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Abstract
Plasma is defined as the fourth state of matter, and non-thermal plasma can be produced at
atmospheric pressure under a high electrical field. The strong and broad-spectrum antimicrobial
effect of plasma-activated liquids (PALs) is now well known. The antimicrobial effects of PALs
depend on many different variables, which complicates the comparison of different studies and
determining the most dominant parameters for the antimicrobial effect. The proven applicability
of machine learning (ML) in the medical field is encouraging for its application in the field of
plasma medicine as well. Thus, ML applications on PALs could present a new perspective to better
understand the influences of various parameters on their antimicrobial effects. In this paper,
comparative supervised ML models are presented by using previously obtained data to predict the
in vitro antimicrobial activity of PALs. A comprehensive literature search was performed, and 12
distinct features related to PAL-microorganism interactions were collected from 33 relevant articles
to automatically predict the antimicrobial activity of PALs. After the required normalization,
feature encoding, and resampling steps, two supervised ML methods, namely classification and
regression, are applied to the data to obtain microbial inactivation (MI) predictions. For
classification, MI is labeled in four categories, and for regression, MI is used as a continuous
variable. Sixteen different classifiers and 14 regressors are implemented to predict the MI value.
Two different robust cross-validation strategies are conducted for classification and regression
models to evaluate the proposed method: repeated stratified k-fold cross-validation and k-fold
cross-validation, respectively. We also investigate the effect of different features on models. The
results demonstrated that the hyperparameter-optimized Random Forest Classifier (oRFC) and
Random Forest Regressor (oRFR) provided superior performance compared to other models for
classification and regression. Finally, the best test accuracy of 82.68% for oRFC and R2 of 0.75 for
the oRFR are obtained. Furthermore, the determined most important features of predictive models
are in line with the outcomes of PALs reported in the literature. An ML framework can accurately
predict the antimicrobial activity of PALs without the need for any experimental studies. To the
best of our knowledge, this is the first study that investigates the antimicrobial efficacy of PALs with
ML. Furthermore, ML techniques could contribute to a better understanding of plasma parameters
that have a dominant role in the desired antimicrobial effect. Moreover, such findings may
contribute to the definition of a plasma dose in the future.
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1. Introduction

The term ‘plasma’ was first introduced by Irving Langmuir in 1928 and refers to the fourth state of matter,
which can be generated under an electric field and is a partially ionized gas composed of photons, free
electrons, ions, free radicals, reactive oxygen species (ROS), and reactive nitrogen species (RNS) [1]. Plasma
can be produced at atmospheric pressure or under a vacuum and can be classified into two categories based
on the thermal equilibrium between the electrons and heavy particles: thermal or hot plasma and
non-thermal or cold plasma. Cold atmospheric plasma (CAP) could be generated at atmospheric pressure
and room temperature under an externally applied electrical field. CAP applications can be summarized in
three main categories; surface modifications, therapeutic applications, and biological decontamination [2].
Antimicrobial activity, blood clotting, tooth whitening, wound healing, and anticancer efficacy are the main
biomedical applications of CAP that are reported in the literature [3]. Due to its strong antimicrobial activity
against a wide spectrum of microorganisms, including antibiotic-resistant organisms, CAP is an emerging
technology that is undergoing intensive research. One of the treatment methods of CAP, direct CAP
treatment, has been used in sterilization and disinfection applications with the goal of microbial inactivation
(MI) in a number of studies. Beside direct CAP treatment, liquids treated with plasma have been shown in
the literature to have similar effects to direct CAP treatment by undergoing chemical modifications [4].
Reactive plasma-generated species such as ROS, RNS, free radicals, and electrons are transferred to the liquid
by CAP treatment. Those reactive species may also lead to the formation of new species via interaction with
the treated liquid [5]. The liquid that is activated by CAP treatment is called plasma-activated liquids (PALs).

The plasma-generated reactive species were linked to the strong and broad-spectrum antimicrobial
activity of PALs [6]. Xiang et al conducted a comprehensive study on the antimicrobial efficacy of
plasma-activated water (PAW) against a range of microbial strains [7]. In another study [8], different liquids,
including deionized water (DIW), N-acetyl-cysteine, and phosphate-buffered saline (PBS), were activated via
CAP treatment, and these PALs exhibited broad-spectrum antimicrobial activity. Furthermore, this research
reveals that PALs have a long-lasting antimicrobial effect. Schmidt et al investigated the antimicrobial
activities, pH value, and conductivity of several solutions (tap water, PBS, and physiological saline) that are
activated with CAP [9]. Studies in the field of MI by PALs are expanding and becoming more prevalent as a
consequence of the advantages they provide. However, due to the differences between various plasma
generation systems, including electrical plasma parameters, electrode geometry and type, liquid type,
treatment volume, etc comparison of the antimicrobial efficacies of PALs from different research laboratories
can be difficult [10]. Furthermore, no well-established method for measuring, comparing, and predicting the
antimicrobial effectiveness of PALs generated by different plasma systems has yet to be developed. Moreover,
the inhibition activity of the produced PALs may differ depending on the liquids and microorganism strains.
Thus, a method that would help to predict the antimicrobial strength and efficacy of a PAL is needed to
achieve the desired antimicrobial activity by PALs [11].

Artificial intelligence (AI), a branch of computer science that is utilized in a wide range of disciplines and
is receiving a lot of attention these days, is frequently employed in solving complicated problems, making
decisions, and recognizing patterns [12]. Machine learning (ML), one of AI’s sub-branches, is the ability of
constructed algorithms to learn from incoming data. ML is a computational technique that automates the
process of model construction by using algorithms to learn from input data and make predictions or
decisions without explicit instructions. Furthermore, it should be noted that ML needs accurate knowledge
about the in-depth comprehension of the underlying data and models. In fact, a thorough understanding of
the data and the ability to interpret the results are crucial for the successful implementation and
interpretation of ML models. ML makes predictions by extracting inferences from data using mathematical
and statistical operations. ML algorithms are computational techniques used to analyze and identify patterns
in data, and to construct predictive models based on that discriminative knowledge [13]. In scenarios where
classical statistical methods are insufficient, ML provides an excellent option for analyzing a very large
amount of data due to its adaptability. AI is widely used in many fields nowadays since these tools are simple
and affordable [14]. Furthermore, investigations based on this foundation shed light on their approach,
which is based on data inputs rather than physical test materials. They can also anticipate the impacts of
materials whose effects have yet to be discovered using constructed models, contributing to prediction
approaches without the need for complex optimization processes [12]. Antibiotic development [15] and
antimicrobial resistance prediction for specific bacteria [16] have both benefited from ML approaches. In the
medical and biomedical disciplines, ML models are commonly used. The proven applicability of ML
algorithms in the medical field bodes well for their use in other fields, such as the prediction of antimicrobial
activity with different agents. There are only a few studies that apply ML techniques to estimate antimicrobial
activity. Shaban and Alkawareek sought to estimate the antibiofilm activity of antibiotics using three
optimized ML models based on logistic regression (LR), decision tree (DT), and random forest (RF)
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algorithms, using data manually obtained from the available literature for high-accuracy prediction of in vitro
antibiofilm activity, where they achieved 67%± 6.1% prediction accuracy for the LR model, 73%± 5.8% for
the DT model, and 74%± 5% for the RF model [17]. Apart from that, there have been other studies on ML
prediction involving nanoparticles and antimicrobial peptides. These studies collect data from the literature
or databases and analyze them using ML algorithms to predict toxicity or antimicrobial activity [18, 19].

In the field of plasma medicine, determining the plasma treatment parameters, attaining the required
antimicrobial effect, and optimizing plasma treatment to a specific standardization are critical challenges. To
solve this problem, we propose an ML method to predict the antimicrobial activity of PALs against a wide
spectrum of microorganisms. This tool uses CAP parameters, experimental setup parameters, and
microorganism characteristics as inputs to predict antimicrobial efficacy. We compiled in vitro experimental
data from published research and structured them into a comprehensive dataset. By reducing the number of
trials and errors in laboratory studies, the current approach allows for the screening of PALs and the
prediction of their ability to inactivate microorganisms, saving time and cost. To the best of our knowledge,
no study has used ML algorithms to predict the antimicrobial efficacy of PALs. AI algorithms intended for
use in the field of plasma medicine are expected to be pioneering studies in this field, paving the way for
other researchers to use AI techniques in plasma medicine.

