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Abstract
Topological phase classifications have been intensively studied via machine-learning techniques
where different forms of the training data are proposed in order to maximize the information
extracted from the systems of interests. Due to the complexity in quantum physics, advanced
mathematical architecture should be considered in designing machines. In this work, we
incorporate quaternion algebras into data analysis either in the frame of supervised and
unsupervised learning to classify two-dimensional Chern insulators. For the unsupervised-learning
aspect, we apply the principal component analysis on the quaternion-transformed eigenstates to
distinguish topological phases. For the supervised-learning aspect, we construct our machine by
adding one quaternion convolutional layer on top of a conventional convolutional neural network.
The machine takes quaternion-transformed configurations as inputs and successfully classify all
distinct topological phases, even for those states that have different distributions from those states
seen by the machine during the training process. Our work demonstrates the power of quaternion
algebras on extracting crucial features from the targeted data and the advantages of
quaternion-based neural networks than conventional ones in the tasks of topological phase
classifications.

1. Introduction

The phase classification using machine-learning (ML) based techniques has been attracting intense
attentions since the pioneering work in 2017 [1]. In addition to the classical phase detections [2, 3] where
each phase is well defined by the corresponding order parameters, detecting topological phase transitions [2]
is interesting and challenging [4] due to the lack of local order parameters. Recently, the phase detections and
classifications have been performed via different ML techniques for classifying various topological invariants
[4–36], including the Chern number [6, 10, 14–23], winding number [16, 18, 21, 24–26], Z2 index [4, 6, 10,
17, 26–36], to name a few. In addition to the applied ML architectures, the forms of the inputs for training
the machine also play a crucial role in determining the resulting performance of the topological phase
detections [4].

For the topological systems with the Chern numbers or the winding numbers as the topological
invariants, various types of inputs are used to perform the phase classifications. For instance, the quantum
loop topography is introduced to construct multi-dimensional images from raw Hamiltonians or wave
functions as inputs [14, 17]. The Bloch Hamiltonians are arranged into an arrays to feed the neural networks
[16, 24]. In addition, the real-space particle densities and local density of states [15] and the local projections
of the density matrix [6] are also used as inputs. From cold-atom experiments, momentum-space density
images were generated as inputs for classifications [20]. The time-of-flight images [10, 19], spatial
correlation function [10], density–density correlation function [10] and the density profiles formed in
quantum walks were also proposed as appropriate inputs [23]. Furthermore, the spin configurations [18]

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acc0d6
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acc0d6&domain=pdf&date_stamp=2023-3-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1797-8481
https://orcid.org/0000-0003-4273-9682
mailto:shinming@mail.nsysu.edu.tw


Mach. Learn.: Sci. Technol. 4 (2023) 015032 M-R Lin et al

and the Bloch Hamiltonians over the Brillouin zone (BZ) have also been treated as inputs for the neural
networks [18, 21]. For these forms of inputs mentioned above, various ML techniques with distinct
real-valued neural networks have been applied to discriminate different topological phases.

As the development of artificial neural networks becomes mature, a raise of representation capability of
machines is anticipated by generalizing real-valued neural networks to complex-valued ones [37, 38].
Specifically, a quaternion number, containing one real part and three imaginary parts, and the corresponding
quaternion-based neural networks [39–42] are expected to enhance the performance on processing of data
with more degrees of freedom than the conventional real-number and complex-number systems. There have
been various proposals about quaternion-based neural networks in ML techniques and applications in
computer science, such as the quaternion convolutional neural network (qCNN) [38, 43, 44], quaternion
recurrent neural network [45], quaternion generative adversarial networks [46], quaternion-valued
variational autoencoder [47], quaternion graph neural networks [48], quaternion capsule networks [49] and
quaternion neural networks for the speech recognitions [50]. However, the ML-related applications of the
quaternion-based neural networks on solving problems in physics are still limited, especially in the
topological phase detections, even though the quaternion-related concepts have been applied in some fields
in physics [51–53].

In this work, we perform the Chern-insulator classifications from both supervised- and
unsupervised-learning aspects based on the inputs transformed via the quaternion algebra. For the
unsupervised learning, we encode the quaternion-transformed eigenstates of Chern insulators via a
convolution function as inputs and study them using the principal component analysis (PCA). We found
that using only the first two principal elements is not enough to fully classify the Chern insulators, consistent
with Ming’s work [23]. Further studies show that the performance can be improved by including more
principal components. For the supervised learning, we construct a quaternion-based neural network in
which the first layer is a quaternion convolutional layer. We then show that this quaternion-based machine
has better performance than a conventional CNNmachine. Our machine is good not only for testing datasets
but also for identifying data points that have different distributions from those seen by our machine in the
training processes. The good performance can be attributed to the similarities between the formula of the
Berry curvatures and our quaternion-based setup. Therefore, our work demonstrates the power of the
quaternion algebra on extracting relevant information from data, paving the way to applications of
quaternion-based ML techniques in topological phase classifications.

The outline of the remaining part of this work is as follows. In section 2, we introduce the model
Hamiltonian, generating the data for our classification tasks, and the quaternion convolution layer used in
this work. PCA analysis of the quaternion-transformed eigenstates is discussed in section 3. The data
preparations, the network structures and the performance of the quaternion-based supervised learning task
are given in section 4. Discussions and conclusions are presented in sections 5 and 6, respectively. We have
three appendixes. Appendix A shows the details of data preparation. Appendix B provides a brief
introduction to the quaternion algebra. Some properties of functions in section 3 are included in appendix C.

2. Model and quaternion convolutional layer

2.1. Model
A generic two-band Bloch Hamiltonian with the aid of the identity matrix σ0 and Pauli matrices
σσσ = (σ1,σ2,σ3) is written as

H(⃗k) = h0(⃗k)σ0+h(⃗k) ·σσσ, (1)

where k⃗= (kx,ky) is the crystal momentum in the 2D BZ (∀kx,ky ∈ (−π,π]). h0(⃗k) can change energy of the
system but has nothing to do with topology, so it will be ignored in the remaining part of this paper. The
vector h= (h1,h2,h3) acts as an k-dependent external magnetic field to the spin σ⃗, so that the eigenstate of
the upper (lower) band at each k⃗ will be the spin pointing antiparallel (parallel) to h(⃗k). It will be reasonable
that the unit vector n= h/|h| ∈ S2 embeds the topology in this system. Indeed, the topological invariant is
the Chern number C,

C=
1

4π

ˆ
BZ
n · (∂kxn× ∂kyn)d⃗k, (2)

where the integrand is the Berry curvature and the integration is over the first BZ. For brevity, sometimes we
will omit the argument k⃗ in functions. The Chern number is analogous to the skyrmion number in real space
[54]. The integral is the total solid angle n(⃗k) subtended in the BZ, so the Chern number counts how many
times n(⃗k) wraps a sphere.

