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ABSTRACT

To describe the time dependent response of a variety of viscoelastic materials, a one-
dimensional nonlinear rheological mathematical model with constant material parameters
is developed by using the stress decomposition theory. The model represents, under
relaxation of stress, the time versus deformation variation as a decay Gompertz-type
function, which is able to reproduce the qualitative decay sigmoid shape of the
experimental creep relaxation data of a variety of materials. Numerical applications
performed shown that the model is very sensitive to material parameters variation and
particularly to the total deformation experienced by the material of interest under creep
process. It is also found that the damping viscosity relative increase reduces significantly
the magnitude of the maximum value of the rate of recovery.

Keywords: Gompertz-type model; logarithmic elastic force; Kelvin-Voigt model; mathematical
modeling; viscoelasticity.

1. INTRODUCTION

In characterization of materials, the mechanical properties are described often as purely
elastic, plastic or viscoelastic behavior, following that the time dependent effect is neglected
or taken into consideration. But, it is well known that real materials are time and history-

“Corresponding author: Email: monsiadelphin@yahoo.fr;




Physical Review & Research International, 2(3): 107-124, 2012

dependent, to say, viscoelastic materials. These materials exhibit various responses to
loading. Under a constant deformation, a viscoelastic material will relax and experience a
decrease in stress with time. This is termed stress relaxation. On the other hand, if a
viscoelastic material is subjected to a constant stress, the strain will then increase with time.
This phenomenon is called viscoelastic creep. Creep response is a function of stress and
time. It is usually studied in terms of strain-time curves (Alfrey and Doty, 1945; Schapery,
2000; Thompson, 2009). Viscoelastic materials manifest also a delayed recovery of
deformation after the stress is removed, consisting of an elastic deformation followed by
gradual decrease deformation (Schapery, 2000; Morgounov, 2001; Haslach Jr, 2005; Xia et
al.,, 2006; Thompson, 2009; Mustalahti et al., 2010). This is creep relaxation phenomenon
(Morgounov, 2001; Thompson, 2009; Mustalahti et al., 2010). If during unloading behavior
the deformation is not completely recovered, the material displays then a viscoplastic
response. Under cyclic loading, viscoelastic materials show a hysteresis phenomenon. This
consists of a dissipation of energy through successive loading and unloading cycles. A large
variety of experimental data have shown that several soft biological tissues, for example,
under physiological conditions, exhibit a nonlinear sigmoidal hysteresis curve on loading and
unloading (Fukushima and Homma, 1988; Thompson, 2009). Therefore, the unloading
response may be used to differentiate purely elastic from viscoelastic or plastic materials.
Several engineering and biomedical applications using viscoelastic materials require the
formulation of time dependent deformation model. There are, in viscoelastic modeling, two
categories of theory. The first is the classical linear viscoelastic theory, which is represented
usually in the Boltzmann single integral form or in differential equation. This approach has
been used by several investigators to describe linear viscoelastic response of materials. de
Haan and Sluimer formulated a standard linear solid model including a mass for studying the
dynamic behavior of building materials (de Haan and Sluimer, 2007). Chazal and Moutou
Pitti (2010) using a discrete spectrum representation for the creep and relaxation differential
approaches and also a creep integral approach (2011), developed incremental constitutive
relations for linear viscoelastic analysis. The well known established linear viscoelastic
theory is, however, only valid for small deformations or low stresses (Xia et al., 2006). The
second type of theory is the nonlinear viscoelastic theory which has not, contrary to the
linear theory, a definitive constitutive formulation (Dealy, 2007; Ewoldt et al., 2008, 2009;
Wineman, 2009). Since viscoelastic materials exhibit time dependent highly large
deformations, the linear viscoelastic theory is inapplicable and then, nonlinear viscoelastic
models are required. For example, it is well known in biomechanical studies that arterial
tissue undergoes large deformations when it is subjected to physiological load. Thus its
mechanical properties are essentially nonlinear and could not be represented on the basis of
the classical linear viscoelasticity (Haslach Jr., 2005). Different theoretical formulations of
varying complexities have been developed for investigating the nonlinear time dependent
properties of viscoelastic materials. Thus, many publications on time dependent nonlinear
behavior of materials based on non-equilibrium thermodynamics (Haslach Jr., 2005; Xia et
al., 2006), visco-hyperelasticity using the decomposition of the deformation gradient into
elastic and viscous components (Holzapfel et al., 2002; Laiarinandrasana et al., 2003;
Marvalova, 2007) and computational modeling (Weiss et al., 1995; Weiss and Gardiner,
2001) can be distinguished. Integral and differential nonlinear rheological models are also
developed for characterizing various types of materials (see, e.g., for a detailed review of
articles, Xia et al., 2006; Chotard-Ghodsnia and Verdier, 2007; Drapaca et al., 2007;
