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ABSTRACT

The purpose of this study is to investigate the shear strength and stiffness characteristics
of high plasticity offshore clay. A series of undrained monotonic triaxial compression and
direct simple shear tests was conducted on reconstituted saturated offshore clay
specimens. The clay specimens were tested under different confining pressures and
overconsolidation ratios (OCR 1, 2, 4, 10 and 40) at constant dry density of about
1.25g/cm3. The offshore clay exhibits contractive behaviour. The test results show that an
increase in OCR increases the normalized deviator stress and stiffness of the offshore
clay. The normalized stiffness increases with increasing OCR but decreases with
increasing axial strain. The normalized shear strength of high plasticity offshore clay
increases with increasing strain rates.
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1. INTRODUCTION

For decades, the behaviour of offshore clay subjected to repeated loads are often analyzed
by researchers due to the increased usage of offshore structures and concern for adequate
seismic design [1-9]. On the other hand, there are also studies involving anisotropically
consolidated undrained triaxial tests (CAU) and static direct simple shear tests (DSS) on
offshore clay specimens [6,8-12].

However, there are limited studies considered on static strength of normally consolidated or
overconsolidated high plasticity offshore clay specimens. More than a hundred offshore
platforms are located in shallow and deep waters in between the East Coast of Peninsula
Malaysia and West Coast of Sabah and Sarawak [13]. A better understanding of the
fundamentals of shear strength and deformation characteristics of clay is essential to
improve the accuracy of the solution of soil stability and settlement problem [14]. The
objective of this paper is to investigate the static shear strength deformation behaviour of
offshore clays with different OCRs (overconsolidation ratio) under isotropically consolidated
undrained triaxial compression (CIU) and direct simple shear (DSS) tests.

2. MATERIALS AND METHODS

2.1 Soil Constituents

The clay specimens tested in this study represent the high plasticity offshore clay deposit
located in Terengganu, Malaysia at the depths of 20m below the seabed. The typical
geotechnical properties of the high plasticity offshore clay are given in Table 1.

Table 1. Geotechnical properties of high plasticity offshore clay

Geotechnical properties Values
Liquid limit 54%
Plastic limit 27%
Plasticity index 27%
Clay fraction (d<0.002mm) 43%
Specific gravity 2.58

2.2 Testing Programs

Clay specimens used in the present study were reconstituted soil samples. The offshore clay
was first oven-dried and crushed to powder form before water was added to form saturated
soil with moisture content of 40%. The reconstituted clay was used for both triaxial and
simple shear tests.

Undrained static triaxial compression (CIU) tests were conducted on isotropically
consolidated offshore clay specimens with different OCRs and confining pressures at initial
dry density of about 1.25g/cm3. The soil specimens were 50mm in diameter and 100mm in
height, and were fully saturated before being tested. The average Skempton B-value of the
specimens after back pressure saturation was always higher than 0.98. Each clay specimen
was consolidated for 12 hours before shearing took place. The triaxial testing apparatus was
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computer-controlled, and the stress-strain data were recorded automatically. The CIU tests
were performed at axial strain rate of 3%/hr and the tests were discontinued when axial
strain reached 15%. In order to investigate the effect of varying strain rates on shear
behaviour of high plasticity offshore clay, CIU triaxial tests were performed with additional
strain rates of 0.3 and 0.03%/hr.

Undrained direct simple shear (DSS) tests were also performed on high plasticity offshore
clay to investigate the stress-strain relationships shearing along a horizontal plane after Ko
consolidation. A modified computer-controlled simple shear testing apparatus incorporated
with a data logging system was used. However, due to the limitation of the apparatus in the
laboratory, the pore pressure of the soil specimens could not be measured during undrained
shearing. Hence, only the horizontal shear strength of the soil specimens were measured.
Shear strain rate of 3.8%/hr was applied on offshore clay specimens measuring 70mm in
diameter and 25mm in height, with initial dry density of about 1.25g/cm3. During
consolidation, lateral strain was prevented by a consolidation clamp that was fitted to the
outside of the metal washers. The clamp was then removed before shearing. The summary
of CIU and DSS test conditions undertaken in this study is listed in Table 2.