2
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Figure 1. Examples of spin textures in the Brillouin zone, kx,ky ∈ (−π,π], with the Chern number C= 1 (a), C= 2 (b), C= 3
(c) and C= 4 (d).

Figure 2. The Chern number with variousm and c.

We construct the normalized spin configurations n(⃗k) based on the following models. For topological
systems, we choose the Hamiltonian with h= h(c), where

h(c)(⃗k,m) =

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
coskx + cosky +m

 (3)

with positive integer c and real parameterm to control the Chern number. c is the vorticity for the number of
times the inplane component (nx and ny) swirls around the origin. The sign of the c indicates a counter-

clockwise or clockwise swirl. For a nontrivial topology, nz has to change sign somewhere in the BZ for n(⃗k) to
wrap a complete sphere. Therefore, |m|< 2 is required. Some examples of spin texture n(⃗k) based on
equation (3) are shown in figure 1. For c= 1, the model is the Qi–Wu–Zhang model [55]. For a given c, the
Chern number C can be either 0, c,or− c depending on the value ofm:

C=

{
sgn(m)c, 0< |m|< 2,
0, |m|> 2.

(4)

The topological phase diagram is shown in figure 2. C= 0 denotes a topologically trivial phase and C 6= 0
a nontrivial phase.

In this work, the unsupervised learning involves seven topological phases (C= 0,±1,±2,±3) in
section 3, and the supervised learning involves nine topological phases (C= 0,±1,±2,±3,±4) in section 4.

2.2. Quaternion convolutional layer
A quaternion number has four components, the first of which stands for the real part and the other three of
which stand for the imaginary parts. Given two quaternions q1 = (r1,a1,b1, c1) and q2 = (r2,a2,b2, c2), their
product Q= q1q2 = (R,A,B,C) is given by
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R
A
B
C

=


r1r2− a1a2− b1b2− c1c2

a1r2+ r1a2− c1b2+ b1c2

b1r2+ c1a2+ r1b2− a1c2

c1r2− b1a2+ a1b2+ r1c2

 , (5)

which can be written as the matrix product form


R
A
B
C

=


r1 −a1 −b1 −c1
a1 r1 −c1 b1
b1 c1 r1 −a1
c1 −b1 a1 r1



r2
a2
b2
c2

 . (6)

To implement a quaternion convolutional (q-Conv) layer in numerical programming, we will regard the
two quaternions as a 4× 4 matrix and a 4× 1 column matrix, respectively:

q1
.
=


r1 −a1 −b1 −c1
a1 r1 −c1 b1
b1 c1 r1 −a1
c1 −b1 a1 r1

 and q2
.
=


r2
a2
b2
c2

 . (7)

More details of quaternion algebra are described in appendix B.
A conventional CNN contains a real-valued convolutional layer to execute the convolution of the input

and the kernel. Let the input F have the shape: Hi ×Wi ×Ci (height× width× channel) and the shape
of the kernel K be Hk ×Wk ×Ci ×Cf. The convolution will produce an output O, O= F ∗K, whose
elements are

Oi ′,j ′,t ′ =

Hk∑
i

Wk∑
j

Ci∑
t

Fi ′+i−1,j ′+j−1,t ·Ki,j,t,t ′ . (8)

Here the stride is assumed to be 1 both in the width and the height directions. The indices i and j are
spatial indicators, t is the index of channel in the input feature map and t

′
is the kernel index. The shape of

the output will be (Hi −Hk)× (Wi −Wk)×Cf.
Assume that the input has four components. To uncover the entanglement among components through

CNN, we will utilize the quaternion product. Now, we introduce another dimension-depth-which is four, as
a quaternion number of four components. Both of the input F and the kernel K have depth of four as two
quaternion numbers. The product of F and K will have depth of four as a quaternion in equation (5).
Referring to equation (7) where we show a matrix representation to implement quaternion algebra and
thinking of F as q1 and K as q2 in equation (7), we transform the depth-four input F into a 4× 4 matrix,
F(s,l), and keep the kernel K still of depth 4, K(l), where l, s= 1, . . . ,4. The product of F and K, say O, will
have depth four as shown in equation (9). Further considering the shapes of F and K, the convolution is
given by

O(s)
i ′,j ′,t ′ =

4∑
l

∑
i,j,t

F(s,l)i ′+i−1,j ′+j−1,t ·K
(l)
i,j,t,t ′ , (9)

where the summations over i,j,k are equivalent to those in equation (8) and the summation over l is for the
quaternion product.

More specifically, we consider an input data as q1 (four color squares on the left of figure 3) and four
kernels encoded in q2, given in the following

{
q1

.
= (r1 a1 b1 c1)

T

q2
.
= (r2 a2 b2 c2)

T =: K(·).
(10)
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Figure 3. Illustration of a quaternion convolutional layer. On the left, we start with the input q1 having four quaternion
components ((yellow, red, green, blue) stands for (r1, a1, b1, c1)). In the middle, q1 is permuted to construct {F(·,l)}4l=1 on which
the convolution with four kernels {K(l)}4l=1 is performed. A summation is taken for each depth to obtain the output feature map
O on the right.

The output feature maps O
.
= (R A B C)T is then calculated based on equation (5). As the first step, we

permute the order of q1 to obtain

F(·,1) =:


r1
a1
b1
c1

 ,F(·,2) =:


−a1
r1
c1
−b1

 ,

F(·,3) =:


−b1
−c1
r1
a1

 ,F(·,4) =:


−c1
b1
−a1
r1


(11)

(see the four sets of squares in the middle of figure 3). We then convolute those four quaternions (F(·,l) with
l= 1,2,3 and 4) with four kernels (K(l) with l= 1,2,3 and 4) in the following way:

F(·,1)K(1) .
= (r1r2 a1r2 b1r2 c1r2)

T

F(·,2)K(2) .
= (−a1a2 r1a2 c1a2 − b1a2)

T

F(·,3)K(3) .
= (−b1b2 − c1b2 r1b2 a1b2)

T

F(·,4)K(4) .
= (−c1c2 b1c2 − a1c2 r1c2)

T

as shown in the middle of figure 3. Finally, we sum over the above four quaternions to get the output feature
maps O, as shown on the right of figure 3,

O :=


R
A
B
C

=


r1r2− a1a2− b1b2− c1c2
a1r2+ r1a2− c1b2+ b1c2
b1r2+ c1a2+ r1b2− a1c2
c1r2− b1a2+ a1b2+ r1c2

 .