Wineman, 2009). Karra and Rajagopal (2010) derived a generalization of the standard linear
solid model. The model has been based on a thermodynamic framework and has been
successfully applied to predict the viscoelastic response of polymide resin. In mechanics, the
use of rheological models consisting of a combination of spring and dashpot is proved useful
to describe viscoelastic behavior of materials. These rheological models are interesting,
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since they represent the dynamic response of materials concerned in terms of differential
equations that can be solved for various particular cases of consideration (Alfrey and Doty,
1945). So much constitutive equations are derived from these combinations of spring and
dashpot in order to predict and simulate material properties and analyze experimental data.
In this regard, to model materials nonlinear properties, the linear viscoelastic theory can be
modified and extended to higher order stress or strain terms. A number of recent successful
theoretical models have been developed on the basis of classical linear viscoelastic models
extension to large deformations (Corr et al., 2001; Monsia, 2011a, 2011b, 2011c, 2011d).
Corr et al. (2001) developed a nonlinear generalized Maxwell fluid model in terms of a
Riccati differential equation that represents successfully the stiffening response of some
viscoelastic materials. In Corr et al. (2001) and Monsia (2011a, 2011b, 2011c), only the
elastic nonlinearity is taken into account by introducing a nonlinear spring force in the
classical linear rheological models. Consequently, these models are insufficient to account
for complete characterization of viscoelastic materials. The model (Monsia, 2011d), which is
a nonlinear generalized Maxwell fluid model, taking into consideration both elastic and
viscous nonlinearities, appeared useful for representing accurately the viscoelastic materials
time-dependent behavior. However, these models fail to include the inertia of the mechanical
system studied in the constitutive equations, in the perspective that viscoelastic materials
are characterized simultaneously not just by elastic and viscous contributions, but also by an
inertial function. Moreover, there are only a few theoretical models that are formulated with
constant-value material coefficients so that, the material functions are considered as stress,
strain or strain rate dependent. According to Haslach Jr. (2005) and Xia et al. (2006) there
exist only some constitutive nonlinear models capable for representing accurately the creep
relaxation, to say, the unloading behavior of viscoelastic materials. The necessity to
investigate the unloading behavior or creep relaxation of materials remains, even if the
phenomenon is well known from many experimental data (Fukushima and Homma, 1988;
Xia et al., 2006). In this regard, satisfactory nonlinear viscoelastic models are required. Due
to material nonlinearities, a consistent constitutive equation should take then into account all
together the elastic, viscous and inertial nonlinearities and relate mathematically stress,
strain and their higher time derivatives (Bauer et al., 1979; Bauer, 1984). In contrast to these
preceding models, the model (Monsia, 2011e) has been constructed by taking into
consideration the elastic, viscous and inertial nonlinearities simultaneously. The model
(Monsia, 2011e) attempted successfully to represent mathematically a complete
characterization of viscoelastic materials. This model (Monsia, 2011e) was founded on the
stress decomposition theory developed previously by Bauer (1984) for a complete
characterization of viscoelastic arterial walls. The Bauer's theory (1984) allows, in effect,
solving the mathematical complexities in rheological modeling and accounting
simultaneously for high elastic, viscous and inertial nonlinearities characterizing viscoelastic
materials. The Bauer’s theory (1984) is derived from the classical Kelvin-Voigt model (See
Fig. 1: The proposed nonlinear Kelvin-Voigt model). In this theory (Bauer, 1984), the total
stress acting on the material is decomposed as the sum of three components, that is, the
elastic, viscous and inertial stresses. The purely elastic stress is written as a power series of
strain, the purely viscous stress as a first time derivative of a similar power series of strain,
and the purely inertial stress as a second time derivative of a similar power series of strain.
The Bauer’s stress decomposition method (1984) has been after used by many authors
(Armentano et al., 1995; Gamero et al., 2001; Monsia et al., 2009) for the complete
characterization of arterial behavior. In (Monsia et al., 2009), following the Bauer’'s approach
(1984), the elastic stress is expanded in power series of strain. Monsia (2011e), using the
Bauer’'s method (1984), developed a hyperlogistic equation that represents successfully the
time-dependent mechanical properties of viscoelastic materials by expressing the elastic
stress as an asymptotic expansions in powers of deformation. The viscous stress is
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formulated as a first time derivative of similar asymptotic expansions in powers of
deformation. The inertial stress is given as a second time derivative of similar asymptotic
expansions in powers of deformation. Recently, Monsia (2011f, 2012) formulated in a single
differential equation the Bauer’s stress decomposition theory (1984) with an exciting stress

