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ABSTRACT

Aims: Solving Dirichlet’s problem through large singular finite elements method for the
Poisson’s equation.
Study design: Large Singular Finite Elements Method (LSFEM).
Place and Duration of Study: Sample: Department of Physics, UFR-SEA, University of
Ouagadougou, Burkina Faso, between September 2010 and July 2012.
Methodology: There are 3 steps for LSFE Method; After the decomposition of the domain
in subdomains, we resolve auxiliary problems and connect auxiliary solutions, using
MATLAB software.
Results: For each of both membranes, the minimum global error is 1.3x10-12. It is
obtained at the twelfth approximation when 1680140  N coefficients aki are maintained
as a whole. This suggests that the distorted u of the membrane can be determined

with 13 or 14 significant digits, while its derivatives x
u

 and y

u

 may be calculated

with 11 or 12 significant digits. These results are compared with those obtained through
finite elements method. Both methods provide results that align quite well everywhere
except near the singularities with significant differences.
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1. INTRODUCTION

The weak torsion of thin cylindrical bars allows solving Poisson’s equation with
homogeneous Dirichlet boundary conditions. It is assumed that the torsion occurs without
any volume change, i.e. a deformation of pure sliding. In the case of polygonal bars, it is very
difficult to deal with Poisson’s equation numerically and the usual method of finite elements
or finite differences provides poor results when used in their standard form. These methods
as demonstrated by various authors: Barnill and Whiteman [1]; Emery [2]; Fix [3]; Motz [4];
Strang and Fix [5]; Wait and Mitchell [6], can be significantly improved if they take the
analytical form of the solution near the singularities into account. Large singular finite
elements method will be used to solve Poisson’s equation.

2. PROBLEM TO SOLVE AND METHOD USED

Torsion of bars with polygonal section was studied using boundary collocation method,
Kolodziej and Fraska [7] and using Trefftz integral for the complex torsion function,
Hassenpflug [8].

For two years, we worked on the solutions of Dirichlet’s problem Zongo et al. [9,10]. Present
study deals with Dirichlet boundary conditions. We need to solve a Poisson’s equation in
the first isospectral plane domains discovered by reference Gordon et al. [11] with
homogeneous Dirichlet boundary conditions. These domains are often known as "Pound"
and “Yen” because they look like the corresponding currency symbols and are represented
in Fig. 1. The equations of the torsion of a thin bar of cross section  as found in Landau
and Lifshitz [12], Timoshenko and Goodier [13],

1),(  yxu ),( yx (1)

0),( yxu ),( yx (2)

Domains  of 2R are the cross sections of bars which are Gordon, Webb and Wolpert
membranes submitted to the torsion. The function u is a potential of constraints from
which can be derived non-zero components (3) and (4) of the stress tensor at any point of
the bar. As for  , it is the boundary of  domain.

y
uGxz 


  2 (3)

x
uGyz 


  2 (4)

Where G is the modulus of shear (sliding) fraction,  the unit torsion angle and z the
axis, which, with x and y , makes a direct orthogonal reference with coordinate system.

From expressions (1) to (4) x and y are Cartesian coordinates of the point in the domain
 . The problem as posed is singular with the twenty nine geometrical singularities which
constitute the corners of the boundary of the domain. Such domains have no geometric
symmetry that allows reducing the study domain (Fig. 1). We must therefore consider the 29-
gons as a whole and solve it through large singular finite elements method.



Physical Review & Research International, 2(4): 133-143, 2012

135

Large singular finite elements method comprises three steps, reference Tolley [14]:

Step 1: Decomposition of the domain

The first step of the method gives the splitting up of both domains into as many subdomains
as there are singularities; in the twenty-nine geometrical singularities, we added eight
artificial singularities on the longer sides of the domain; each subdomain contains only
one singularity. This splitting up will give for each of the domains, thirty seven subdomains

j shown in red and separated by fifty two sub-boundaries ij comprising:

- Six identical rectangular trapezoids with angles measuring 3π / 4 radians
- Twelve squares of unit side
- Eleven L-shaped identical subdomains
- Eight rectangles which sides are respectively 2 and 1

The eleven L-shaped subdomain with 270º inside angles are the most severe singularities.