3. PCA

PCA is a linear manifold learning that is to find the relevant basis set among data [56, 57].
We prepare eigenstates |u±〉 of equation (1), where+ (−) stands for the upper (lower) band. For a

topologically nontrivial state, the phase cannot be continuous over the whole BZ. Therefore, we can divide
the whole BZ into two parts, in each part of them the topological wave function has continuously
well-defined phase. We then pick up a gauge by choosing two regions according to the sign of h3 in
equation (3):

|u+〉
.
=

1√
2h+(h+ + h3)

(
h+ + h3
h1+ ih2

)
|u−〉

.
=

1√
2h−(h− + h3)

(
−h1+ ih2
h− + h3

) , h3 ⩾ 0, (12)

5
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Figure 4. The maps of the function F without noise in the BZ. Three rows are for c= 1,2 and 3 in equation (3) from top to
bottom; four columns from left to right are form=−3,−1,1 and 3. The corresponding Chern number C is tagged with each
panel.

and

|u+〉
.
=

1√
2h+(h+ − h3)

(
h1− ih2
h+ − h3

)
|u−〉

.
=

1√
2h−(h− − h3)

(
h− − h3
−h1− ih2

) , h3 < 0, (13)

where h± =±
√
h21+ h22+ h23. In this choice of gauge, the first (second) component of |u+〉(|u−〉) is

real-valued when h3 ⩾ 0, and the second (first) component of |u+〉(|u−〉) is real-valued when h3 < 0.
By translating |u±〉

.
= (α±,β±)

T with α±,β± ∈ C, into a quaternion number of four components, we
have

q± := Re(α±)+ Im(α±)̂i+Re(β±)̂j+ Im(β±)k̂. (14)

To see the correlation of states over k⃗, we define the quantity F to be the quaternion-based convolutions:

F(⃗p) := (q∗+ ⊛ q+)[ p⃗ ]− (q∗− ⊛ q−)[ p⃗ ] with (q∗± ⊛ q±)[ p⃗ ] :=
∑
k⃗∈BZ

q∗±(⃗k)q±(⃗p− k⃗), (15)

where q∗ is the conjugate of q. It can be proved that F is real-valued. Therefore, F(⃗p) of all p⃗ in the BZ based
on a given Hamiltonian can be analyzed by using PCA.

We collected various F of all k⃗ ∈BZ within seven topological phases as the dataset for PCA. For each
topological phase, 30 F’s were prepared, so the total amount of data was 210. The data for six non-trivial
phases were generated based on equation (3) withm=±1 (the sign ofm determines the sign of C). For the
trivial phase, we prepared five data points from each of six combinations of {c,m}, where c ∈ {1,2,3} and
m ∈ {3,−3}, and then there are totally 30 data. To augment the number of data, we add Gaussian noises δh
at every k⃗ of the model (equation (3)) such that h→ h+ δh without closing the band gap.

In figure 4, we present various noiseless F generated from equation (3) with different c andm. It is notable
that F for C= 0 are featureless, F for C=±1 have a dipole moment, and F for C=±2 have a quadruple
moment, and F for C=±3 seemingly have a primary dipole and a secondary quadruple moment. The
remarkable features imply that the convolution function F is a good choice for topological classifications.

We examine data with the standard deviation (SD) equal to 0, 0.1, 0.2 and 0.3 respectively, and show the
first two PCs of 210 pieces of data for each SD in figure 5. In figure 5, data are clustered into four groups and
their variances increase with SD. It is successful to separate different topological phases into different clusters
via PCA. However, some clusters contain two topological phases of Chern numbers: {+1,−3}, {−1,+3},
and {+2,−2}. This C modulo four resemblance has also be observed in a previous study [23].

6
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Figure 5. PCA of seven topological phases with various noise. The symbols with corresponding Chern numbers are marked in the
legend.

Figure 6.Magnitude of projection (logarithmic scale) from non-trivial data onto first six principal components. Inset: The first 16
principal values of PCA (normalized by maximal λ1).

We find that including more PCs helps separate different classes in each cluster. Figure 6 shows the first
six PCs of data in topologically non-trivial phases, where PCx denotes the xth PC component. One can find
that PC1 and PC2 in each pair of {+1,−3}, {−1,+3}, and {+2,−2} are nearly identical, as also shown in
figure 5. By incorporating more PCs up to PC6, all topological classes are completely classified. Via the
proposed convolution, topological states can be successfully classified by using PCA, a linear classification
machine.

Compared to the eigenstates, the spin configurations n(⃗k) are gauge-invariant. Therefore, it is desired to
classify the topology of the spin configurations via PCA. Unfortunately, the performance was not good,
which will be discussed later. In order to directly classify the spin configurations, in the following, we train a
qCNN machine via the supervised learning algorithm to discriminate spin configurations with different
topological phases.

4. Supervised learning of CNN and the qCNN

4.1. Datasets
The input data are normalized spin configurations n, laying on a 40× 40 square lattice with periodic
boundary conditions, and their corresponding topological phases are labels with one-hot encoding. We
prepared four datasets: training, validation, testing and prediction dataset (more details are described in
appendix A).

The first three datasets are well known in conventional deep learning procedure [58]. The data in the
training, validation and testing datasets will be constructed by the same models so that they have the same
data distributions even though they are all different data points. Therefore, we denote these three datasets as
in-distribution datasets. The data in the prediction dataset, however, are constructed by similar but different
models from those for the in-distribution datasets. Therefore, the data in the prediction dataset are not only
unseen by the machine during the training process, but also of different distributions. We denote the
prediction dataset as a out-of-distribution dataset, which is used to understand whether our machine can
also classify spin configurations constructed by other similar but different topological models.

7
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Figure 7. Framework of (a) the CNN and (b) the qCNN classifier. In CNN, the shapes of data are labelled as (width, height,
channel) and the spin components are arranged in different channels in the first layer, while in qCNN the shapes of data are
labelled as (depth, width, height, channel) but spin components are put along depth. The number appended after the symbol ‘@’
stands for the number of kernels, which size is present overhead. The number of tunable network parameters of CNN (qCNN) is
24 252 (19 350).

