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ABSTRACT

In this paper, the exp-function method is used to obtain generalized travelling wave
solutions of a Nonlinear Evolution Equation of variable coefficients. It is shown that the
Exp-function method, with the help of symbolic computation, provides a straightforward
and powerful mathematical tool to solve such equations arises in mathematical physics.
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1. INTRODUCTION

The investigation of exact solutions of Nonlinear Evolution Equations (NLEEs) plays an
important role in the study of nonlinear physical phenomena. The importance of obtaining
the exact solutions of these nonlinear equations, if available, will facilitate the verification of
numerical solvers and aids in the stability analysis of solutions. In the past several decades,
many effective methods for obtaining exact solutions of NLEEs have been presented, such
as the tanh-function method [1,2] extended tanh method [3,4], F-expansion method [5,6],
sine-cosine method [7,8] Jacobian elliptic function method [9,10] homotopy perturbation
method [11,12], variational iteration method [13,14], Adomian method [15,16] and so on.

Recently, He and Wu [17] proposed Exp-function method, to obtain generalized solitary
solutions and periodic solutions whose applications are found in literature [18-20, 22] for
solving nonlinear evolution equations arising in physical sciences. The solution procedure of
this method is very simple and can easily be extended to other kinds of nonlinear evolution
equations.
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The present paper deals with the solution of the following Nonlinear Evolution Equation with
variable coefficient with the help of Exp-function method:

u, — u, + a(tuu,= B(t)u(l — u) (1)
Where are arbitrary functions of t. When is a arbitrary constant, equation (1) converted into Fisher
equation:

ul - uxx: ﬂu(l - Z’t)’ (2)

Exact solution of equation (2) was found by Ablowitz and Zeppetella in [21] atC, = i% :
When ﬂ(t) = O,a(t) is a arbitrary constant then equation (1) turns to Burgers equation
u —u_+auu =0 ©)

which is used to describe the spread of sound wave in the medium with viscidity and heat
exchange. The Burgers equations with variable coefficient can also be used to describe the
cylindrical and spherical wave propagation in models such as over fall, traffic flow and some
other.

2. ANALYTICAL SOLUTION

In order to obtain the solution of equation (1), we consider the transformation
u=u() 5:kx+jr(z)dt 4)

Where k is a constant, 7 () is an integrable function of f, to be determined later, then
equation (1) becomes an ordinary differential equation

T(t)u#kd(t)uu'—kzu"—ﬂ(t)u(l—u)zO (5)

Where prime denotes the differential with respect to &.

We used the Exp-function method, for the solution of equation (5), which is very simple and
straightforward; it is based on the assumption that traveling wave solutions can be
expressed in the following form [17]:

d
z n exp(ncf) a e +...+aded5

— _n==c - _—¢ 6
u(s) d b e_l"er...ijqeq‘f (©)

Z b, exp (mf) P

Where ¢, d, p and g are positive integers which are unknown, to be further determined, a,
and b,, are unknown constants.

In order to determine values of d and g, we balance the linear term of highest order in
equation (5) with the highest order nonlinear term, and the linear term of lowest order in
equation (5) with the lowest order nonlinear term, respectively. By simple calculation, we
have
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@ - hexp|(d+3q)¢ |+ -
h, exp [4q§]+...
(W) = hyexp| (2d+q)&| + ... hyexp|(2d+29)&] + ... o
h, exp[3q§] + .. h, exp[4q§] + ..
Where h; are the determined coefficient, taken only for simplicity. Balancing highest order of
Exp- function in equation (7) and (8) we have d+3q=2d+2q so d=q (9)

Similarly to determine values of ¢ and p, we balance the linear term of lowest order in
equation (5)

s, exp[—(c+3p)éj]

uie)= s, exp[—4p§] (10
S exp[—(2c+p)§] o s exp[—(2c+2p)§]
and ulc)u (¢)= ..+, exp[-3¢¢] s exp[-4pé] an