2. Methods

The visual framework of the proposed methodological structure is presented in figure 1. A detailed
description of each stage is given in the following.

2.1. Data collection
A literature search was performed between December 2021 and March 2022 in the Scopus, ScienceDirect,
PubMed, and Web of Science databases to find relevant articles on the antimicrobial activity of PALs which
publication dates between 2008 and 2022. The keywords used in the literature search were determined as
‘antimicrobial, antibacterial, inactivation, CAP, non-thermal plasma, cold plasma, PAW, PAL, plasma treated
water, and plasma-treated liquid’. A detailed expression of the literature search is presented in table S1 in the
supplementary data. In addition to using keywords to search databases, articles were acquired by conducting
a manual literature search as well. A total of 307 relevant articles were obtained, and the titles and abstracts of
each article were examined to determine the most appropriate publications.

The primary inclusion criteria for the studies are to determine the MI value as a log reduction by exposing
PAL to microorganisms. The characteristics of the microorganisms and cold plasma specifications utilized in
the experiments should also be indicated in the article. The article removal process was carried out, and a
total of 33 papers were chosen. Afterward, the feature extraction stage was performed. Features such as CAP
specifications, PAL characteristics, in vitro characteristics, and CAP treatment characteristics were manually
extracted from the 33 articles [6, 8, 9, 20–49]. Any article which has missing value about the specified features
was eliminated. As a result, a total of 762 observations were collected without any missing predictor values.

2.2. Predictors and outcome
In the field of plasma medicine and antimicrobial studies with PALs, plasma treatment type, gas type,
discharge gap, PAL type, treatment volume, treatment time, microbial strain, initial microbial load,
PAL/microorganism suspension volume ratio, contact time, post-storage time, and incubation temperature
are the most widely used parameters, which were also used as predictors in the feature selection. Logarithmic
values for MI were utilized for supervised ML models to relate these predictors to an outcome.

Before data preprocessing, 13 different features that were manually extracted from the relevant articles
were modified. While the discharge gap, treatment volume, treatment time, initial microbial load,
PAL/microorganism suspension volume ratio, exposure time, post-storage time, and incubation temperature
features of the PALs were numeric data, the plasma type, gas type, liquid type, and microbial strain were
nominal data among the features. The logarithm of the initial microbial load (n) was also taken because one
of the inclusion criteria for an article was to define the MI as a logarithmic value. The input and output
variables, their categories and types, as well as the total number of unique values for each variable, are shown
in table 1. Also, the scatter plot of numerical predictors and outcome is presented in figure S1 in the
supplementary data.

The MI value was also labeled and categorized to a certain standard for classification models. The MI
value was determined based on the logarithm of the n of the bacterial solution because the n could vary from
study to study. A computation approach was used to label the results as four different categorical data, as
shown in table 2. Following the categorization of results, there are 211 observations in the ‘Complete’ class,
94 in the ‘Strong’ class, 169 in the ‘Weak’ class, and 288 in the ‘None’ class. The identified categorical classes
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Table 1. Input and output variables, their categories, types, and the total numbers of unique values (A detailed expression of unique
values of nominal variables is presented in Table S2 in supplementary data).

Category Variables Type Unique value

CAP specifications Plasma treatment type Nominal 7
Gas type Nominal 8
Discharge gap Numeric 15
Plasma treatment time Numeric 21

PAL characteristics Plasma activated liquid Nominal 15
Treatment volume Numeric 14

In vitro characteristics Microbial strain Nominal 22
Initial microbial load Numeric 32

CAP treatment characteristics PAL/mo suspension volume ratio Numeric 12
Contact time Numeric 26
Incubation temperature Numeric 8
Post storage time Numeric 27

Output Microbial inactivation Numeric 126
Categorical 4

Table 2. Categorization conditions for MI (microbial inactivation: outcome) and counts of class labels before applying SMOTE
(n indicates the initial microbial load).

Condition Output label Counts

MI⩽ 0.1n None, N 288
0.1n<MI< 0.5n Weak, W 169
0.5n⩽MI< 0.9n Strong, S 94
MI⩾ 0.9n Complete, C 211

were used to express the MI value for the classification models. Regression models were also utilized to
estimate the output as an exact value. Therefore, MI was used as a continuous variable in regression models.

2.3. Data preprocessing
The collected dataset for the creation of ML models was subjected to normalization, encoding, and
resampling data preprocessing steps before the training in order to avoid some issues such as variability in
unit sizes, the data imbalance effect, and data type inconsistency.

2.3.1. Normalization
The variability in units of measurement and magnitudes during model training may make optimization
more challenging. In order to improve model performance, the normalization technique was used as a
pre-processing step [50]. Data normalization is the process of converting the obtained data into distinct
ranges. During the normalization step, Z-score, min-max scaler [51], max-absolute scaler, and robust scaler
[52] were implemented. Different normalization strategies have been tested, taking into account that
normalization may have an impact on the model’s performance because the majority of the data is
numerical. All normalization methods were implemented for both classification and regression models. The
best results for classification and regression were determined empirically among different normalization
methods. The best normalization technique was adopted for the continuation of the experimental studies.
The initial numerical data distribution as well as the updated numerical data distributions that were
produced through the utilization of the four distinct normalization approaches outlined above depicts in
figure S2 in the supplementary data.

2.3.2. Feature encoding
The variables used in ML need to be converted into machine-readable data in order to train the model. The
most popular method for achieving this transition among the several known techniques is one-hot encoding,
which divides the column into multiple columns to transform the nominal data into numeric data. The
nominal values are replaced by 1s and 0s, whether they have the specified feature or not [53]. Since the
frequency of the variables was not taken into consideration, nominal values that were repeated numerous
times were only counted once. Because some of the predictors in this study contain nominal data and have
neither rank nor order, these features were transformed into numeric values with the one-hot encoding
approach. In contrast, the categorical outcome, MI, was encoded gradually for use in classification models
due to it contains a rank between labels, which have an increasing order from ‘None’ to ‘Complete’. The
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‘Complete’ class is superior to the other classes so it was encoded as ‘3’, and the ‘Strong’, ‘Weak’, and ‘None’
classes were encoded as ‘2’, ‘1’, and ‘0’, respectively.

2.3.3. Resampling
Classes are frequently uneven in studies using real data, such as the prevalence of diseases and experimental
outcomes, and class imbalance is an important problem in studies using supervised ML [54]. Classifiers and
regressors have less accurate predictions as a result of the large class difference. Correct classification and
regression may be ensured by balancing the proportion of majority classes with minority classes [55]. There
are a number of ML techniques, and numerous studies claim that balanced data can improve prediction
performance. A type of oversampling technique called synthetic minority oversampling technique (SMOTE)
was used for classification to overcome the imbalance issue in unbalanced and high-dimensional datasets.
The SMOTE technique creates new minority class samples based on the original dataset that was generated at
random from the closest neighbors joining the minority class data to expand the amount of data [56]. The
label ‘None’ predominates the dataset with 288 observations, and there are four categories of MI that were
assigned as outcomes. All other MI categories should therefore be equivalent to 288.

Synthetic minority over-sampling technique for regression (SMOTER) with Gaussian Noise (SMOGN) is
another resampling method to eliminate the imbalance problem [57]. The SMOGN technique was used to
resample the imbalanced dataset for use in the training of the regression models. The SMOTER and the
introduction of Gaussian Noise are two oversampling techniques combined in the SMOGN approach. Based
on the distance to the KNNs, SMOGN iterates through all unusual samples and selects between SMOTER’s
interpolation-based oversampling and Gaussian noise-based oversampling [58]. The data imbalance effect
was eliminated by using the SMOTE and SMOGN techniques for classification and regression models,
respectively, to resample the dataset into the classes and change the relative frequency of the other labels.