The data pool containing training and validation datasets is constructed as follows. Based on the
equation (3), we firstly prepared 5760 data points of n of nine topological phases with Chern number ranging
from−4 to 4 and each phase contains 640 data points. Besides of 5760 spin configurations, the dataset
contains 360 two-dimensional spin vortices. A spin-vortex has an in-plane spin texture that winds around a
center, which is generated by setting one of three components in equation (3) to be zero. By including spin
vortices, the machine can tell the difference between 3D winding (non-trivial) and 2D winding (trivial) spin
configurations . After the training process, the trained machine is scored by a testing dataset with the same
composition of nine phases as that in the training (and validation) dataset. Importantly, without changing
the topologies, the Gaussian distributed random transition and random rotation imposed on these three
datasets can increase the diversity of dataset and enhance the ability of generalization of the trained machine.

The prediction dataset contains six categories of spin configurations. The first category is generated with
m uniformly distributed from+3 to−3. In the second and the third categories, we change the sign of nz (the
second category) and swapping ny and nz of n (the third category). Finally, we consider three categories for
trivial states, which are ferromagnetic (FM), conical, and helical states. FM can be viewed as 1D uncompleted
winding configuration while conical and helical can be viewed as 2D uncompleted ones. In total, we
prepared six categories for the prediction dataset. More details about data preparations will be described in
appendix A.

For the conventional CNN, we use n as the input data. For the qCNN, in order to feed the input data into
the qCNN classifier, we transform the 3D spin vector into an unit pure quaternion,

(nx,ny,nz) ∈ R3 7→ (0,nx,ny,nz) ∈H, (16)

where the scalar part (the first component) is zero and the vector part is n. Therefore, the inputs of qCNN
are effectively equivalent to those of CNN.

4.2. Network structure and performance
The schematic architectures of these two classifiers are shown in figure 7, where the last black arrows point to
nine neurons for nine topological phases. In the qCNN classifier, we implement a quaternion convolution
(q-Conv) layer as the first layer (red dotted cuboid in figure 7(b)), and the operations in a q-Conv layer are
based on the quaternion algebra to hybridize spin components. Then the next three layers are typical 3D
convolutions (Conv3Ds). Our Conv3Ds do not mix depths by choosing proper sizes of kernels. Followed the
Conv3D layers is a 2D convolution (Conv2D) layer to mix data in depth: nine kernels of kernel size 4× 1 will
transform data from 4× 9 to 1× 9. On the contrary, the CNN classifier has only Conv2D layers. Although

8



Mach. Learn.: Sci. Technol. 4 (2023) 015032 M-R Lin et al

Figure 8. Schematic of ‘overlap’ convolution (red solid) and ‘non-overlap’ convolution (blue solid) from a 3× 3 kernel (black
dotted) over data. The blue solid square is a signal movement from the kernel, and the size of stride is the same as the length of
kernel, thus each movement of this kernel is ‘non-overlap.’

Figure 9. Learning curves of the qCNN and CNN classifiers. By applied Dropout, the validation is greater than the training.

the qCNN is more complex than the CNN, the total network parameters of the qCNN is however less than
the CNN. This is one advantage of the qCNN over the conventional CNN.

In order for classifiers to satisfy some physically reasonable conditions, two special designs are
implemented. Firstly, we extend the k points out of the BZ by padding the input data according to the
periodic boundary conditions [59]. Secondly, the first layer takes ‘overlapping’ strides with an arctan
activation function, and the latter layers take ‘non-overlapping’ strides with the tanh activation function for
both qCNN and CNN machines. Figure 8 illustrates how the ‘overlapping’ and ‘non-overlapping’ feature
mapping can be manipulated by varying the size of stride.

Then, both qCNN and CNN machines are trained. The learning curves of both machines are shown in
figure 9. The CNN machine (orange and light orange lines) jumps over a big learning barrier at around the
700th epoch. After that, the training and the validation accuracy (orange and light orange line respectively)
are separated and do not converge up to end of this training process. Even though the same training (and
validation) dataset is used in the training process, the learning curves of the qCNN machine (blue and light
blue lines) are qualitatively different. The training and the validation accuracy are separated around 90th
epoch, but the difference between these two accuracies decreases with increasing epochs. After the training
procedure finished, the qCNN (CNN) machine gets 99.67% (94.12%) testing accuracy. This difference in
accuracy results from the spin-vortex dataset, where the qCNN works well but CNN dose not.

The trained machines are ready to do prediction, and the result is shown in figure 10. In figure 10, since
the first category contains n of uniformly distributedm, where a few data points are very close to the phase
boundariesm≈ {0,±2}, the accurate rate of the qCNN is slightly low at 96%. For the second and third
categories, we choosem=±1, away from the phase transition points, and the performance is nearly perfect.
For the uncompleted winding configurations, the qCNN, different from the conventional CNN, can
accurately classifies FM, helical and conical states after learning the spin-vortex states. This is the main
advantage of the qCNN over the conventional CNN, which is expected to result from the quaternion algebra.

The processing times of two classifiers are summarized in table 1. Since the q-Conv layer has massive
matrix multiplication, the time of one epoch for qCNN is longer than that of convention CNN in our task,
especially utilized by CPU.
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Figure 10. The performance of the qCNN (blue line) and CNN (red dashed line) on the prediction datasets. Numbers tagged are
the values of the accuracies. Standard deviations (by error bars) are also provided. The qCNN outperforms the conventional CNN
on all prediction datasets, especially on three spin-vortex ones.

Table 1. Comparison between CPU and GPU processing time (seconds per epoch). Hardware facilities are as follows: NVIDIA GeForce
RTX™ 2080Ti GPU, Intel Xeon® E5-2650v4 CPU (2.20 GHz Core 12), and 32 GB DDR4 SDRAM.

Processing time (s)

Architecture CPU GPU

CNN 6.115 1.011
qCNN 72.2 3.108

5. Discussions

In this work, we apply the quaternion multiplication laws to both PCA (unsupervised learning) and qCNN
(supervised learning). The two methods take different inputs; the former one takes scalar function F(p),
which is something to do with a convolution of the wave function, and the second one takes the pure
quaternion function (0,n(⃗k)), where real part is zero and the imaginary part is the spin vector. We will
explain physical intuitions and comment the mechanisms in this section.