term, depending on a nonlinear elastic spring force functionj (€), where the scalar function
e(t) represents the time dependent deformation of the mechanical system under study. In

(Monsia, 2011f), the function | (€)is written as a hyperbolic function, which led, in the

absence of exciting stress, the author to obtain, after an adequate mathematical
manipulation, a useful hyper-exponential type function representing the time versus strain
variation of the viscoelastic material considered. The same author (Monsia, 2012),

considering also the hyperbolic elastic spring force law | (€), with now the presence of a

constant exciting stress, developed successfully, after consistent mathematical operations, a
nonlinear mechanical model applicable for representing the nonlinear creep behavior of
viscoelastic materials. More recently, in Monsia and Kpomahou (2012), the authors, by using
the Bauer’'s theory as formulated previously in Monsia (2011f, 2012) and expressing the

nonlinear elastic spring force function j (€) in a Newton’s binomial function, constructed

successfully a four-parameter mechanical model to represent the dynamic response of
viscoelastic materials. In Monsia and Kpomahou (2012), the binomial law exponent
controlled the material model nonlinearity. Numerical applications performed by the authors
(Monsia and Kpomahou, 2012), clearly showed the powerful predictive ability of the model to
reproduce any S-shaped experimental data. These studies demonstrate the authoritative
suitability of the Bauer’s stress decomposition theory (1984) as an advanced mathematical
tool in rheological modeling. The use of the Bauer’s theory (1984) requires overcoming two
major difficulties. The first consists of a suitable choice of the nonlinear elastic force function
j (e) that should tend towards the expected linear hookean behavior for small deformations.
The second difficulty results in the fact that the application of the Bauer’s theory (1984) leads
often to solve a Liénard second order nonlinear ordinary differential equation that is
generally non-integrable. These considerations show that the use of the Bauer’'s theory
(1984) to model the material nonlinear time dependent properties is not a simple task. In this
paper, we have considered also the Monsia formulation (2011f, 2012) of the Bauer’'s
approach (1984). From this approach, a one-dimensional nonlinear rheological model with
constant material parameters that includes elastic, viscous and inertial nonlinearities
simultaneously is developed. The model permitted to describe accurately the unloading
response of a viscoelastic material assumed to be primarily subjected to constant loading, by
using a logarithmic elastic spring force law.

i (€)=In(e,->) 1)
e

(o]

where €, # 0, is a material constant, and In denotes the natural logarithm.

This function is defined if and only ife, > Je .j (e) has a vertical asymptote at e =e?, so

j (e)is not defined after the value €. Therefore, the current law j (€) has the advantage,
contrary to previous nonlinear elastic functions used in Monsia (2011f, 2012) and, Monsia
and Kpomahou (2012), to limit the magnitude of the strain €(t) by a scaling factore,. The

use of this law allowed deriving the time dependent deformation relationship as a decaying
Gompertz-type model that reproduces successfully the qualitative S-shaped curve of the
experimental creep relaxation data mentioned in many publications (van Loon et al., 1977;
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Chien et al., 1978; Fukushima and Homma, 1988; Morgounov, 2001; Haslach Jr., 2005; Xia
et al., 2006; Thompson, 2009; Mustalahti et al., 2010). Numerical studies performed allowed
also investigating the effects of rheological coefficients variation on the model.
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o
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3