2.4. Data splitting
To evaluate the robustness of the trained ML model, the dataset should be split [59]. Hence, unknown test
data which never used in the training step can be predicted fairly with the trained ML model. Splitting the
dataset is the last step before developing the model and may be grouped as train-test split and validation
splitting. Train-test splitting in ML is the process of dividing the data sample into two groups, a ‘training set’
and a ‘test set’, for the purposes of training and testing the model [53]. In this study, the data were randomly
divided into two groups for classification and regression models: a training set including 80% of the data and
a test set containing the remaining 20%. It’s also crucial to validate the outputs of the ML models to assure
their accuracy. In this study, two different robust validation techniques, namely repeated stratified k-fold
cross-validation and k-fold cross-validation, were utilized for classification and regression models,
respectively, by considering the training sets.

2.5. Model development
Studies that use a range of ML techniques to create a variety of models are documented in the literature.
These methods can be split into two groups: supervised learning and unsupervised learning. Supervised
learning is the process of developing algorithms that reliably identify data or forecast outcomes using labeled
datasets [60]. Supervised learning has two subcategories: regression and classification. Both supervised ML
techniques were used in this study to predict the categorical or continuous MI value. Models were developed
using Python version 3.7.0 and scikit-learn version 1.0.2.

2.5.1. Classification models
In ML, the term ‘classification’ refers to a predictive modeling problem where a class label is predicted for a
given set of inputs. The ML method links CAP parameters, PAL characteristics, and in vitro characteristics to
the inhibition of bacteria and makes it possible to predict the MI efficacy of PALs. As candidates for our
model, we tested a number of supervised classification algorithms to see which one could provide the most
accurate prediction.

LR, Naïve Bayes classifier, k-nearest neighbor (KNN), DTs, RF, support vector machines (SVMs), and
Boosting algorithms are some of the supervised learning methods. Understanding how a group of
independent variables influence the result of the dependent variable is made easier with the help of LR [61].
A modest amount of training data is needed for the Naïve Bayes classifier in order to estimate the necessary
parameters. When compared to other classifiers, they are reasonably fast [62]. A lazy learning technique
called KNN saves every instance corresponding to the training set in n-dimensional space [63]. A DT has the
benefit of being easy to comprehend and depict, and it also requires a very small amount of data preparation.
The DTs drawback is that it can produce complex trees that might not categorize things well. Due to less
over-fitting than DTs, the RF has the advantage of being more accurate [64]. The RF classifiers’ only
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drawback is that their implementation is fairly difficult [65]. SVM is memory-efficient and works incredibly
well in high-dimensional domains since it only employs a portion of the training points in the decision
function. The SVM’s sole drawback is that the technique does not elicit probability estimates directly [66].
Boosting is an ensemble learning technique that turns weak learners into strong ones in order to improve the
model’s accuracy. It makes use of a variety of ML algorithms [67].

LR, linear discriminant analysis, Gaussian process classifiers, KNN, decision tree classifier, extra trees
classifier, random forest classifier (RFC), Gaussian Naïve Bayes (GNB), Bernoulli Naïve Bayes (BNB), SVM,
bagging classifier, extreme gradient boosting classifier (XGBC), AdaBoost classifier, histogram-based
gradient boosting classifier (HGBC), and gradient boosting classifier algorithms were utilized as classifiers to
predict categorical MI in the model development stage of the study.

2.5.2. Regression models
Regression is another subfield of supervised ML. It aims to create a model of the relationship between a
certain number of features and a continuous target variable [68]. One of the most fundamental kinds of
regression in ML is linear regression. A predictor variable and a dependent variable that are linearly related to
each other compensate for the linear regression model. When there is a strong correlation between the
independent variables, ridge regression (RR) is commonly used. Regularization and feature selection are
both carried out through the least absolute shrinkage and selection operator (LASSO) regression. It limits the
regression coefficient’s maximum absolute value. With a small change, polynomial regression is identical to
multiple linear regression. The value of the regression coefficients is determined via Bayesian regression
using the Bayes theorem. Instead of locating the least squares, this regression method determines the
posterior distribution of the features [69]. Furthermore, such algorithms DT, RF, boosting, and KNN can be
adapted as regression models.

LASSO regression, RR, extreme gradient boosting regression (XGBR), LASSO-least-angle regression,
k-neighbors regression, AdaBoost regression, extra trees regression (ETR), bagging regression, elastic net
regression (ENR), linear support vector regression (LSVR), Bayesian ridge regression, multi-layer perceptron
regression, random forest regression (RFR), and gradient boosting regression were used as regressors to
determine which model could deliver the most accurate performance in the prediction of the exact value of
MI.

2.6. Hyperparameter tuning
Hyperparameters are the variables that define the model architecture. The model’s parameters, which are
learned during training, cannot be manually set. Starting with random parameter values, a model modifies
them throughout the training process. Hyperparameters, on the other hand, are variables that are chosen
before the model is trained [70]. Hyperparameter values have the potential to increase or decrease model
accuracy. Hyperparameter tuning is the process of searching for the ideal model architecture and its
optimum parameters. It is a crucial phase in the model training process that allows the model to test various
combinations of hyperparameters and make predictions using the optimal hyperparameter values [71]. For
hyperparameter tuning, a variety of techniques are utilized, including grid search, random search, and
informed search [72]. A genetic algorithm is a method for hyperparameter tuning that is based on an
informed search and the real-world idea of genetics. The procedure begins by building a few models,
selecting the best one, building other models that are similar to the best ones, and adding some randomness
until the target accuracy is achieved. Grid and random search are both used in informed search and genetic
algorithms. The tpot library [73] predicts the optimum hyperparameter values, and the evolutionary
algorithm chooses the best model after learning from past iterations. However, it takes a lot of computational
sources to compute [74]. In this study, the tpot classifier and tpot regressor was combined with a genetic
algorithm as an informed search technique for classification and regression models, respectively. Thus, in
addition to empirically determining the best accurate classifiers and regressors, not only the model selection
has been strengthened, but also the model’s parameters have been tuned with the genetic algorithm-based
informed search used as additional validation.

2.7. Model evaluation
The robustness of the model was assessed using a variety of performance evaluation criteria. Accuracy
(ACC), recall (REC), precision (PRE) F1-score (F1), area under the receiver operating characteristic (ROC)
curve (AUC) [75], Jaccard index (JI), and elapsed time (ET) [76] were selected as the evaluation criteria for
classification models. The confusion matrix and ROC curve were also provided for the best classification
model. The formulas of the selected performance metrics are presented as follows;

ACC=
TP+TN

TP+TN+ FP+ FN
(1)
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REC=
TP

TP+ FN
(2)

PRE=
TP

TP+ FP
(3)

F1=
2 ·TP

2 ·TP+ FP+ FN
(4)

JI=
TP

TP+ FP+ FN
(5)

where TP, TN, FP, and FN indicate predicted classes as true positive, true negative, false positive, and false
negative, respectively. As this problem is a multiclass classification problem, TPs hold the diagonal values of
corresponding classes, while off-diagonal values represent the errors in the confusion matrix. More precisely,
FNs denote the total number in the corresponding rows excluding the TPs, FPs denote the total number in
the corresponding columns excluding the TPs, and finally, TNs indicate the total numbers excluding the
corresponding row and column. The multiclass classification problem can be handled by a set of many
binary classification problems for each class. For instance, when considering the ‘None’ class, TP denotes the
actual ‘None’ class is predicted to be ‘None’, while ‘Weak’ or others is to be considered as FN. Similarly, when
considering the REC, or complement of Type II error, it holds the TPs ratio among those with corresponding
classes, and e.g. for the ‘Strong’ class, Type II error denotes the MI incorrectly classified as ‘Strong’ but
actually not. This might be applied to each class. Therefore, these metrics show the success of the trained
models in the classification of MI considering the categorized groups (none, weak, strong, and complete),
rather than the positive and negative discrimination of MI.

To evaluate the regression models’ performance, robust statistical metrics such as the coefficient of
determination or R-squared (R2), mean absolute error (MAE), mean squared error (MSE),
root-mean-squared error (RMSE) [12], and ET [77] were calculated. The formulas of the selected
performance metrics are presented below;

R2 = 1−
∑

(yi − ŷ)2∑
(yi − y)2

(6)

MAE=
1

N

N∑
i=1

|yi − ŷ| (7)

RMSE=
√
MSE=

√√√√ 1

N

N∑
i=1

(yi − ŷ)2 (8)

where i is the data point, N is the number of data points, and ŷ and y indicate the predicted value of actual
value (y) and mean value of y, respectively.