Where s; are determined coefficient, taken only for simplicity. Balancing highest order of
Exp- function in Eq. (10) and (11).
we have,

c+3p=2c+2p;c=p (12)

We can freely choose the values of ¢ and d, but the final solution does not strongly depend
upon the choice of values of ¢ and d [19]. For simplicity, we setb; =1, p=c=7andd=q =
1 equation (6) becomes

é: —
ae” +a,+a_e
Substituting equation (13) into (5) we have

e +h,+b e
%[qe“ +Ce* +Cet +Cy+C e +CLe  +C e | =0 (14)

$

(13)

and

4= (ep (&) + b+bep(-£))
C = —ap(t) + @ \p(t)
C, = —2abp(t)-kaao(t)+a’ b f(t)+ab,t(t)+ka’ bya(t)—ayr(t)—a,B(t)+ kK ab,

—k’ay +2a,a,(t)

C = & B(t)-2kaa o(t)—ab,t(t)+2aab,f(t)—k*ab, —kayer(t)+2ka* b () —
af(t)-2a 7 (t)+ab’ ;v (t)-2 abf(t)+2 aa f(t)+k’a,—ab’ p(1)-4 k’a,
Rab 7(t)+4k’ab_ —2ab p(t)+a’b B(t)+ kaaby(t)
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C,= 6k’apb., +2aya f(t)—2abb B(t)—2a_b,B(t)—3a_byr(t)-3k’a_b, +
3abyb. (1) -3k abb., +2aa,b,B(t)+ 2aab p(t)-3kaa a(t)+ Skaab c(r)
=2a.b.,B(t)—ab’ B(t) + a’b,B(t)

C,= az_]b_lﬂ(t) - a_lb_zl,B(t)

C,= 2a.bb B(t)-Kap’ —ap’ B(t)-ka’_ha(t)+a’bB(t)+ka bp,
+a b’ (t)+hkaap a(t) — abbt (t) + 2a.,ap,B(r)

C, =2k a(t)-ab’ ft)+a p(t)+ dpB(t)+2%ka ab.olt)+ 2ab' 7 (1) -a bz (1)
+ ZaOaflbOﬂ(t)—aflbg ﬂ(t)+ Kab b, +2a.ab, ,B(t)— Z%bflboﬁ(t)—4k2albfl +ab bt (t)
—2a b.p (t) —kaoa_lboa(t) -2a bt (t) ~Ka b’ +4k’a b + kaozb_la(t)

Equating to zero the coefficients of all powers of ec’z yields a set of algebraic equations for

a,,a,, a_, b, by, k, a(t), ﬂ(t), 7(2) . Solving the system of equations we obtain

Case-1
a, = a, ay=0, a_ = ayb, by= by, b_, =0, T(t):—k2 —ﬂ(t), a (z) = @ (15)

Case-2

a,=0 a,=1,a,=0b=0,b,=b,7(t)=2k" + @,a(t) =4k (16)

Case-3
2

a, = b+ Vb°2 b, a=0a,=bb=hb,b, =b,1(t)=-k - p(t),a(t)=2k (17)
Case-4

a,=1a,=0b,=hb,b,=0b1(t)=k+p(t), a(t)=-2k (18)
Case-5

ay=a,a,=1, a_ =-b’ +ahb, by=by, b, =0,7(t)=-k>,a(t)= m (19)

’ ’ k

Case-6

a, = a, a, =1, a_ :O:bo =b,, b,=b,
I (12426 2, + 742 b7 + 4052 2, +45a,’ b +2a," +37a, |
105/2a,2% +26°% +6,2b_a,* +2a,° + Ta b, +15a,°b.,
6k* (2a,b "2 +2b a3 +3a,)

t)=-2k, t)= “
06( ) B ( ) 4\/2b_1a(3,+3\/§a0b_13/2+7a§b_1+2ag+b—12 (20)

T(Z =
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Substituting equation (15) to (20) into (13) yields
ay +aghy exp| ~kc+ [ (k7 + B (1))t |

