + 𝑥2+ 1 = 0101101 

𝑠10 = xa10(x)g(x) =  x( 𝑥5 + 𝑥2 + 𝑥+1 ) = 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 = 1011010 

𝑐10 = 𝑚10 + 𝑠10 = 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 = 1110111 

𝑚11 = a11(x)g(x) = 0 (𝑥3 + 𝑥 + 1) = 0 = 0000000 

𝑠11 = x a11(x)g(x)  = x(0) = 0 = 0000000 

𝑐11 = 𝑚11+𝑠11 = 0+0 = 0 = 0000000  

 

The output of encryption is the ciphertext 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑎𝑛𝑑 𝑐11. 

 

This ciphertext is sent to the smart grid for decrypting process by applying the decryption key which reverses 

the ciphertext to plaintext. 

 

Decryption process: 

 

𝑚𝑖  = 𝑐𝑖+(𝑝 − 1)𝑠𝑖 

m1= 𝑠1+ 𝑐1 = 0000000 

𝑚2 = 𝑠2 + 𝑐2 = 0111010 

𝑚3 = 𝑠3+𝑐3 = 1110100 

𝑚4 = 𝑠4+𝑐4  = 1001110 

𝑚5 = 𝑠5 +  𝑐5  = 1101001 

𝑚6 = 𝑠6+ 𝑐6 = 0001011 

𝑚7 = 𝑠7+ 𝑐7 = 0101100 

𝑚8 = 𝑠8+ 𝑐8 = 0001010 

𝑚9 = 𝑠9+ 𝑐9 = 1010011 

𝑚10 = 𝑠10+ 𝑐10 = 0101101 

𝑚11 = 𝑠11+ 𝑐11  = 0000000 
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We must perform polynomial division to extract our original polynomial. 

 

 m1 divided by generator it results to this original polynomial  𝑥5 + 𝑥4 + 𝑥3 + 1 = 0111001 . It is performed 

as follows: 

 

                      𝑥5  + 𝑥4 + 𝑥3 + 1 

 

𝑥3 + 𝑥 + 1 𝑥8+   𝑥7 + 𝑥 + 1 

  𝑥8 + 𝑥6 + 𝑥5 

          𝑥7 − 𝑥6 − 𝑥5 

                            𝑥7 + 𝑥5 + 𝑥4 

                                        𝑥6 + 𝑥4 + 𝑥 

                                        𝑥6  + 𝑥4 + 𝑥3 

                                                         𝑥3 + 𝑥 + 1 

                                                         𝑥3 + 𝑥 + 1 

                                                           0   0    0 

 

𝑚2 = 𝑥6 + 𝑥4 +  𝑥3  + 𝑥 = 1011010 

m3  = 𝑥3 + 𝑥2= 0001100 

𝑚4  = 𝑥6 + 𝑥4 + 𝑥2  + 𝑥= 1010110 

m5 = 𝑥5 + 1= 0100000 

𝑚6  = 1 = 0000001 

m7  = 𝑥6 + 𝑥4 + 𝑥3 = 1011000 

 𝑚8 = 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1=1101111 

m9 = 𝑥5 + 𝑥4= 0110000 

m10 = 𝑥6 + 𝑥4 + 𝑥3 + 1= 1011001 

𝑚11  =0 = 0000000 

 

The output for decryption is the message we get after performing polynomial division i.e 

𝑚1, 𝑚2, 𝑚3, 𝑚4,  𝑚5, 𝑚6, 𝑚7, 𝑚8, 𝑚9,  𝑚10, 𝑎𝑛𝑑 𝑚11 

 

We convert the 7 bits (all equivalent for 𝑚𝑖) decrypted codewords to one string. 

 

01110011011010000110010101100100001000000110110001101111011000010110010000000 

 

The last one was padded by 5 zeros to make 7-bits, we remove the zeros. Then chunk the above string to 8 bits 

as follows; 

 

01110011, 01101000, 01100101, 01100100, 00100000, 01101100, 01101111, 01100001, 01100100, which is 

interpreted as 115, 104, 101, 100, 32, 108, 111, 97, 100, which represents the plain text ‘shed load’. 

 

 
 

Fig. 1. Diagram showing the encryption and encryption process 
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4 Discussion 
 

Cyclic codes can be applied in encryption and decryption of data. The example showcased how the plaintext 

message "shed load " was converted into its binary representation using ASCII encoding, chunked into 

manageable segments, and then padded to fit the generator polynomial requirements. These chunks were then 

transformed into polynomial representations to facilitate encryption. By multiplying the polynomial codes by a 

generator polynomial and adding a One-Time Pad (OTP), the plaintext was successfully encrypted into a 

ciphertext. This process underscores the effectiveness of cyclic codes in creating secure data streams that can 

resist unauthorized access and ensure data integrity. The decryption involved reversing the encryption steps by 

using the generator polynomial to decode the ciphertext back into its original polynomial form. This step-by-

step reversal highlighted the robustness of cyclic codes in maintaining data fidelity through the entire 

encryption-decryption cycle. Cyclic codes over 𝐺𝐹2 offer a powerful tool for data encryption and decryption, 

providing a balance of security, reliability, and efficiency. Their application in smart grid communications, as 

demonstrated, highlights their potential to enhance critical infrastructure operations, ensuring that data integrity 

and security are maintained in the face of growing digital threats. However, both the sender and receiver must 

maintain perfect sychronization with the OTP, which can be difficult to achieve and maintain in dynamic 

network conditions. Further refinement can be done on robust sychronization mechanisms to ensure the 

seamless operation of OTP-based encryption on the smart grid. 

 

5 Conclusion  
 

We presented an application of code-based cryptosystem to smart grid. The cryptosystem is based on One Time 

Pad. The One Time Pad is a proven unbreakable encryption method.  One Time Pad cryptosystem method is an 

addictive stream cipher, where truly random keys are generated and then combined with the plaintext for 

encryption or with ciphertext for decryption by an “exclusive OR” (XOR) addition. The cyclic code encryption 

scheme used in smart grids offers a unique blend of error correction and encryption capabilities, making it 

suitable for secure communication in smart grid environments. However, it faces challenges related to key 

management and scalability. In contrast, AES is highly secure, efficient, and well-standardized, making it a 

popular choice for many smart grid applications. RSA and ECC provide strong security for key exchange and 

resource-constrained environments, respectively, but come with their own implementation complexities and 

performance trade-offs. Future work could explore hybrid approaches that combine the strengths of these 

different encryption methods to enhance the overall security and efficiency of smart grid communications. 

Investigating the integration of cyclic codes with new technologies such as Internet of Things devices in smart 

grids to improve overall system resilience can also be tried. 
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