Fig. 1. The proposed nonlinear rheological model

2. FORMULATION OF THE MECHANICAL MODEL
2.1 Theoretical Considerations

The present part is devoted to describe the governing equations of the theoretical model
including the nonlinear elastic, viscous and inertial contributions characterizing viscoelastic
materials. As pointed out previously in Monsia (2011f, 2012), the nonlinear ordinary
differential equation resulting from the use of the Bauer’s theory (1984), by superposing the

pure elastic, viscous and inertial stresses, for a nonlinear elastic spring force function j (€),
can be written in the form

éiﬂézd2j +9éi+gj (e)—is )
de de? ¢ de c c '

The dot over a symbol denotes a differentiation with respect to timet. The inertial module ¢
is different from zero and time independent. The parameters aand b are respectively the
stiffness and viscosity coefficients. They are also time independent material parameters. S,

which is a scalar function, means the total exciting stress acting on the mechanical system
studied. It is required, in order to progress in the present modeling, to identify the nonlinear

elastic force function j (€) of interest. As stated earlier, the function] (€) should obey to
the basic principle governing the Bauer’s theory; that is to say, behave linearly as the
classical hookean elastic spring force function, for small values of deformatione(t).
Following this principle, in the present study, the nonlinear elastic force function | (€) is

expressed in terms of a logarithmic function given by Equation (1). By using Equation (1),
Equation (2) becomes
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_ _Eei-e)+e® e
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s, =-C b +aln(e, —— 3
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o [0}

Equation (3) shows mathematically in the single differential form the constitutive relation
between the total exciting stress S, and the resulting strain e(t). Equation (3) represents a

second order nonlinear ordinary differential equation in €(t) for a given exciting stressS .
2.2 Solution using an exciting stress s, =0

2.2.1 Evolution equation of deformation e(t)

In the absence of exciting stress (S, = 0), to say, in the relaxation phase where the applied

stress in the creep test is removed, the internal dynamics of the mechanical system under

study is governed by the following nonlinear ordinary differential equation
2

.. S e —e
cé(e’ —e)+e(ce +be’-e))-ale’-e)’In(-——)=0 )
eO
Equation (4) represents analytically the nonlinear evolution equation of deformation e(t) of
the considered mechanical system under unloading.

2.2.2 Solving time-deformation equation

For solving Equation (4), a change of variable is needed. Making the following suitable
substitution
2

e, —e
exp(x) == (5)
[0}
Equation (4) transforms, after a few algebraic operations, in the form
X+1 X+w?x=0 (6)
where
a
| ==, and W’ =—.
Cc Cc

Equation (6) is the well-known second-order linear ordinary differential equation which
describes a damped harmonic oscillator motion. The solution of Equation (6) depends on the

relative magnitudes of |2andW§, that determine whether the roots of characteristic

equation associated with Equation (6) are real or complex numbers. Therefore, three
particular cases may be studied.

2221CaseA: | >2w,

If the damping is relatively large, that is to say, | > 2w, , the roots of the characteristic
equation are real quantities, and the oscillator is said to be over damped. Thus, the
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mechanical system dissipates the energy by the damping force and the motion will not be
oscillatory. The amplitude of the vibration will decay exponentially with time. In this particular

case, integration of Equation (6) yields for X(t) the following solution

X(t) = A exp(rt) + A exp(r,t) 7
where
r= —%(1+d)
and
I
=——(1-d
r, = (1-d)

are the two negative real roots of the characteristic equation
r’+lr+w’=0
with

W2

— 0]
d=,/1- 4|—2
A and A, are two integration constants determined by the initial conditions. Thus, using

the following suitable initial-boundary conditions that account for the past history of
deformation

t<0, e(t)=¢ ; t<0,6(t)=0
and
t > +m,e(t)=K

and also taking into consideration Equation (5), one can obtain the following explicit
analytical solution

e(t)= K+e{l exp{ln( Oe —& )(E (——(1 d)t)—%exp(——(hd)t))ﬂ (8)

with K =e’ -e,

The first order derivative with respect to time of Equation (8) can be written

&(t) =€l ( exp(f—( d)t)—ap(—(ud)t)ﬂ 9)