In order to assess the robustness of the models, the mentioned evaluation metrics were calculated during
the training, validating, and testing phases. Moreover, feature importance analysis was performed for the best
classification and regression models. Feature importance analysis refers to a technique that calculates the
weighted scores of all the predictors. The calculated scores describe which features are more relevant for
trained models [78]. In this paper, an improved Gini Index-based feature importance analysis algorithm [79]
was adopted to determine more relevant features. By using this improved version, feature scores were
determined by calculating proportionally to the node purity of features instead of counting splits. Calculated
scores basically denote a total increment in the purity of a node weighted by the number of samples and
weighted by the probability of reaching the corresponding node. It means a higher score of purity indicates
that the particular attribute has a greater impact on the prediction model for MI. Additionally, in order to
determine whether there is a statistical significance in the performance of the optimized classification and
regression models, the one-way ANOVA test was performed on each trained model’s validation accuracies
and R2 scores [80].
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3. Results

3.1. Experimental setup
A total of collected data with 13× 762 dimensions satisfied the required criterion without any missing
values. Table 3 represents statistical data for numeric variables. The discharge gap has a mean of
13.71± 17.23 mm. Moreover, the range of this variable is between 0 and 81 mm. Plasma treatment time has
a mean of 1165± 2771.48 s and a range of 0–14 400 s. Treatment volume ranges from 0.25 to 500 ml, with a
mean of 45.52± 116.56 ml. Another variable, the initial microbial load, has a mean of 6.62± 0.91 log, with a
range of 2–9 log. The PAL/mo suspension volume ratio is one of the most crucial variables, with a mean
value of 109.25± 246.75 fold, ranging from 1 to 1000 fold. Contact time ranges from 0 to 1440 min and has
a mean of 39.05± 131.02 min. Incubation temperature has a mean of 23.5± 12.4 ◦ C while ranging from
−80 to 50 ◦ C, having mostly positive values. The range of post-storage time is 0–6120 min, with a mean of
64.47± 345.56 min. Additionally, the detailed expression of nominal predictors with their unique values’
labels and frequencies in the total observations are presented in table S2 in the supplementary data. The most
prevalent type of plasma treatment, which is a nominal predictor among the included articles and
considering 762 observations, was volume dielectric barrier discharge with a frequency of 40.6%. The second
one was the plasma jet, with a frequency of 33.3%. Among the gas types, the air has a frequency of 78.5% and
was the most used gas type among the articles. The second most used gas type was argon+oxygen with a
frequency of 14.6%. When PALs were examined, DIW was the most commonly used among the 33 articles.
DIW has a frequency of 51.7%, while the second-most-used liquid, saline, has a frequency of 18.4%. Two
model organisms, Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus), which are widely practiced in
experiments, were the two species with the highest frequency in our study when microbial strain is
considered. The most frequently used microorganism in the included studies was the gram-negative model
organism E.coli, which has a frequency value of 41.5%. The second most frequently used microorganism was
the gram-positive model organism S.aureus, which has 31.1% frequency. All nominal variables were selected
to build ML models even though they have diverse data distribution and some variable frequency rates are
higher than others in order to observe the impact and contributions on the predictions.

In order to better understand the relationships between the numeric predictors as well as the outcome
(MI), a correlation matrix was also created. A perceptible event is shown as color in two dimensions using
the data visualization technique known as a correlation matrix. Based on hue or intensity, variation in color
provides unmistakable visual cues as to how the event clusters or changes in space [81]. Figure 2 showed the
results of the correlation matrix. The correlation matrix revealed correlations between predictors and their
correlations with output. Examining the correlation matrix reveals that there was relatively no correlation
between the predictors. Contact time, incubation temperature, and discharge gap might stand out as the
most correlated features. The discharge gap and contact time have a positive correlation of 0.43 magnitude,
and the incubation temperature and discharge gap have a negative correlation of 0.40 magnitude. As clearly
stated in [82], a magnitude of correlation coefficients between 0.3 and 0.5 indicates a low correlation level,
whereas a moderate level needs a higher magnitude, and so on. Moreover, a correlation coefficient of 0.5
magnitude was determined as a threshold between independent variables in a recent similar work [17].
Therefore, there is no significant correlation between the predictors. As a result, all predictors were preserved
for model training because they might make crucial contributions to model development. Additionally, any
of the predictors have no significant correlation with the outcome. Therefore, all predictors might contribute
to the prediction of the outcome since the correlation coefficient threshold for elimination or preservation
was not achieved. As a result of the correlation analysis, both the collected numerical and nominal predictors
are essential and key variables that might have a significant biological impact on MI. It should also be noted
that the feature importance analysis was conducted to examine the contributions of predictors to model
development.

Preprocessing steps were used to prepare the data for ML models by distributing the data evenly,
converting nominal data to numeric data, and avoiding data imbalance. After normalization and resampling,
a total of 1152 observations were obtained. After resampling, a total of 922 observations (80%) were
randomly selected for use in the training phase, while the remaining unseen 230 observations (20%) were
used in the test phase. Also, 10% (92 observations) of the training data was used for validation in each fold.
For the n-repeated stratified k-fold cross-validation strategy in the classification problem, n and k were
selected as 3 and 10, respectively, which yields a total of 30 folds. For the k-fold cross-validation in regression
models, k was chosen as 10. Following the model development, the generation size was set to 100, the
population size to 150, and the offspring size to 20 for both the genetic algorithm-based tpot classifier and
regressor. Both informed searches were conducted with a traditional ten-fold cross-validation strategy to
determine the best pipeline. An Intel® CoreTM i9-10 940X CPU and 64 GB RAM were used to develop all
supervised ML models.

9



Mach. Learn.: Sci. Technol. 4 (2023) 015030 M A Özdemir et al

Table 3. Descriptive statistics of numeric variables.

Numeric variable Unit Count Mean SD Min. Max.

Discharge gap mm 762 13.71 17.23 0 81
Plasma treatment time sec 762 1165 2771.48 0 14400
Treatment volume mL 762 45.52 116.56 0.25 500
Initial microbial load log 762 6.62 0.91 2 9
PAL/mo suspension volume ratio fold 762 109.29 246.75 1 1000
Contact time min 762 39.05 131.02 0 1440
Incubation temperature ◦ C 762 23.5 12.4 −80 50
Post storage time hour 762 64.47 345.56 0 6120
Microbial inactivation log 762 2.83 2.77 0 9

Figure 2. Correlation matrix of predictors and outcome (D_Gap: discharge gap, Vol: treatment volume, PT_Time: plasma
treatment time, Fold: PAL/mo suspension volume ratio, Cont_Time: contact time, Temp: incubation temperature, Init_Conc:
initial microbial load, Delay: post storage time, mo_Inac_num: microbial inactivation numeric).

3.2. Classification results
To enhance the accuracy of the models, the numeric input variables underwent data normalization. Several
methods, including Z-score, min-max scaler, max-absolute scaler, and robust scaler, were used as
normalization techniques. The performance of three distinct classifiers and the various normalization
techniques were compared. Figure 3 presents the accuracy scores obtained from the XGBC and RFC with
unoptimized hyperparameters and optimized RFC (oRFC) models by using a three-repeated
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Figure 3. A box-plot representation of accuracy values of different normalization methods with the top three classifiers by using a
three-repeated stratified-ten-fold cross-validation strategy (The line in the boxes indicates the median value of ACCs).

stratified-ten-fold cross-validation strategy. oRFC is a hyperparameter-optimized version of conventional
RFC by derived from the tpot classifiers. The average accuracy values after applying the Z-score normalization
technique were 80.38%, 80.56%, and 81.29% for the XGBC, RFC, and oRFC models, respectively. The
classifier with the highest accuracy value was oRFC, which accuracy value before normalization was 70.11%
and a huge increase to 81.29% after normalization. Such a high accuracy change shows the effect of the
magnitude difference of the numerical values on the performance of the model. Additionally, while oRFC
yielded an average accuracy of 81.29% using Z-score normalization, 79.37%, 79.87%, and 80.35% accuracies
were obtained by utilizing min-max scaler, max-absolute scaler, and robust scaler, respectively. This accuracy
difference enabled Z-score selection among others and was implemented in the next stages of the study.