Fig. 1. Gordon, Webb, and Wolpert “Pound” and “Yen” isospectral domains.
Decomposition into subdomains and alignment of reference points

The shortest sides of the domains have a reduced unit length and the longest sides have
double length.

Step 2: Resolving auxiliary problems
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Auxiliary problems are posed as there are auxiliary domains j . Therefore, to each

subdomain j , is  associated with an origin j which is a singularity, an angle j which is

the opening angle of the subdomain and a local system with polar coordinates ),( jjr  .

For each subdomain, the following auxiliary problem is solved:
1),(  jjj ru  jjjr ),(  (5)

0)0,( jj ru (6)

0),( jjj ru  (7)

with 37.,..,1j .
Solution of each auxiliary problem is not fully determined. Indeed, each problem is particular,
because no constraint is put on iu solution to infinite. It is possible to find an indefinite

number of solutions. Broadly speaking, we can write functions ),( jjj ru  that solve
equations (5) to (7) as Tolley [14,15]
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or pju , is a particular solution to problems (6) to (7); hjku , are solutions to the homogenous
problems associated. Various auxiliary solutions per type of subdomain and boundary
conditions are written as follow, Tolley [15]:
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- As for square subdomains:
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- As for the eight rectangular subdomains:
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- As for the six rectangular trapezoidal subdomains:
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Coefficients used in various auxiliary solutions are arbitrary constants. It is important to note
that the thirty seven problems are not 'well posed' since the uniqueness of their solution is
not assured. This is due to the fact that each j is only one part of the boundary of the

subdomain j . We can develop the solution of the initial problem thanks to the multiplicity
of auxiliary solutions, or failing that, good approximations of this solution.

Step 3: Connecting auxiliary solutions.
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The last step of the method is the connection of auxiliary solutions between them. Therefore,
we have just to set the continuity of the function and its normal derivative all along sub-
boundaries ij separating both subdomains i and j . In practice, unable to solve an
infinite system, we should generally use just approximate solutions. On the one hand, the
approximation derives from the fact that developments 9-a to 12-a should be limited to a
finite number of terms and on the other hand, with few exceptions, the approximation derives
from the imperfect connection.

Approximate solutions (9-b) to (12-b) are obtained by limiting series that operate in general
solutions. The number of terms kept in each sum is chosen according to Tolley [14, 15]
principle which aims at representing approximate solutions using functions whose degree
must be as uniform as possible. This is achieved by keeping more terms in the subdomains
with the largest openings. If N is the number of coefficients kept for an opening angle 2/ ,
the highest common divisor of the opening angles of 37 singular or pseudo singular vertices
is  45º. For the first approximation, we keep two coefficients for 90º angles, three coefficients
for 135º angles and so on, giving on the whole 140 coefficients. The total number
of coefficients kla kept for all subdomain is NN 140)6114836212(  .

Therefore, the following approximate solutions are obtained:

- As for L-shaped domains
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- As for squares
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- As for rectangles
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- As for trapezoids
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Then, we align auxiliary solutions in terms of the least squares, i.e. we set coefficients kla
that allow minimizing the function.
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Since in is the external normal to the subdomain i .
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These coefficients kla are therefore solutions of the algebraic system with positive square

matrix of N140 equations with N140 unknowns conventionally called Gauss’ normal
equations.

0
)(





kl

mn

a
aI

(14)

For each subdomain, the global error defined in (15) decreases exponentially according to N
approximation order, i.e. according to the total number of coefficients kla kept in series

related to singularities, i.e. N140 , Fig. 2.

Fig. 2. Gordon Webb and Wolpert “Pound” and “Yen” isospectral domains. Evolution
of the global error
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where klds is the element which arch is kl , klS its length, k and k the normals to the
sub-border separating both adjacent sub domains.

3. RESULTS AND DISCUSSION

For each of both membranes, the minimum global error is 12103.1  . It is obtained at the

twelfth approximation when 1680140  N coefficients kla are maintained as a
whole. This suggests that the distorted u of the membrane can be determined with 13 or 14

significant digits, while its derivatives x
u

 and y

u

 may be calculated with 11 or 12 significant

digits.