2
)In(e°e €0 €1 ey —t)snh(—t)ewp{ln(% Ci )[“d
0

Equation (8) gives the strain versus time relationship of the viscoelastic material studied
under unloading behavior. It predicts mathematically the time dependent deformation

response of the material studied for some values of K as a decaying Gompertz-type model
that is useful for representing an asymmetric sigmoid curve.
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222.2CaseB: | =2w,
Forl = Z\NO, the oscillator is said to be critically damped and the amplitude of the vibration

will decay without sinusoidal oscillations during the time. In this case, Equation (6) has the
solution of the form

KO = B+ B, exp(— 1) (10)

Where B, and B, are two integration constants determined by the initial conditions.
Therefore, for the loading program

t<0e(t)=e;t<0,e(t)=0

and

t > +oo,e(t) =K

and considering also Equation (5), the desired solution €(t) in the stress relaxation phase

may be written in the following form
g2

e(t)= K+e{1 exp[ln( o i )(—t+1)exp(——t)ﬂ (11)

0

where K =e’ —g,

Equation (11) describes also the strain time relationship for some values of K as a
decaying Gompertz-type function adequate to fit the asymmetric S-shaped experimental
data. The time derivative of Equation (11) of first order is given by

e(t)—%e InG—5& €& ~€ ')texp(——t)exp{ln( o ')(1+—t)exp(——t)} (12)

O O

2223CaseC: | <2w,

For a relatively small damping, to say,| < 2W,, the roots of the characteristic equation are

complex numbers, and the oscillator is said to be underdamped. The amplitude of the
vibration decreases exponentially with time. In this particular case, integration of Equation

(6) yields for X(t) the following solution

x(t)=C exp(—lzt) cos(wt —f ) (13)
where

I 2
W=, W ——

4

114



Physical Review & Research International, 2(3): 107-124, 2012

and Cand f are two integration constants determined by the initial conditions. Then,

setting the suitable initial-boundary conditions taking into account the past history of
deformation

t<0e(t)=e;t<0,e(t)=0
and
t—>+m,e(t)=K

and taking also into consideration Equation (5), the following explicit analytical solution for
the desired strain €(t) in the stress relaxation phase can be obtained
e§ —€

e(t) =K+ e{l— exp{l n(e—)(cos(wt) + IEsi n(wt)) exp(—%t)ﬂ (14)

2
where K =¢e; —€,

The exponentiated exponential Equation (14) is of the form of a Gompertz-type model in
2

e —e
which the constant parameter IN(———) is modulated by the sinusoidal function

(o]

I .
cos(wt) + Esm(wt) , and appears very useful for the asymmetric S-shaped experimental

data fitting. For some values of the asymptotic parameter K, the strain e(t) will decay

exponentially. The first order time derivative of deformation may be expressed as
2 2

2 a—
é(t) = ew(l+ |—2)In(e° S8
aw e

. | ei |_ . _l_
)sm(vvt)exp(—Et)exp{ln( )(cos(wt) + 2Wsm(w’[))exp( 2t) (15)

(o] o]

3. NUMERICAL RESULTS AND DISCUSSION

This section presents some numerical examples to investigate the predictive capability of the
model to reproduce the mechanical response of the material considered under relaxation of
stress. The dependence of strain versus time curve on the material parameters is also
discussed. In the following, the material response is investigated at the fixed value K =0,

e, =1. Therefore, € must be less than1.
3.1 Case A: | >2w,

Fig. 2 illustrates the typical time dependent strain behavior of viscoelastic materials studied,
resulting from Equation (8) with the fixed value of coefficients at € =0.9, | =2, w, =0.5.
We note that the strain €(t) decreases until the asymptotical value K =0, that is, to the

time-axis with increase timet, and the elastic spring force | (€) becomes then equal to

zero. The strain versus time curve is nonlinear, with a nonlinear beginning initial portion.
Thus, Equation (8) reproduces the qualitative decay S-shape of the experimental unloading
data mentioned by several authors for a variety of materials (van Loon et al., 1977; Chien et
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al., 1978; Fukushima and Homma, 1988; Morgounov, 2001; Haslach Jr., 2005; Xia et al.,
2006; Thompson, 2009; Mustalahti et al., 2010).