Various classifiers were utilized to choose the most accurate one among them. The different classifier
results were presented in figure 4 as classifiers versus accuracy scores. RFC, XGBC, and LGBMC were the first
three classifiers, which led to average validation accuracy scores of 80.47%, 80.23%, and 78.63%, respectively.
The three classifiers with the lowest validation accuracy scores were GNB, SVM, and BNB, with average
accuracy values of 38.17%, 46.20%, and 46.90%, respectively. For this study, RFC is the most accurate model
that may provide the most precise predictions. It should be noted that the accuracy values may vary due to
the stochastic nature of ML models and the fact that the dataset is randomly shuffled each time. While the
accuracy value of the RFC model in the normalization comparison was 80.56%, the accuracy value in
comparing classifiers was 80.47% with an acceptable variance. Table 4 summarizes the performance metrics
of various classifiers for validation and training results. ACC and AUC were provided for training results, and
ACC, F1, REC, PRE, JI, AUC, and ET were provided for validation results. Please note that F1, REC, and PRE
values were provided as macro scores. There was a 42.3% accuracy difference between the most accurate
model (RFC) and the least accurate model (GNB). To evaluate whether a model has statistical significance, a
one-way ANOVA test was performed and the p− value threshold was determined as .001. Statistical analyses
demonstrated that while RFC and XGBC accuracy scores were statistically significant (p< .001) among other
classifiers, no significance (p> .999) was found for other classifiers. Despite LGBMC and HGBC having an
accuracy value of 78.63% and 78.50%, which is close to the RFC accuracy score, there was no statistical
difference for both classifiers. For the RFC, the average training ACC and AUC were 99.00%± 0.26% and
1.00± 0.00, respectively. The validation ACC was 80.47%± 4.23%, F1-score was 80.47%± 4.07%, REC was
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Figure 4. A box-plot representation of obtained validation accuracy values of different classifiers by using a three-repeated
stratified-ten-fold cross-validation strategy (The line in the boxes indicates the median value of ACCs).

Table 4. Average performance metrics of three-repeated stratified-ten-fold cross-validation strategy for different classifiers (ACC, F1,
REC, and PRE values are given as percentages (%) and the ET unit is s.).

Train Validation

Classifier ACC AUC ACC F1 REC PRE JI AUC ET p-value

LR 55.40 0.82 55.53 55.40 55.50 57.17 0.39 0.77 1.28 > .999
LDA 60.20 0.83 54.70 54.43 54.60 56.43 0.38 0.78 1.62 > .999
GPC 70.07 0.90 61.20 61.03 61.20 62.13 0.45 0.83 92.17 > .999
XGBC 98.20 1.00 80.23 80.23 80.23 80.70 0.68 0.94 9.76 < .001
LGBMC 97.00 1.00 78.63 78.60 78.57 79.33 0.65 0.94 9.76 .250
KNN 77.40 0.95 65.20 64.93 65.37 66.23 0.49 0.85 3.16 > .999
DTC 99.00 1.00 74.73 74.63 74.77 75.43 0.60 0.84 1.20 > .999
ETC 99.00 1.00 70.37 70.30 70.30 71.00 0.55 0.81 1.07 > .999
GNB 40.52 0.76 38.17 31.80 37.97 45.57 0.20 0.72 1.14 > .999
BNB 51.30 0.76 46.90 46.73 46.97 47.53 0.31 0.72 1.17 > .999
SVM 48.03 0.77 46.20 45.53 46.23 50.47 0.30 0.74 14.77 > .999
BC 97.50 1.00 77.63 77.57 77.63 78.23 0.64 0.92 2.50 .781
ABC 62.20 0.81 58.17 58.13 58.23 59.37 0.42 0.77 6.35 > .999
HGBC 97.00 1.00 78.50 78.47 78.50 79.20 0.65 0.93 132.98 .331
RFC 99.00 1.00 80.47 80.47 80.47 81.03 0.68 0.94 10.50 < .001
GBC 88.00 0.98 73.47 73.43 73.47 74.37 0.59 0.91 22.27 > .999

80.47%± 4.18%, PRE was 81.03%± 4.00%, JI was 0.68± 0.06, and the AUC was 0.94± 0.02. The
mentioned performance metrics of the RFC model in each fold are presented in table S3 in the
supplementary data. In the second-most accurate model, the XGBC results, the ACC values are in line with
the RFC. But, XGBC yielded better ET than RFC with 9.76 s. RFC was determined as the best classification
model and was used for the hyperparameter tuning and testing phase of the study. The statistical tests also
supported the superiority of the RFC algorithm, among others.
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Figure 5. Result graphics of the test phase (model predict) of the eventual oRFC model: (a) Confusion matrix and (b) ROC curve.

After hyperparameter tuning, oRFC was obtained by using the predefined parameters to improve model
accuracy. By optimizing the RFC model using the parameters obtained by the tpot classifier, a new model was
developed. The optimized parameters were determined, such as the maximum depth of 10, maximum
features of 0.3, minimum samples leaf of 7, minimum samples split of 10, and estimators count of 100 for the
oRFC model. Prior to hyperparameter tuning, the accuracy value of RFC was obtained as 79.29% by using
the default parameters provided in scikit-learn such as minimum samples leaf of 1, minimum samples split of
2, estimators count of 10, no maximum depth limit, and the number of maximum features limited by the
square root of the input feature count. After hyperparameter tuning, the accuracy value for the oRFC model
was enhanced to 81.29%. Model accuracy was clearly impacted by normalization methods and
hyperparameter tuning. The oRFC model was tested using the 20% test data that was allocated during the
data splitting stage after the model’s performance had been established. In the test phase, the oRFC model
achieved 82.68% ACC, 82.55% F1macro, 82.47% REC, and 82.71% PRE. Furthermore, JI, AUC, Cohen’s
kappa, and Matthew’s correlation coefficients were calculated as 0.71, 0.88, 0.77, and 0.77, respectively. A
visual representation of the tree structure of the oRFC model is presented in figure S3 in the supplementary
data.

In this study, a confusion matrix was employed to assess the effectiveness of the classification model. By
comparing the actual values with those predicted by the trained model, the confusion matrix evaluates how
well the classification model works well [83]. Figure 5(a) shows the confusion matrix created using the
preprocessed dataset with the oRFC model. The distribution of the four indicators in the dataset-TP, FP, TN,
and FN-was shown in the confusion matrix. The confusion matrix was generated in the testing phase with
the use of the previously indicated four output labels: None, Weak, Strong, and Complete. The confusion
matrix’s ‘TP’ and ‘TN’ values were those instances where the expected value and the actual value matched.
The accuracies of the four output labels for the oRFC model were 80.7% for ‘None’, 77.6% for ‘Weak’, 81.1%
for ‘Strong’, and 90.5% for ‘Complete’. The estimated values have high match percentages with the true
values, which were represented by the darker boxes, and low match percentages with the mismatched values,
which were represented by the lighter boxes, proving that the chosen model is a reliable model. The overall
test accuracy was yielded as 82.68%. Figure 5(b) shows the ROC curve that compares the rate of FP values to
TP values. The gold standard of the classification has the largest AUC, and the sensitivity of the model rises as
this value approaches 1. The area under the ‘Complete’ class’ curve with a value of 0.97 has the most
sensitivity, whereas the area under the ‘Weak’ class with a value of 0.89 has the lowest. Finally, the average test
AUC score was computed as 0.94.