On PCA, we did not take n simply as the input because the representation of the vector n depends on
coordinates but the topology is not. We believed that the topology as a global geometry should be embedded
in the correlations. The correlation of dot products of n turned out to fail since relative angles of two spins
were not informative to understand the swirling of n on S2. If one tries the quaternion in the convolution
equation (15) by q= (0,nx,ny,nz), the result is still inappropriate for the convolution is independent of the
sign ofm to discriminate topological states (see appendix C). Eventually, we found that the F(p) defined in
equation (15) was a proper quantity to characterize topology after PCA. The F has the property that it is
featured (featureless) when the wave function is unable (able) to be globally continuous that happens in the
nontrivial (trivial) phases. Unfortunately, the F(p) is not gauge invariant. The results were based on the
choice of gauge in equations (12) and (13) that made the wave function continuous locally and discontinuous
at k where nz(⃗k) = 0. We had examined other choices of gauge and found that the present gauge exhibited the
PCA features most clearly (results not shown). We remark that our PCA results looked good because the
inputs were ingeniously designed and the PCA method might not be more practical than the qCNN method.

For qCNN, it is interesting to understand the mechanism behind. There are several possible factors
promoting the performance of our supervised learning machine. The first one is that the size of kernel in the
first convolutional layer is 2× 2 with stride= 1, which means the machine can collect spin information
among four nearest neighbors (see figure 11(b)). We know that the Chern number is the integral of the Berry
curvature in the BZ, and the Berry curvature is twice of the solid angle. A solid angle Ω subtended by three
unit vectors a⃗, b⃗, and c⃗ is obtained by

tan
Ω

2
=

∣∣∣⃗a · (⃗b× c⃗)
∣∣∣

1+ a⃗ · b⃗+ b⃗ · c⃗+ c⃗ · a⃗
. (17)

Our choice of the size of the kernel in the first hidden layer is the minimal of 2× 2 that mixes only the
nearest-neighboring spins. In this way, it is very possible to enforce the machine to notice the solid angle
extended in this plaquette. The second factor is the quaternion product. Recall that the conventional CNN
might correlate spins n ′s in neighboring k⃗ ′s due to the feature map through the kernel. However, the map
does not mix the components of spins. In comparison, the qCNN is more efficient for it directly entangle
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Figure 11. (a) Three nearest neighborhood spin vectors will contribute a solid angle, and (b) four nearest neighbors are enclosed
by the kernels in the first convolutional layer.

Figure 12. Comparison between three activation functions applied in the first layer of the qCNN classifier.

spins via the quaternion product. It is this entanglement of spin components by the quaternion product that
makes the scalar and vector products in calculating the solid angle (see equation (17)) become possible to be
realized by the machine. As a solid angle involves at least three spins and the feature map by the kernel is just
linear, a nonlinear transformation is crucial to create high-order (three spins) terms in the expansion. This is
possible and proved in [60] that multiplication of variables can be accurately realized by simple neural nets
with some smooth nonlinear activation function. Therefore, the third factor is the non-linear activation
function, arctan in this work. We expect that using arctan as the activation function can further help the
machine to learn correct representations because the calculation of a solid angle involves the arctan
operation in equation (17). This belief is indeed supported by the results shown in figure 12, where the
arctan activation function outperforms the ReLU and tanh activation functions over nine different datasets.
In summary, several factors are combined to enhance the performance of our machine as follows. The
quaternion-based operations in the q-Conv layer mix not only spins with their neighbors but also
components of spins. When these linear combinations are fed into the non-linear activation functions in our
qCNN, the output can be viewed as an expansion of a non-linear function, which may contain a term having
both the scalar- and vector-product of neighboring spins, similar to that in equation (17). Therefore, after
the optimization process, the machine may keep increasing the weight of a solid-angle-related term and
eventually learn to classify the topological phases.

Also, adding some noises to the training dataset helped our supervised-learning machine to learn the
generic feature of our data. We found that when the training data was generated directly from equation (3)
without adding any noise, the machine worked well for training and testing datasets but had poor
performance on all the prediction dataset. This could be understood by noting that the topological invariant
is determined by the sign ofm, which appears in the z component in equation (3). By using the dataset
without noise, the machine might naively regard the z component as the judgment of topology when the
training data does not contain wide distribution. We note that the topology is invariant when the spin texture
is uniformly translated or rotated. So we trained our machine with randomly translated and rotated data to
avoid incorrect learning. (See data preparation in appendix A.) From our observations, the performance on
the prediction dataset was remarkably enhanced when the noise was included, which supports our idea.

6. Conclusions

In summary, we classify topological phases with distinct Chern numbers via two types of ML techniques. For
the unsupervised part, we propose a quaternion-based convolution to transform the topological states into
the input data. With this convolution, distinct topological states are successfully classified by PCA, a linear
machine for classification.

We then go to the supervised learning part where, in contrast to the conventional CNN, we successfully
use the qCNN to classify different topological phases. This work demonstrates the power of quaternion-based
algorithm, especially for the topological systems with the Chern number as the topological invariants.
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Appendix A. Data preparation

A.1. Training dataset
The normalized spin configurations n(c,m)(⃗k), ∀⃗k ∈ BZ are based on the formula (refer to equation (3))

n(c,m)(⃗k) := h(c,m)(⃗k)
/∣∣∣∣∣∣h(c,m)(⃗k)

∣∣∣∣∣∣ , where h(c,m)(⃗k) =

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
coskx + cosky +m


in a 40× 40 square lattice with periodic boundary conditions. For each c= 1,2,3 and 4, we generated four
sets S(c)1 ,S(c)2 , S

(c)
3 and S(c)4 . The former two sets are topologically nontrivial and each has 640 configurations

for different values ofm:

S(c)1 =
{
n(c,m)(⃗k) :m ∈ [−1.9,−0.1], k⃗ ∈ BZ

}
,

S(c)2 =
{
n(c,m)(⃗k) :m ∈ [0.1,1.9], k⃗ ∈ BZ

}
,

wherem are random numbers in the corresponding ranges. The latter two sets are topologically trivial and
each has 80 (identical) configurations:

S(c)3 =
{
n(c,m)(⃗k) :m=−3, k⃗ ∈ BZ

}
,

S(c)4 =
{
n(c,m)(⃗k) :m= 3, k⃗ ∈ BZ

}
.

So, for each c there were 1280 nontrivial spin configurations and 160 trivial ones. Then the primitive data
passed through some manipulations as the effect of data augmentation without changing the topologies.
Each spin configuration n(⃗k) was translated (T ), rotated (R), and then polluted with noise (G):

n(⃗k)
T−→ n(⃗k+ p⃗0)

R−→ n ′(⃗k+ p⃗0)
G−→ n ′(⃗k+ p⃗0)+∆n ′(⃗k), (A1)

where p⃗0 is a random displacement in k⃗,R stands for a random 3D rotation of the spin, and∆n ′(⃗k) is
Gaussian noise (G) with standard deviation 0.1π in each component. (The spin should be normalized lastly.)
T andR are homogeneous transformations in k⃗, but G, inhomogeneous, picks only 30 out of 1600 k⃗ sites.