Points 1P to 4P shown in Fig. 1 will be used as control points to illustrate local convergence
of our numerical results and compare them with those obtained using finite element method.
These four points are located in the intersection of four sub-boundaries, i.e. in domains far
from singularities, where the results obtained through large singular finite elements
method are supposed to be the least accurate.

We applied the finite element method on five grids increasingly tight. Elements used are
Lagrange quadratic elements and the automatic meshing has led to systems
with 658; 2,115; 8,149; 31,977 and 126,673 equations for the first Gordon, Webb
and Wolpert membrane and for systems 560, 2,083, 31,465 and 124,625 equations for the
second Gordon, Webb and Wolpert membrane.

The first graphs (Fig. 3) show the evolution of the value of the function u in control
points iP according to the number of approximation N. Diagrams are semi-logarithmic
and the local error is defined by (16)

appxref ff  (16)

where appxf is an approximate value and reff a reference value supposedly “exact”.
We took the solution obtained by the twelfth approximation of the large singular finite
elements method as the reference, while maintaining a total number of 1,680 coefficients

kla which are accurate to nearly 1210 .

Curves containing the square markers correspond to approximations of finite element
method and those containing circular markers dealt with large singular finite elements
method. Square markers were evenly distributed on N scale while circles correspond to the
entire values of N. The correlation between local absolute errors and the total error is
highlighted by the dotted line curve which shows the evolution of the total error. As
regards the large singular finite elements method, the ratio of 102 between the global
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error and that shows that local values of the function u are obtained with accurate

figures with 2p accurate digits when the global error is about p10 .

Fig. 3. Gordon Webb and Wolpert “Pound” and “Yen” isospectral areas. Local errors
made on u in reference points. Comparison with finite elements method

We find that large singular finite elements method is much more accurate than the finite
element method. Indeed, for the best approximations provided by both methods, the ratio
between local error obtained with the finite element method and that obtained with large
singular finite element method is about 1010 in 1P and more than 1210
for other control points.

Diagrams in Figs. 4 and 5 are similar to those of Fig. 3. But they focus on comparing

derivatives x
u

 and y

u

 in reference points iP .

Fig. 4. Gordon Webb and Wolpert “Pound” and “Yen” isospectral domains. Local
errors made on

x
u

 in reference points. Comparison with finite elements method
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Conclusions that can be drawn are similar to those deduced from Fig. 3, while
noting, however, that the curve reflecting the global error is closer to the curves of local
errors (at least concerning the large singular finite elements method). This shows that local
errors made with derives of function u almost the same as the global error. The accuracy
of approximate values of the derivative is therefore lower than those of the functionu . To
conclude the study on Gordon, Webb and Wolpert membranes, some figures are submitted
showing a planar view of the distorted u of the membrane (Fig. 6) along with level curves of
u and of the magnitude of gradient u (Fig. 7).

Fig. 5. Gordon Webb and Wolpert “Pound” and “Yen” isospectral domains. Local
errors made on   in reference points. Comparison with finite elements method

Fig. 6. Gordon Webb and Wolpert “Pound” and “Yen” isospectral domains. Planar
view of the distorted u .



Physical Review & Research International, 2(4): 133-143, 2012

142

Fig. 7. Gordon Webb and Wolpert “Pound” and “Yen” isospectral domains. Level
curves of u (in blue) and of u (magenta)

In this study, we consider the large singular finite element method (LSFEM) using integration
on interelements. This operation can be avoided using boundary collocation method as
discussed by Kolodziej and Zielinski [16].

LSFEM can be also used to solve the eigenvalue problem for the Laplace operator,
Descloux and Tolley [17]. A numerical study of the phenomenon of eigenvalue avoidance is
developed by Betcke and Trefeten [18] which achieved the same or better accuracy with a
simpler approach.

4. CONCLUSION

Large singular finite elements method gives very good results for both singularities and
points located far from them. Its application provides a very low global error with a very low
number of retained coefficients. Solutions to various problems are found in the analytical
form, which provides all derivative values with the same accuracy as the basic values,
without further formulation. By comparing results obtained with the conventional finite
element method, this reveals the advantage for those obtained through large singular finite
elements method, since it gives much more accurate results, especially around
singularities where the finite element method gives unsatisfactory results.
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