The final analysis for the classification model is presented in figure 6 which represents the findings of the
feature or predictor importance analysis. The weights of the predictors’ coefficients, which are part of the ML
model function, were used to construct a measure of feature importance. Then the predictors were ordered,
starting with the highest coefficient. The highest weight represents the most contributed feature to the
building of the best oRFC model. Hence, the greatest ones have a tremendous impact on the accurate
prediction of MI. In comparison to other variables, plasma treatment time, contact time, microbial strain,
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Figure 6. Feature (predictor) importance results for eventual oRFC model. Feature importances were determined by considering
the feature’s weight wherein the final classification model function (PT_Time: plasma treatment time, Cont_Time: contact time,
mo: microbial strain, Liq: plasma activated liquid, Delay: post storage time, Fold: PAL/mo suspension volume ratio, Init_Conc:
initial microbial load, D_Gap: discharge gap, PT_Type: plasma treatment type, Temp: incubation temperature, Gas: gas type, Vol:
treatment volume).

liquid type, and post-storage time were identified as more significant features; it may be inferred that these
attributes have the greatest impact on the output. Despite the fact that the effects of treatment volume, gas
type, incubation temperature, plasma treatment type, and discharge gap were not as significant as the others,
the distributions of coefficients were not only weighted on certain ones. This indicates all predictors may
have a significant impact on not only the building of the classification model but also on the accurate
prediction of MI. These results were also in line with the correlation map results of the numerical data.

3.3. Regression results
The dataset was resampled by using SMOGN as a data preprocessing step before the training of the
regression models because the data distribution was not balanced. The SMOGN algorithm, which mixes
oversampling with Gaussian noise [58], is based on the SMOTER method. The density of the outcome of the
dataset after oversampling with the SMOGN approach is shown in figure 7 together with the initial data
density. The majority of the original data distribution ranged between 0 and 2 for MI. Following the
application of SMOGN, the data was distributed more uniformly and nearly in a Gaussian distribution. The
data imbalance problem was reduced using the SMOGN technique, and then all data was resampled to
produce a homogenous Gaussian data distribution. The SMOGN implementation has affected R2 scores.
While the average R2 value was 0.68 before resampling, with the 0.04 increments, this value increased to 0.72
after the SMOGN application. Although the effect of the SMOGN on the validation R2 scores seems not to be
too significant, the resampling method might have a clear impact on the prediction of new incoming data.
Therefore, the importance of the resampling method is undeniable.
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Figure 7. The data distribution graph of before and after the SMOGNmethod.

To enhance regression performance, similar to the classification problem, normalization methods like
Z-score, min-max, max-absolute, and robust scaler were performed. The highest-performing top three
regressors were chosen to compare the effect of the normalization techniques to the R2 scores. Figure 8
presents the R2 scores obtained from the XGBR and RFR with unoptimized hyperparameters and the
hyperparameter-optimized version of the RFR (oRFR) models by using a traditional ten-fold
cross-validation strategy. The oRFR which is a similar version of the oRFC model, was derived by using the
tpot regressors. The average R2 values after applying the robust scaler normalization technique were 0.68,
0.68, and 0.72 for the XGBR, RFR, and oRFR models, respectively. The regressor with the highest average R2

score was oRFR, which R2 value before normalization was 0.64 and increased to 0.72 after normalization.
While the average R2 value was achieved for the best regressor, oRFR, as 0.72, other normalization methods
yielded the average R2 scores as 0.71 for all three normalization methods (Z-score, min-max, and max-abs).
The robust scaler normalization method was selected to be implemented in the next stages of the study since
it was the most effective method on the R2 scores.

Following the data preprocessing steps, regression models were trained for the optimized dataset. The
various regressor results were presented in figure 9 as regressor versus R2 scores. The three best R2 scores
belong to RFR, BR, and ETR, with 0.72, 0.69, and 0.68 scores, respectively. The three regressors with the
lowest validation R2 scores were ENR, LASSO, and LSVR, with average R2 values of 0.00, 0.05, and 0.06,
respectively. As with classification results, the RF-based regressor was the most accurate one. Due to the
stochastic nature of the model, R2 values may vary between normalization and regression results similar to
the classification scenarios. Table 5 summarizes the performance metrics of a conventional ten-fold
cross-validation strategy for various regressors. While R2, MAE, and RMSE were provided for training
results, R2, MAE, MSE, RMSE, and ET were provided for validation results. According to the results, the RFR
model has the lowest error and the greatest R2 score when compared to the other regressors, with average R2,
MAE, MSE, and RMSE values of 0.72± 0.09, 0.33± 0.04, 0.28± 0.09, and 0.53± 0.09, respectively. There
was a 0.72 R2 value difference between the most accurate model (RFR) and the least accurate model (ENR).
One-way ANOVA was performed, and the results demonstrated that while the RFR and BR models’ R2 scores
were statistically significant (p< .001), no significance (p> .999) was found for other regressors. Despite the
ETR and XGBR models both having the R2 value of 0.68, which is close to the RFR R2 score, there was no
statistical difference for both regressors. For the RFR, the average training R2, training MAE, and training
RMSE were 0.95± 0.01, 0.13± 0.01, and 0.23± 0.01, respectively. The mentioned performance metrics of
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Figure 8. A box-plot representation of R2 scores of different normalization methods with the top three regressors by using a
ten-fold cross-validation strategy (The line in the boxes indicates the median value of R2s).

Figure 9. A box-plot representation of obtained validation R2 scores of different regressors by using a ten-fold cross-validation
strategy (The line in the boxes indicates the median value of R2s).
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Table 5. Average performance metrics of ten-fold cross-validation strategy for different regressors (ET unit is s.).

Train Validation

Regressor R2 MAE RMSE R2 MAE MSE RMSE ET p-value

LASSO 0.08 0.88 0.96 0.05 0.89 0.95 0.97 0.18 > .999
RR 0.28 0.72 0.86 0.13 0.79 0.87 0.93 0.17 > .999
XGBR 0.96 0.10 0.19 0.68 0.36 0.32 0.56 1.35 .009
LLars 0.19 0.80 0.91 0.13 0.82 0.87 0.93 0.23 > .999
KNR 0.59 0.47 0.64 0.37 0.62 0.63 0.79 0.23 > .999
ABR 0.31 0.74 0.84 0.26 0.76 0.74 0.86 0.50 > .999
ETR 0.98 0.02 0.14 0.68 0.31 0.32 0.56 3.03 .003
BR 0.93 0.14 0.26 0.69 0.34 0.31 0.55 0.49 < .001
ENR 0.00 0.92 1.01 0.00 0.92 1.02 1.01 0.18 > .999
LSVR 0.16 0.64 0.92 0.06 0.76 1.07 1.03 0.22 > .999
BaR 0.20 0.79 0.90 0.13 0.82 0.87 0.93 0.48 > .999
MLPR 0.56 0.50 0.66 0.28 0.65 0.72 0.84 17.45 > .999
RFR 0.95 0.13 0.23 0.72 0.33 0.28 0.53 3.05 < .001
GBR 0.73 0.42 0.52 0.58 0.52 0.42 0.64 0.99 .952

the RFR model in each fold are presented in table S4 in the supplementary data. In the second most accurate
model, BR has the R2 value of 0.69, which is 0.03 lower than RFR. MAE, MSE, and RMSE values were close to
RFR. However, BR yielded better ET than RFR with 0.49 s. RFR was determined as the best regression model
and used for the hyperparameter tuning and testing phase of the study. Similar to the classification results,
the statistical tests also supported the superiority of the RF-based algorithm, among others.

By employing the predefined parameters to increase the model’s R2 score after hyperparameter tuning,
the oRFR model was produced. The optimum parameters for the oRFR model were as follows: a maximum
depth of 8, a maximum feature of 0.5, a minimum sample leaf of 8, a minimum sample split of 12, and an
estimator count of 100. Before hyperparameter tuning, the RFR model’s R2 score was obtained as 0.68 by
using the default parameters provided in scikit-learn such as a maximum feature of 1, a minimum sample
leaf of 1, a minimum sample split of 2, an estimator count of 10 and no maximum depth limit. The R2 value
for the oRFR model was increased to 0.72 after hyperparameter tuning. The oRFR model was tested using
the 20% test data that was allocated during the data splitting stage after the model’s performance had been
established. In the test phase, the oRFR model was achieved nearly 0.75 R2, 0.32 MAE, 0.25 MSE, and 0.50
RMSE value. Furthermore, the maximum error and variance scores were calculated as 1.72 and 0.75,
respectively.