()= exp| ke — [ (K + B(e))dt | +b, 0
exp{kx + j (2K + 'Bgt))dt}
u, (x,t) = (22)
exp{kx + j (2k* + ﬁgt))dt} +b, exp{—kx - j (2k* + 'Bit))dt}
botby = db. b exp [—kx [+ ﬂ(z))dt}
U, (x,t) = 2 (23)
exp[kx [+ ,B(t))dt} +b,+b., exp[—kx G ﬂ(t))dt}
exp[ e+ [ + (0 ]+ by —~Jb,> —4b_,
u, (x,1) = (24)
exp[kx [+ ,B(t))dt} +b,+b, exp[—kx S IGE ﬂ(r))dt}
s (5,1) = exp(kx—kzt)+a0 +(b; +a0b0)exp(—kx+k2t) 25)
T exp(kx—kzt)+b0
exp(kx+jr (t)dt )+a0
U (x,t) = (26)
exp(/cx+jr (H)dt )—\/Ew_1 exp(—kx—jr (H)dt )
K (12426 2, + 7426, + 4052 )’ +45a,° b, +2a," +37a, |
Where r(t) =

1022, 262 +3/26°2 +6,[2b a," +2a,° +7a,b%, +15a,%b
3. NUMERICAL ILLUSTRATION

(1) If we take b, =0 we have

u;, (x,)=a, exp (—kx +[ (K + B @)t ) 27)

2 _ 2
(2) If we take a(t) = a is a constant b_1 =1 and ,B(t) = ac4 4 in equation (22) where

c is a constant then we have

1 1
u,, (X,t)ZE 5 tanh {% (x - ct)} (28)
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0259

(@) (b)

Fig. 1. (a) Solution of Eq. (27) with a; =1, k=1 and B (t) = t. (b) Solution of Eq. (28)
witha=4,c=5

(3) If we take by =4, b | =1 and k =1 in equation (23) we have
-1+(2+2\E )cosec[x ~fa+p (t))dt} + coth[x— fa+p (t))dt}

u., (X,t)= 29)
n () 4cosec[x ~fa+p (t))dt} + 2c0th[x ~fa+p (t))dq
(4) If we take b, =0, b, =—5 and k =1 in equation (24) we get
. cosh[x +[a+p (t))dt} + sinh[x +[a+p (t))dt} 5
u,, (x,t)= (30)
! 4 cosh[x +fa+p (t))dt] + 6sinh[x +fa+p (t))dt]
(5) If we take b, =2 a, =3/2 in equation (25) we have
2tanh(loc—k2t)+3sec(loc—k2z)
2
U, (x,t) (31)

- 1+ tanh(/OC—kzt)+ZSCC(lOC—k2t)
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1.72

1.52

1.32

0.9z
-2

(a) (b)
Fig. 2. (a) Solution of Eq. (29) with #(t) = cost (b) Solution of Eq. (30) with

() =—1+3sint

(6) If ap=0 in equation (26) we have

(1) = exp kx + 7K1) @)
U exp (ko TK) ~ 2B, + b exp (k= TH)
/’/ PRI
AR
i
“‘"‘:Qé‘”ﬁ PN
125 15 Q é’@ﬂ?@‘p‘?‘@
25 )
p N 0.0

t 0.0

(b)
Fig. 3. (a) Solution of Eq. (31) with k=2. (b) Solution of Egq. (32) with k=1 and b_; =2.
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4. CONCLUSION

The Nonlinear Evolution equation with variable coefficients is investigated by Exp-function
method [17]. The generalized travelling wave solutions of this equation are obtained with the
help of symbolic computation. From these results, we can see that the Exp-function method
is one of the most effective methods to obtain exact solutions.

Finally, it is worthwhile to mention that the Exp-function method can also be extended to
other nonlinear evolution equations with variable coefficients, such as the mKdV equation,
the (3 +1)-dimensional Burgers equation, the generalized Zakharov-Kuznetsov equation and
so on. The Exp-function method is a promising and powerful new method for nonlinear
evolution equations.