In addition to the 5760 sets of data in nine topological phases (C=−4 to C=+4), we also include 360
spin vortex states, which are C= 0 states, based on the formulas:

yzh(c,m)(⃗k) =

 0
−Im

[
(sinkx − i sinky)c

]
coskx + cosky +m

 (A2)

xzh(c,m)(⃗k) =

 Re
[
(sinkx − i sinky)c

]
0

coskx + cosky +m

 (A3)

xyh(c)(⃗k) =

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
0

 (A4)

with their normalized configurations. For each c, 30 spin configurations were generated with randomm
ranging from−3 to 3. The data also went through translation T and rotationR but no noise G.

Therefore, we generated 6120 spin configurations totally as the training dataset. Among the training
dataset, 25% of the data are assigned as the validation dataset (light color lines in figure 9).
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Figure A1. Some examples in the prediction dataset for states: (a) ny ↔ nz, (b) helical, (c) conical, and (d) FM.

A.2. Testing dataset
In addition to the training and validation dataset, we prepare extra 1224 spin configurations as the testing
dataset, with the same composition as the training and validation datasets. This dataset is prepared for
scoring the trained classifiers.

A.3. Prediction dataset
The prediction dataset is an extra dataset, different from the aforementioned three datasets. It consists of six
categories, each of which was not seen by the machine during the training process. This dataset was
processed by T andR but not G. The six categories were constructed as following. The first category, the
‘chern’ category, is a set S which was generated from equation (3) with 30m’s uniformly ranging from−3 to
3 for each c:

S=
{
n(c) : c= 1,2,3,4, m=−3+ 6i

29
, i = 0, . . . ,29

}
.

As a reminder, this category is different from the training dataset. The training data includes the specific
m=±3 at trivial phase, and two intervals {[−1.9,−0.1] and [0.1,1.9]} in nontrivial phases. Therefore, 20%
of this category is close to the phase transitionm≈ {0,+2,−2}.

The next two categories were generated based on equation (3) withm=±1. The first one was
constructed by changing the sign of the z-component:

h(⃗k) =

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
coskx + cosky +m

→

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
−coskx − cosky −m

 .

The second one was constructed by swapping the y and the z components:

h(⃗k) =

 Re
[
(sinkx − i sinky)c

]
−Im

[
(sinkx − i sinky)c

]
coskx + cosky +m

→

 Re
[
(sinkx − i sinky)c

]
coskx + cosky +m

−Im
[
(sinkx − i sinky)c

]
 .

The next two categories, called helical and conical spin configurations, were generated based on the
following equation

nhelical/conical(⃗k) =


√
1− ϵ2 cos(kx + ky)√
1− ϵ2 sin(kx + ky)

ϵ

 .

Here ϵ= 0 is for the helical state and 0< |ϵ|< 1 is for a conical state. The last category contains the FM
spin configurations whose z-component are a constant and x- and y-component are zero. Some spin
configurations in the prediction dataset are illustrated in figure A1.
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Appendix B. Quaternion

The quaternion number system were introduced by Irish mathematician William Rowan Hamilton in 1843
as an extension of the complex numbers. A quaternion number q is composed of four real numbers r, a, b
and c to be

q= r+ âi+ b̂j+ ck̂, (B1)

where {111, î, ĵ, k̂} is the basis. Sometimes it is written as q= (r, v⃗) or q= (r,a,b, c) in short. Here r is called
the scalar (or real) part of the quaternion and v⃗= (a,b, c) the vector (or imaginary) part. A quaternion
without scalar part q= (0,a,b, c) is called pure quaternion. Similar to the imaginary number,

î2 = ĵ2 = k̂2 = î̂jk̂=−111. (B2)

Importantly, the algebra of quaternions is noncommutative, based on

111̂i= î111= î, 111̂j= ĵ111= ĵ, 111k̂= k̂111= k̂,

î̂j=−ĵ̂i= k̂, ĵk̂=−k̂̂j= î, and k̂̂i=−îk̂= ĵ.
(B3)

The conjugate of the quaternion is defined to be

q∗ = r− âi− b̂j− ck̂, (B4)

and the norm is given by

||q||=
√
qq∗ =

√
r2+ a2+ b2+ c2. (B5)

Therefore the inverse of q is defined as

q−1 :=
q∗

||q2||
. (B6)

If q is unit quaternion, then their inverse is exactly their conjugate. The multiplication (so-called
quaternion product or Hamilton product) of two quaternions q1 = (r1, a1, b1, c1) and q2 = (r2, a2, b2, c2) is
given by

q1q2 = (r1r2− a1a2− b1b2− c1c2)

+ (a1r2+ r1a2− c1b2+ b1c2)̂i

+(b1r2+ c1a2+ r1b2− a1c2)̂j

+(c1r2− b1a2+ a1b2+ r1c2)k̂

= (r1r2− v⃗1 · v⃗2, r1⃗v2+ r2⃗v1+ v⃗1× v⃗2).

(B7)

To realize the algebra in equations (B2) and (B3), one can choose theM(4,R) representation for the
quaternion numbers with

111
.
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , î
.
=


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

ĵ
.
=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , and k̂
.
=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

so that

q
.
=


r −a −b −c
a r −c b
b c r −a
c −b a r

 .
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Reversely,

r=
1

4
tr(q), a=−1

4
tr(̂iq), b=−1

4
tr(̂jq), c=−1

4
tr(k̂q).

It is evident that in terms of matrices the commutativity of multiplication of quaternions dose not hold.
Furthermore, in the matrix representation q∗ = qT, conjugation of a quaternion being equal to its
transposition. More specifically, an unit quaternion have a property q−1 = q∗ = qT in theM(4,R)
representations.

Appendix C. Properties of functions for PCA

In this section, we provide some properties about the F(⃗p) function we defined in PCA section and the
convolution of normalized spin vector n. Recall that the convolution we defined in the PCA section is as
follows

F(⃗p) := (q∗ ⊛ q)[ p⃗ ]− (q∗ ⊛ q)[ p⃗ ] with (q∗ ⊛ q)[ p⃗ ] :=
∑
k⃗∈BZ

q∗
∣∣∣∣⃗
k

q

∣∣∣∣⃗
p−⃗k

. (C1)

From now on, because of lack of notations, we denoted upper-bar (e.g.: q, |u〉,〈u|,h) being conduction
band, and lower-bar (e.g. q, |u〉,〈u|,h) being valence band. A vertical line with a variable stand for its
corresponding position of BZ.