Fig. 2. Typical strain versus time curve exhibiting a decay sigmoid behavior

Fig. 3 shows the comparison of the curves of strain q(t) =€, —e(t) and its first order time

da(®)

derivative , that is to say, the strain rate, obtained from equations (8) and (9). The

strain rate, after reaching its peak value at the inflexion point of the strain curve, declines
gradually to zero with timet, when the strain attains the strain value of the failure point. This

behavior of the strain rate has been observed in (Morgounov, 2001). The strain curve ((t)

reproduces also the qualitative S-shaped curve derived from experiments by Lesecq et al.
(1997). Recently, Mensah et al. (2009), in their theoretical work on the soft biological
materials, have obtained the same S-shaped behavior of the time dependent deformation.

The values of coefficients aree, =0.91 =2, w, =0.5.

qlt)= & —lt) [
dait)/dt
T £,=1
Py =09
g A=2
xf w,=0.5

[ 17 P - e I,
Ly ] s =] F b =) Sl 224 )

Fig. 3. Comparison of time dependent curves of strain and strain rate derived from
equations (8) and (9), respectively
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Figs. 4, 5 and 6, illustrate the effects of material coefficients on the strain versus time curve
generated by Equation (8). The effects of the action of these coefficients are studied with the
help of an own computer program by varying step by step one coefficient while the other two
are kept constant.

As shown in Fig. 4, an increase of the viscosity coefficient| , decreases the value of the
strain on the time period considered. The slope also decreases with increasel . The red line
corresponds tol =2, the blue line tol =3, and the green line tol =4. The other
parameters are€, =0.9 w, =0.5.

g (%)

“Tipec)

Fig. 4. Comparison of strain versus time curves for three values of the viscosity
coefficient |

Fig. 5 shows the effect of the natural frequency W, variation on the strain-time response. An
increaseW,, increases the strain value on the time period considered, increases also the
slope and the curves become more nonlinear. The red line corresponds to W, =0.05, the

blue line to W, = 0.1, and the green line to W, =0.5. The other parameters are € =0.9,
| =2.

From Fig. 6, we note that change of the coefficient € has a high effect on the peak

asymptotical value of strain. We observe that an increase € , increases significantly and fast
the maximum asymptotical value of strain on the time period considered. The slope
increases also with increase€ . The red line corresponds to€ =0.3, the blue line to

€ =0.6, and the green line to € =0.9. The other parameters arel =2, w,=0.5.

117



Physical Review & Research International, 2(3): 107-124, 2012

q (%)

—  w =005
—w =01
— w =075

T tiger)

Fig. 5. Comparison of strain-time curves with three different values of the natural
frequency W,

qs)

| L
30 30
1]

Fig. 6. Comparison of strain versus time curves showing the effect of the coefficient €

3.2CaseB: | =2w

o]

Fig. 7 illustrates the typical strain versus time curve derived from Equation (11), with the
fixed value of coefficients ate; =0.9, | =1. The curve exhibits the same limiting value of

K = 0. The curve also shows a nonlinear decay sigmoid behavior of materials of interest as
in the preceding case A.
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Fig. 7. Typical strain time curve showing decay S-shaped behavior derived from
equation (11)

Fig. 8 illustrates the comparison of the curves of strain ((t) =€ —e(t) and the strain rate

dq(t
ﬂ derived from equations (11) and (12). The strain rate, after attaining its maximum

value at the inflexion point of the strain curve, reduces gradually to zero with timet, when
the strain reaches the strain value of the failure point. These curves reproduce the qualitative
behavior of the time dependent strain and strain rate derived by Morgounov (2001) under

relaxation of stress. The current strain curve ((t) reproduces also the qualitative S-shaped
curve derived from experiments by Lesecq et al. (1997). The values of coefficients are

e =091 =1.