COMPETING INTERESTS
Author has declared that no competing interests exist.

REFERENCES

1. Abdusalam HA. On an improved complex tanh-function method. Int J Nonlinear Sci
Numer Simul. 2005;6(2):99-106.

2. Zayed EME, Zedan HA, Gepreel KA. Group analysis and Modified extended tanh-
function to fund the invariant solutions and soliton solutions for nonlinear Euler
equations. Int J Nonlinear Sci Numer Simul. 2004;5(3):221-34.

3. El-Wakil, SA, Abdou MA. New exact travelling wave solutions using modified extended
tanh-function method. Chaos, Solution & Fract. 2007;31(4):840-852.

4. Fan E. Extended Tanh-function method and its applications to nonlinear equations.
Phys. Lett. A 2000;277:212-218.

5. Yomba E. The modified extended Fan sub-equation method and its application to the
(2+1)-dim.  Broer-Kaup-Kupershmidt equation. Chaos, Solitons & Fractals.
2006;27(1):187-96.

6. Ren YJ, Zhang HQ. A generalized F-expansion method to find abundant families of
Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov
equation. Chaos, Solitons & Fractals (2006); 27(4):959-79.

7. Yan C. A simple transformation for nonlinear waves, Phys. Lett. A. 1996;246:77-84.

8. Wazwaz AM. A sine-cosine method for handing nonlinear wave equations. Math.
Comput. Model. 2004;40:499-508.

9. Dai CQ, Zhang JF. Jacobian elliptic function method for nonlinear differential-
difference equations. Chaos, Solitions & Fractals. 2006; 27(4):1042-7.

10. Yu Y, Wang Q, Zhang HQ. The extended Jacobi ellipitic function method to solve a
generalized Hirota-Satsuma coupled KdV equations, Chaos, Solitions & Fractals.
2005;26(5):1415-21.

11.  He JH. Application of homotopy perturbation method to nonlinear wave equations.
Chaos, Solitons & Fractals. 2005;26(3):695-700.

12. He JH. New interpretation of homotopy-perturbation method. Int. J. Mod. Phys. B.
2006;20(18):2561-2568.

13. He JH. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys.
B. 2006;20(10):1141-1199.

14. He JH, Wu XH. Construction of solitary solution and compacton-like solution by
variational iteration method. Chaos, Soliton & Fractals. 2006;29(1):108-113.

151



15.

16.

17.

18.

19.

20.

21.

22.

Physical Review & Research International, 2(4):144-152, 2012

El-Sayed SM, Kaya D, Zarea S. The decomposition method applied to solve high-
order linear Volterra-Fredholm integro-differential equations. Int J Nonlinear Sic Numer
Simul. 2004;5(2):105-12.

El-Danaf TS, Ramadan MA. The use of adomian decomposition method for solving
the regularized long-wave equation. Chaos, Solitons & Fractals. 2005;26(3):747-57.
He JH, Wu XH. Exp-funtion method for nonlinear wave equations. Chaos, Solitons &
Fractals. 2006;30:700-708.

He JH, Abdou MA. New periodic solutions for nonlinear evolution equations using Exp-
function method. Chaos Solitons & Fractals. 2007;34(5):1421-1429.

Changbum Chun. Solitions and periodic solutions for fifth-order KdV equation with the
Exp-function method. Phys. Lett. A. 2008;372:2760-2766.

Alvaro H. Salas. Exact solutions for the general fifth KdV equation by the exp function
method. Appl. Math. Comput. 2008;205:291-297.

Ablowitz MJ, Zeppetella A. Explicit solutions of Fisher's equation for a special wave
speed. Bull. Math. Biol. 1979;41:835-840.

Raslan KR. The application of He’s Exp-function method for MKdV and Burger's
Equations with Variable Coefficients, Int. J. Nonlin. Sci. Num. 2009; 7(2):174-181.

© 2012 Kumar; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http.//www.sciencedomain.org/review-history.php ?iid=168&id=4&aid=781

152