Property C.1. F(⃗p) is a purely real-valued function.

Proof. Since p⃗− k⃗ and k⃗ are one-to-one correspondence in BZ, and summing over k⃗ ∈BZ or p⃗− k⃗ ∈BZ are
equivalent. Once we take conjugate on F, then

F∗(⃗p) =
∑
k⃗∈BZ

q∗
∣∣∣∣⃗
p−⃗k

q

∣∣∣∣⃗
k

− q∗
∣∣∣∣⃗
p−⃗k

q

∣∣∣∣⃗
k

=
∑

p⃗−⃗k∈BZ

q∗
∣∣∣∣⃗
p−⃗k

q

∣∣∣∣⃗
k

− q∗
∣∣∣∣⃗
p−⃗k

q

∣∣∣∣⃗
k

=
∑
k⃗′∈BZ

q∗
∣∣∣∣⃗
k′
q

∣∣∣∣⃗
p−⃗k′

− q∗
∣∣∣∣⃗
k′
q

∣∣∣∣⃗
p−⃗k′

= F(⃗p).

The first line come from the property of conjugate on quaternions, the second line come from the equi-
valence of summing whole BZ, and the third line come from k⃗ ′ ↔ p⃗− k⃗. We see that conjugation of F is itself.
Therefore, F(⃗p) is a purely real-valued function.

Recall that in our model equation (3), h1, h2 are both even of k⃗ and (h3−m) is odd of k⃗. That is, given
k⃗= (kx,ky) ∈ BZ, there is k⃗ ′ = (π− kx, π− ky) ∈ BZ such that



h1
∣∣⃗
k

= h1
∣∣⃗
k ′

h2
∣∣⃗
k

= h2
∣∣⃗
k ′

h3(m)
∣∣⃗
k

−m = −
(
h3(m ′)

∣∣⃗
k ′

−m ′
). (C2)

In addition, those two points k⃗, k⃗ ′ are one-to-one correspondence in BZ, and identical at the Γ point.
Notice that once we normalized h(m) = (h1,h2,h3(m)) by ||h(m)||, then each component of n(m) is
function ofm.

Property C.2. Encoding n(m) into quaternion by q= (0,nx(m),ny(m),nz(m)), the convolution q∗ ⊛ q is
independent on the sign of m.
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Proof. We consider two convolutions with q= (0, n(m)) but over k⃗, k⃗ ′ = (π− kx,π− ky) and opposite sign
m ′ −−m, respectively:

(q∗ ⊛ q)[⃗p,m] =
∑
k⃗∈BZ

(
0,−n(m)

)∣∣∣⃗
k

(
0, n(m)

) ∣∣∣
p⃗−⃗k

=
∑
k⃗∈BZ

(
nx(m)

∣∣⃗
k

nx(m)
∣∣

p⃗−⃗k

+ ny(m)
∣∣⃗
k

ny(m)
∣∣

p⃗−⃗k

+ nz(m)
∣∣⃗
k

nz(m)
∣∣

p⃗−⃗k

, V⃗L

∣∣⃗
k

)
, (C3)

and

(q∗ ⊛ q)[⃗p,−m] =
∑
k⃗ ′∈BZ

(
0,−n(−m)

) ∣∣∣⃗
k ′

(
0, n(−m)

) ∣∣∣
p⃗−⃗k ′

=
∑
k⃗ ′∈BZ

(
nx(−m)

∣∣⃗
k ′

nx(−m)
∣∣

p⃗−⃗k ′

+ ny(−m)
∣∣⃗
k ′

ny(−m)
∣∣

p⃗−⃗k ′

+ nz(−m)
∣∣⃗
k ′

nz(−m)
∣∣

p⃗−⃗k ′

, V⃗R

∣∣⃗
k ′

)
(C4)

where V⃗L, V⃗R are vector parts of the above quaternion product at k⃗, k⃗ ′, respectively. In property (C.1), we have
shown the convolution over entire BZ is a purely real-valued function. That is, we only need to consider dot
product of vector part as the quaternion product of two quaternion q1,q2 when q1,q2 both does not have real
part. Now, the equation (C2) and the assumptionm ′ =−m gives us the fact

h3(m)
∣∣∣⃗
k

−m=−
(
h3(m

′)
∣∣∣⃗
k′

−m′
)
=−h3(−m)

∣∣∣⃗
k′

−m.

⇒ h3(m)
∣∣∣⃗
k

=−h3(−m)
∣∣∣⃗
k′

∀⃗k, k⃗′ ∈ BZ.

Since
∣∣∣∣∣∣h(⃗k,m)

∣∣∣∣∣∣= ∣∣∣∣∣∣h(⃗k ′,−m)
∣∣∣∣∣∣, we can conclude that



nx(m)
∣∣⃗
k

= nx(−m)
∣∣⃗
k ′

ny(m)
∣∣⃗
k

= ny(−m)
∣∣⃗
k ′

nz(m)
∣∣⃗
k

=−nz(−m)
∣∣⃗
k ′

, ∀⃗k, k⃗ ′ ∈ BZ.


(C5)

Substituting equation (C5) into equation (C4), we identify equations (C3) and (C4). Therefore, applying
oppositem, the convolutions over BZ gets exactly the same value. That is, the convolution q∗ ⊛ q is independent
on the sign ofm once we encoded quaternion by (0, n(m)).

Property (C.2) is based on how we encoded quaternion number. The following two properties are based
on the way we transformed quaternion in main text.