Additionally, figure 10 presents the plot of predicted MI values versus actual MI values. The model’s
ability to predict the measured outcome (MI) variable can be examined using the graph. The residual of the
fit is not directly plotted on either axis in the graph. Instead, the graph shows the predicted y value on the
y-axis and the actual y value (recorded in the data table) on the x-axis. The standard diagonal line that
centers the graph is the fit line for the best regressor. In this instance, the vertical distance between the plotted
point and the red line of identity serves as a representation of the residual (the horizontal distance can also be
used as these distances will always be the same for each point). The graph demonstrates that the model
performs better at predicting actual values at lower and medium Y values (between 0 and 5), which are closer
to the RFR fit line, while predictions are further off at higher Y values (points farther from the fit line). Since
each data point is close to the predicted regression line, it can be concluded that the chosen RFR model fits
the data quite well, with a test R2 value of nearly 0.75. The graphic demonstrates the close agreement between
model predictions and actual data, demonstrating the reliability of the regression model.

The objective of this study’s feature importance analysis was to quantify the impact of the predictors on
the output of the regression model. The scores from the feature importance analysis shed light on the dataset
and model and may enhance the model’s predictive performance [12]. Figure 11 presents the outcomes of
the feature importance analysis. Similar to the classification problem, feature importance analysis was
performed using the model function’s coefficients. In comparison to other predictors, plasma treatment
time, contact time, liquid type, and initial microbial load were determined to be more significant features; it
may be inferred that these features had the most impact on the outcome. In contrast, the regression model is
less impacted by treatment volume, incubation temperature, gas type, and plasma treatment type. Compared
with the feature importance graph obtained as a result of the classification model, the four features (plasma
treatment type, gas type, incubation temperature, and treatment volume) that had the least impact on the
output were the same as the regression model’s feature importance, even though they were in different
orders. Furthermore, the two most important features of both models were the contact time and plasma
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Figure 10. Regression plot of the test phase (model predict) of eventual oRFR model (p< .001).

treatment time. When compared to other features, PAL ranked fourth in the classification model but third in
the regression model. Microbial strain and initial microbial load are the only two features that have changed
for the top four features in the feature importance analysis for both models. The initial concentration was the
fourth important feature in the regression model, while the microbial strain was the third feature for
classification. Although little differences exist, The regression features’ importance was in line with the
classification features importance analysis. The feature importance analysis results, as well as correlation
graphs, demonstrated that all predictors might have a significant impact on the building of supervised ML
models.

4. Discussion

In order to predict the MI of PALs, this study presented the implementation of ML in the field of plasma
medicine, from data collecting through model evaluation. According to the studies in the literature, the
outcomes of quantitative and qualitative analyses to determine the antimicrobial activity of PALs depend on
a number of factors. The microbial strain and type of PAL both affect PAL’s antimicrobial activity [7].
Additionally, the power, frequency, exposure period, pulse form, electrode geometry, and other parameters
that affect plasma device efficiency could change the antimicrobial effect of PALs [84]. Therefore, it is
challenging to compare the antimicrobial activity of PALs produced by various devices, and the optimization
of parameters required to achieve a remarkable antimicrobial effect is both time-consuming and costly.
Determining the plasma treatment parameters, achieving the desired antimicrobial effect, and tailoring
plasma treatment to a particular standardization are significant challenges in the field of plasma medicine.
The definition of ‘plasma dose’ will be aided by standardization, which is both a crucial problem and a
necessity in the field of plasma medicine. The issue of defining the ‘plasma dose’ using Al is growing in
significance despite the fact that there is numerous research for plasma dose assessment in the literature
[85, 86]. In this study, it is expected that the widespread use of AI in the medical and biomedical fields today
will enable the targeted standardization of plasma medicine. To the best of our knowledge, no studies have
previously employed ML models to predict the antimicrobial activity of PALs. Some research in the literature
claims that PALs’ antimicrobial activity is significantly influenced by a number of different factors. Plasma
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Figure 11. Feature (predictor) importance results for eventual oRFR model. Feature importances were determined by considering
the feature’s weight wherein the final regression model function (PT_Time: plasma treatment time, Cont_Time: contact time,
mo: microbial strain, Liq: plasma activated liquid, Delay: post storage time, Fold: PAL/mo suspension volume ratio, Init_Conc:
initial microbial load, D_Gap: discharge gap, PT_Type: plasma treatment type, Temp: incubation temperature, Gas: gas type, Vol:
treatment volume).

treatment time, contact time, liquid type, microbial strain, and PAL/mo suspension volume ratio are a few
examples of these characteristics [6, 20, 24, 28]. This study’s prediction model is based on the different
research groups’ features that are examining the antimicrobial efficacy of PALs.

In this study, ML was based on various preprocessing steps as well as different classification or regression
models due to the select the best combination for building and training the models. Also, the obtained results
for the training, validation, and testing phases were evaluated in a comprehensive and fair way. Therefore,
many classification and regression scenarios, parameter tuning approaches, cross-validation strategies, and
statistical analyses were carried out, and robust statistical metrics were provided. For this direction, different
normalizing strategies were utilized to prepare the data for model training. The models trained using the
original data before the normalization techniques have shown inferior prediction accuracy and R2 scores.
The main cause of this is that the created dataset has wide unit ranges, and before training the model,
normalization techniques limit the ranges of the dataset for each feature to make model training easier. For
classification and regression models, four alternative normalization techniques were tested. The precision
capabilities of both models improved after normalization, however, while the Z-score normalization method
revealed better accuracy for classification, the robust scaler method yielded better performance for regression
models by using the same feature set.

In ML, the high accuracy of the created model is very important both for its usage and for evaluating its
functionality in terms of the realization of the target and its suitability for real life. Especially, the high
precision of ML studies aimed to be used in the field of health is a very necessary and desirable feature [87].
As mentioned before, there are only a few studies reported in the literature for the prediction of different
biological outcomes by using ML techniques, and they have a great impact on their fields due to the
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advantages of decreasing the experimental cost and time consumption. Nonetheless, their prediction
performance is limited. For instance, Shaban and Alkawareek implemented supervised ML for predicting the
antibiofilm activity of antibiotics using three models: regression, DT, and RF. The models utilized 18 inputs
and 1 outcome, and the prediction accuracy was reported as 67%± 6.1%, 73%± 5.8%, and 74%± 5%,
respectively, based on 580 observations [17]. Mirzaei et al developed a predictive model for the antibacterial
activity of nanoparticles with 11 inputs using a dataset of 1176 observations with missing values. Their
regression model showed an R2 value of 0.78 [12]. In another study [19], the RF model was employed to
predict the neurotoxicity of nanoparticles with 12 different inputs and 1 output, based on a dataset of 603
observations without missing values. The ACC score of 72% was achieved based on the presented model.
Overall, when other results of similar studies are taken into account and compared, the accuracy and R2

values outperformed those presented in this study, and both of the created supervised ML models are more
promising than other studies when considering the prediction performance.

The results of this study revealed that oRFC and oRFR were the most effective models for classification
and regression. Furthermore, no overfitting has occurred for any supervised ML models. Due to their
efficient operation on highly dimensional data and their excellent accuracy, RF models are a prominent data
analysis tool in research for medical and biomedical applications [88]. RF models are typically applied to
high-dimensional data sets without a linear relationship between the variables used as inputs and outputs
[89]. Because the characterization of the data used in this study is high-dimensional and non-linear, it is
appropriate for the RF model. In line with the literature, in this study, encouraging performances were
obtained compared to other classification and regression algorithms by using RF-based models. Also, the
RF-based models, which are structured on ensemble learning and trees, might have had superior
performance to other models because of the data distribution.