— glt)= & —&(t)
dagjt)/dt

1]
[EOu - I
[Na]

LY

w0
1]

B ke

Fig. 8. Comparison of time dependent curves of strain and strain rate derived from
equations (11) and (12), respectively
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33CaseC: | <2w,

Fig. 9 demonstrates the typical strain versus time curves derived from Equation (14), with
the fixed value of coefficients ate, =0.5, | =1, w, =1 The curve exhibits the same

limiting value of K =0, and shows a nonlinear decay exponential behavior of materials of
interest on the time period considered.

Fig. 9. Typical strain time curve showing a decay exponential behavior derived from
equation (14).

Fig. 10 shows the comparison of the curves of strain ((t) =€, —e(t), and the strain rate

da(t)

T derived from equations (14) and (15). As noticed previously, the strain rate, after

reaching its maximum value at the inflexion point of the strain curve, decreases gradually to
zero with timet, when the strain reaches the strain value of the failure point. These curves
reproduce also the qualitative behavior of the time dependent strain and strain rate derived
by Morgounov (2001) under relaxation of stress. The current strain curve Q(t) reproduces
likewise the qualitative S-shaped curve derived from experiments by Lesecq et al. (1997)

and obtained theoretically by Mensah et al. (2009). The values of coefficients aree, =0.5,
I =1, w, =1
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— qlt}= g; —€[t)
da(t)/fdt

E::.- Mo mo
1]

[ ==
(Ng] 1

2 2.5 ] 3.5
TE8c)

Fig. 10. Comparison of time dependent curves of strain and strain rate derived from
equations (14) and (15), respectively

The preceding numerical examples demonstrated that the model is well-suited to represent
the S-shaped deformation response of viscoelastic materials under unloading. The model is
based on the Bauer’s theory (1984) consisting to superpose the elastic, viscous and inertial
nonlinear contributions for obtaining the total stress acting on the material. This method
permitted to perform a complete characterization of the viscoelastic material under study. In
this model, the nonlinear elastic force function is assumed to be a logarithmic law, which
allowed taking into account elastic, viscous and inertial nonlinearities simultaneously, and
deriving successfully the time dependent response of the material studied as a Gompertz-
type function that is well known useful for reproducing an asymmetric sigmoid curve. It is
also interesting to note that the Gompertz model is an asymmetric function widely used to
represent increases in several growth phenomena exhibiting a sigmoid pattern, for example,
in physics, biology and biomedical science. The empirical choice of the nonlinear logarithmic

elastic force function | (€) is inspired by the work (Covacs et al., 2001) and also justified by
the fact that fore <<e, , the function | (&) can be developed in power series of

deformatione . In this regard, the choice of function j (€) agrees very well with the
polynomial function of deformation utilized by Bauer (1984) so that, for small values of
deformation, | (€) behaves linearly as expected. It is worth noting that the effects of

variation of the natural frequency W, and the viscosity | on the current model are in

opposite direction. The damping viscosity relative increase decreases appreciably the
magnitude of the maximum value of the rate of recovery process. Moreover, choosing K =0
, means that there were almost no residual deformations even at large stress levels. This
involves then almost complete recovery and, the material of interest behaves
viscoelastically. In contrast to this, the coefficient K can be chosen different from zero and
then, the material will behave viscoplastically. The present model can therefore, following the

value of K , describe successfully the viscoelastic or viscoplastic behavior of some materials.
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4. CONCLUSION

A mathematical rheological model has been developed by using the stress decomposition
theory. The nonlinear elastic, viscous and inertial contributions characterizing viscoelastic
materials are simultaneously taking into consideration through the use of a logarithm law for
the nonlinear elastic spring force function in the present model. The time dependent
deformation of a variety of materials has been investigated under creep relaxation. It has
been found that the strain reduces gradually following a decay sigmoid behavior, in
concordance with the experimental creep relaxation data existing in the literature. It has
been found also that the total deformation under creep process has a high effect on the
value of the deformation under unloading and, the natural frequency and the viscosity
coefficients effect acting on the material of interest is in opposite direction. The viscous
characteristic relative increase reduces considerably the magnitude of the peak value of the
rate of recovery response. It is even observed that the increase values of material
parameters, to say, of the natural frequency, the viscosity coefficient and the initial
deformation, increases the nonlinear viscoelastic sensitivity. It is worth mentioning that the
present model offers the ability to describe the viscoelastic behavior of the material under
study as well as its viscoplastic response.
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