Property C.3. If we encode spinor |u〉= (α,β)T, α,β ∈ C, into quaternion number by following

q := Re(α)+ Im(α)̂i+Re(β)̂j+ Im(β)k̂.
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Then,

Re
(
q∗
∣∣∣⃗
k

q
∣∣∣

p⃗−⃗k

)
= Re

(
〈u(⃗k)||u(⃗p− k⃗)〉

)
, ∀⃗k ∈ BZ,

Proof. According to property (C.1), it is suffice to show real part. By the assumption, given k⃗ ∈ BZ and let
α= a+ bi, β = c+ di with a,b, c,d ∈ R, we have

q∗
∣∣∣⃗
k

q
∣∣∣

p⃗−⃗k

= (a,b, c,d)∗
∣∣∣⃗
k

(a,b, c,d)
∣∣∣

p⃗−⃗k

= (a,−b,−c,−d)
∣∣∣⃗
k

(a,b, c,d)
∣∣∣

p⃗−⃗k

=
(
a
∣∣∣⃗
k

a
∣∣∣

p⃗−⃗k

− (−b,−c,−d)
∣∣∣⃗
k

· (b, c,d)
∣∣∣

p⃗−⃗k

, V⃗
∣∣∣⃗
k

)
=
(
a
∣∣∣⃗
k

a
∣∣∣

p⃗−⃗k

+ b
∣∣∣⃗
k

b
∣∣∣

p⃗−⃗k

+ c
∣∣∣⃗
k

c
∣∣∣

p⃗−⃗k

+ d
∣∣∣⃗
k

d
∣∣∣

p⃗−⃗k

, V⃗
∣∣∣⃗
k

)
(C6)

where V⃗ is the vector part of the quaternion product. Notice that the second line above is a quaternion product,
but the third line above is dot product between two vectors. On the other hand

〈
u(⃗k)

∣∣∣u(⃗p− k⃗)
〉
= (a− bi c− di)

∣∣∣∣∣⃗
k

(
a+ bi
c+ di

) ∣∣∣∣∣
p⃗−⃗k

= a
∣∣∣⃗
k

a
∣∣∣

p⃗−⃗k

+ b
∣∣∣⃗
k

b
∣∣∣

p⃗−⃗k

+ c
∣∣∣⃗
k

c
∣∣∣

p⃗−⃗k

+ d
∣∣∣⃗
k

d
∣∣∣

p⃗−⃗k

+V (C7)

where V ∈ C is the imaginary part. It’s obvious that equations (C6) and (C7) have exactly the same value in
real part.

Property C.4. Given the quaternion number

q := Re(α)+ Im(α)̂i+Re(β)̂j+ Im(β)k̂,

from the spinor |u〉= (α,β)T, α,β ∈ C under the gauge in equations (12) and (13). If h3 have the same sign in
the entire BZ, then F(⃗p) = 0.

Proof. One can observe eigenvalues to conclude that

h=−h=
√
h21+ h22+ h23, ∀⃗k ∈ BZ. (C8)

From now on, we consider h3(⃗k)> 0 for all k⃗ ∈ BZ, and therefore the spinor has the following form

|u〉= 1√
2h(h+ h3)

(
h+ h3
h1+ ih2

)

=
1√

2h(h− h3)

(
−h+ h3
h1+ ih2

)
|u〉,= 1√

2h(h+ h3)

(
−h1+ ih2
h+ h3

)
.
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After transforming the above two eigenstates into quaternions, we calculate the value of q∗ ⊛ q− q∗ ⊛ q

at k⃗:

F(⃗p) =
∑
k⃗∈BZ

(
1√

2h(h− h3)
(−h+ h3,0,h1,h2)∗

∣∣∣∣⃗
k

1√
2h(h− h3)

(−h+ h3,0,h1,h2)

∣∣∣∣
p⃗−⃗k

−
1√

2h(h+ h3)
(−h1,h2,h+ h3,0)∗

∣∣∣∣⃗
k

1√
2h(h+ h3)

(−h1,h2,h+ h3,0)

∣∣∣∣
p⃗−⃗k

)

=
∑
k⃗∈BZ

(
−h+ h3√
2h(h− h3)

∣∣∣∣⃗
k

−h+ h3√
2h(h− h3)

∣∣∣∣
p⃗−⃗k

+
h1√

2h(h− h3)

∣∣∣∣⃗
k

h1√
2h(h− h3)

∣∣∣∣
p⃗−⃗k

+
h2√

2h(h− h3)

∣∣∣∣⃗
k

h2√
2h(h− h3)

∣∣∣∣
p⃗−⃗k

−
−h1√

2h(h+ h3)

∣∣∣∣⃗
k

−h1√
2h(h+ h3)

∣∣∣∣
p⃗−⃗k

−
−h2√

2h(h+ h3)

∣∣∣∣⃗
k

−h2√
2h(h+ h3)

∣∣∣∣
p⃗−⃗k

−
h+ h3√
2h(h+ h3)

∣∣∣∣⃗
k

−h− h3√
2h(h+ h3)

∣∣∣∣
p⃗−⃗k

, V⃗

∣∣∣∣⃗
k

)

=
1

2

∑
k⃗∈BZ

(
h1√

h(h− h3)

∣∣∣∣⃗
k

h1√
h(h− h3)

∣∣∣∣
p⃗−⃗k

−
h1√

h(h+ h3)

∣∣∣∣⃗
k

h1√
h(h+ h3)

∣∣∣∣
p⃗−⃗k

+
h2√

h(h− h3)

∣∣∣∣⃗
k

h2√
h(h− h3)

∣∣∣∣
p⃗−⃗k

−
h2√

h(h+ h3)

∣∣∣∣⃗
k

h2√
h(h+ h3)

∣∣∣∣
p⃗−⃗k

,2V⃗

∣∣∣∣⃗
k

)
, (C9)

where V⃗ is the vector part of the above quaternion product at fixed k⃗ point. Recalling property (C.1) that shows
the vector part has no contribution for real-valued function F(⃗p), it is suffice to calculate the real part of the
quaternion product at fixed k⃗ point.

From equation (C2), there are two points k⃗= (kx,ky), and k⃗ ′ = (π− kx,π− ky) such that

hi√
h(h− h3)

∣∣∣∣⃗
k

hi√
h(h− h3)

∣∣∣∣
p⃗−⃗k

=
hi√

h(h+ h3)

∣∣∣∣⃗
k ′

hi√
h(h+ h3)

∣∣∣∣
p⃗−⃗k ′

, for i= 1, 2, and k⃗, k⃗ ′ ∈ BZ. (C10)

Therefore, the terms at k⃗ and at k⃗ ′ in equation (C9) will cancel with each other. Note that values at Γ and
at (π,π) are zero in equation (C9) since h1 = h2 = 0 at these points in our model equation (3). Thus, F(⃗p) = 0
if h3(⃗k)> 0 for all k⃗ ∈ BZ.

Similarly, we assume h3(⃗k)< 0 for all k⃗ ∈ BZ. After calculation, the value of F(⃗p) is the same as
equation (C9). Therefore, we can conclude that if h3 has the same sign in the entire BZ, then F(⃗p) = 0.
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