Additionally, the trained oRFC model yielded an accuracy of 82.68%, whereas the final oRFR model
achieved a R2 value of 0.75 by predicting the unseen test data. For the comparison of two different supervised
ML techniques, the best classification model (oRFC), in which the output variable (MI value) is categorized,
outperformed the regression model (oRFR), in which the MI value is provided as a continuous variable.
Regression models’ prediction capability may be less than that of classification models because regression
models attempt to estimate the exact MI values and MI has a wide distribution. For the field of plasma
medicine, it may be more crucial to estimate the output value as the exact value when MI is considered as a
biological output, but the model’s prediction ability has been enhanced by the categorizing strategy utilized in
the study. It is obvious that there is a trade-off between the ability to predict outcomes and the categorization
of the MI variable. Additionally, both regression models using MI as a continuous variable and classification
models using MI as a categorical variable have both been developed and discussed for usage. Classification or
regression techniques may be preferred for the desired task by considering the advantages and disadvantages.

On the other hand, according to state-of-the-art studies, the plasma treatment time [20], contact time
[24], liquid type [6], and initial microorganism concentration [28] are the variables that have the biggest
impacts on the antimicrobial efficacy of PALs. They were picked as part of the study’s data acquisition
parameters as a consequence. On the basis of the results of the feature importance analysis, the plasma
treatment time, contact time, and PAL type variables were shown to be the most significant features for
obtaining a remarkable antimicrobial activity of PALs and highly impactful on the created models. These
three variables, which were found to be the most important ones among other predictors, are also consistent
with the literature. It is well known that antimicrobial activity directly correlates with plasma treatment time.
Depending on the type and volume of PAL, it has been reported in the literature that the effectiveness of MI
increases as the time of treatment of the liquid with CAP increases [5, 7]. MI is influenced by the length of
time the generated PAL is in contact with the bacterial solution. During the period of contact, the plasma
content that was transferred from the CAP to the liquid participates in a number of biochemical processes
with microorganisms. Although the ideal duration for these reactions should be standardized, in some
liquids it is vital to do so in order to prevent the plasma species’ scavenging impact [9]. An extremely useful
indicator of antimicrobial activity is the liquid form of PAL generated for a particular antimicrobial
application. Changing the type of liquid also affects the liquid’s chemical composition. It has been found that
the molecules in this chemical structure interact with the reactive species in the plasma’s active component to
create new molecules [90]. The utilization of PALs as chemically-modified fluids for therapeutical
applications is an area of active research in the plasma medicine field [91]. Related studies available in the
literature have primarily focused on examining the chemical composition of PALs and identifying the
dominant species present in the liquids, which are produced by different plasma systems and discharges [92].
In this study, we aimed to investigate the feature importance analysis of the parameters that are already
accepted by research groups as ‘optimal’. We assumed that the optimum conditions reported in the literature
were sufficient for inducing specific chemical modifications, and our analysis aimed to identify the impact of
those modifications on the resulting biological outcomes. Moreover, we acknowledge that the understanding
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of the relationship between the chemicals formed because of the plasma discharge and the dominant species
present in PALs, as well as their impact on biological outcomes, is an ongoing study that we aim to perform.
In order to fully realize the potential of PALs as a therapeutic modality, further studies are needed to
understand the underlying mechanisms of chemical modifications in PALs and the relationship between
plasma parameters and the resulting chemical and biological outcomes [93].

The fourth important feature was the microbial strain for classification models, and it was the initial
microbial load for regression models. Both are associated with in vitro characteristics. Also, both the
microbial strain and initial microbial load features are crucial when comparing and evaluating the
antimicrobial activity of PALs that are designed to target study [94]. Studies in the literature indicate that
these characteristics, which are essential to the antimicrobial efficacy of PALs, correspond to the parameters
identified by the trained model’s feature importance analysis. This correlation demonstrated how well the
training model fit and predicted the experimental data. Moreover, the classification model has been rebuilt
with the four most important features to see whether the accuracy of the model has changed. The oRFC
model yielded a 65.80% accuracy value by using only the top four important predictors, which were
determined by the feature importance analysis. Furthermore, it was decided that testing the remaining eight
features was necessary because the accuracy of the model built with the four most important features was
quite low. Therefore, the oRFC model was rebuilt with the remaining eight features to observe the
accuracy-changing effect and achieved an accuracy value of 58.87%. Both rebuilt models’ accuracy values
were far below the eventual test result of 82.68%. The findings from the rebuilt model demonstrate that all
predictors have an impact on the model, even though the features with the largest and lowest contributions
to the model were noted following feature importance analysis.

Despite the encouraging results of the present study, a number of limitations should be considered. First,
the trained model was created using the data from the articles that were used. The data from the research in
the literature were the only sources on which the prediction model was built. The models’ accuracy and R2

score were unaffected by this condition, but it prevented the model from being validated using actual data.
Because the accuracy of the studies that were performed is a requirement for the prediction model that was
presented in this study, this constraint needs to be removed. It should be also noted that although there are
no significantly distributed/outlier values within the cross-validation stages, the best model for classification,
RFC, has ± 4.23 SD between min. of 71.00% and max. of 90.00% accuracy in folds, and the best model for
regression, RFR, has ± 0.09 SD between min. of 0.53 and max. of 0.82 R2 in folds (see tables S3 and S4). After
the model was developed, it should be tested by obtaining real data and comparing the prediction results to
the experimental validation. The lack of observations is another limitation of this study. The amount of data
used for this study should be increased, and the effect of the observation variance on the prediction ability of
ML models should be decreased in this way. Higher data sizes in ML denote the model’s robustness. In order
to increase model validation, a dataset with a lot more observations is required. Briefly, a higher-dimensional
dataset and in vitro tests are required to more accurately examine the antimicrobial effectiveness of PALs.

AI is effective in several biomedical fields, which encourages its application in plasma medicine. This
study is the first to show how ML modeling can qualitatively predict the antimicrobial activity of PALs in the
field of plasma medicine. This research is a pioneering study for the future development of qualitative and
quantitative prediction models in plasma medicine applications via ML. The study’s final results are
promising and also capable of automatically predicting the MI for both models. The handling of input data
which has diverse distributions by ML, one of the subfields of AI, also demonstrated remarkable
performance in terms of computational cost and prediction capability. The results demonstrated that an
adroit combination of ML techniques with CAP-related data might have a significant impact on plasma
medicine, besides considering that AI studies are widely used and of crucial importance in other biomedical
research fields. A comparison of real-time experimental results with prediction model results will
demonstrate the applicability of ML in plasma medicine and demonstrate how it relates to daily life. In
conclusion, an ML model that can automatically predict the MI value with high prediction ability has been
created. It should also be noted that experimental studies are expensive, time-consuming, and difficult to
show the experimental outcome. The obtained findings encourage the potential for merging ML techniques
with plasma medicine applications to define the ‘plasma dose’ as well as adopting AI approaches to the
prediction of other important parameters used in plasma medicine in the future. Also, the results are in line
with the literature on the manner of biological aspects of CAP.

5. Conclusions

In conclusion, in the present study, we have utilized ML techniques to predict the antimicrobial activity of
the PALs, which depends on the various plasma treatment parameters and hard to make comparisons in
between the different studies. We conducted comprehensive and various robust training and test scenarios, as
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well as statistical analysis, for building and testing supervised ML models to evaluate fairly the results. Our
results revealed that the generated models in the present study can predict the antimicrobial activity of PALs
with a test accuracy of 82.68% for the categorical outcome and with a test R2 score of 0.75 for the exact values
of the outcome based on the available literature. Also, RF-based models demonstrated superiority among
other algorithms for the prediction of MI in both regression and classification problems. Furthermore, the
importance of features that was determined through the model was in line with the literature, where many
studies have shown the plasma treatment time as one of the primary parameters for the antimicrobial effect
of PALs. Besides, the study has certain limitations, such as the dependence on data from the literature for
model building, the lack of observations, and the need for higher-dimensional datasets and in vitro tests to
examine the antimicrobial effectiveness of PALs more accurately. Despite these limitations, this study is the
first to adequately utilize ML techniques in the field of plasma medicine to the best of our knowledge. By
considering the wide range of applications of CAP in medicine and biology, ML techniques may assist in
better understanding the biological outcomes of CAP applications. Furthermore, ML applications in plasma
medicine may contribute to defining the ‘plasma dose’ which is a contemporary concept in the field of plasma
medicine and thought to be a crucial concept to convey various CAP applications into clinical practice.
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