Table 2. Summary of test conditions

Tests Water content (%) Confining pressure, σvc’ (kPa) OCR
CIU 40 100, 200, 300, 400 1, 2, 4, 10, 40
DSS 40 100, 200, 400 1, 2, 4, 10

3. RESULTS AND DISCUSSION

3.1 Shear Strength Behaviour of Offshore Clay

The typical stress-strain and pore pressure response for high plasticity offshore clay under
CIU and DSS tests are illustrated in Figs. 1 and 2, respectively. The undrained strength of
clay specimens increases with increasing confining pressures. The clay specimens exhibit
contractive tendency resulting in positive excess pore pressure with increasing confining
pressures. During undrained shearing, the pore pressure increases with the increase in
deviator stress [15].

The peak strength of clay specimen is reached at lower axial strain as confining pressure
increases under triaxial compression. It can be observed that the peak strength for offshore
clay is almost similar when confining pressure exceeds 200kPa. On the contrary, the DSS
results presented in Fig. 2 shows that the peak strength is significantly larger at higher
confining pressure when confining pressure is increased beyond 200kPa. The difference
between the CIU and DSS test results can be attributed to the different shearing mechanism
and rates of strain that are imposed to the clay specimens.

The effect of overconsolidation ratio on normalized peak strength (su/σvc’, where su is the
peak strength, and σvc’ is the vertical normal stress) for both high plasticity and Drammen
[16] offshore clay specimens is depicted in Fig. 3 for DSS and CIU tests. The DSS and CIU
test conditions for high plasticity and Drammen offshore clay specimens are similar. It may
be observed that normalized peak strength increases linearly as OCR increases from 1 to
40. The high plasticity offshore clay indicates a slightly higher normalized peak strength than
that of Drammen clay for specimens tested under triaxial compression. However, the
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normalized peak strength for both offshore clay specimens are similar for the results
obtained from DSS tests. Mayne [17] found that other offshore clays such as Bangkok clay,
Atchafalaya clay, Maine clay and Boston Blue clay also display similar behavior.

(a) Deviator stress versus axial strain (b) Pore pressure versus axial strain

Fig. 1. CIU stress-strain results for high plasticity offshore clay

Fig. 2. DSS shear stress-strain results for high plasticity offshore clay

3.2 Soil Friction Angles

Table 3 indicates the friction angle and plasticity index of high plasticity offshore clay and
various offshore clay specimens from other regions. The friction angle and plasticity index of
both high plasticity and Drammen offshore clay are quite similar, perhaps due to the similar
clay fraction in the soil. It can be observed that the friction angle decreases with increasing
plasticity index of offshore clay. Several studies have been reported in the literature
regarding the variation of friction angle with plasticity index for normally consolidated
reconstituted or undisturbed natural clays [18-21]. Fig. 4 illustrates the plot of effective
friction angle versus plasticity index, indicating that friction angle decreases with plasticity
index of clay specimens. The friction angle of high plasticity offshore clay appears to be
consistent with the typical friction angles range of other offshore clays.
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Fig. 3. Comparison of undrained direct simple shear and triaxial monotonic shear
strength of Drammen and high plasticity offshore clay as function of OCR

Table 3. Comparison of friction angle for various offshore clays

Clay PI (%) Friction angle, φ’(°) Clay fraction (%) Reference
Present study 27 26 42 -
Drammen clay 27 30.7 45 – 55 [8]
Weald clay 24 26 - [22]
Boston blue clay 15 30 26.5 [23]
London clay 49 21 50 [24]
Bombay marine clay 70 24 48 [25]

Fig. 4. Effective friction angle vs. plasticity index for normally consolidated
reconstituted and undisturbed clays (after Ladd et al. [20])

Present study
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3.3 Soil Stiffness-OCR Relationships

The normalized undrained secant stiffness (Eu/σvc’) determined at different strain levels are
plotted against strains (on logarithmic scale) as shown in Fig. 5. It is apparent that the
normalized secant stiffness of both normally and overconsolidated offshore clay specimens
decreases rapidly with increasing strain levels. As the soil yields, the normalized stiffness
begins to decrease as the soil experiences plastic deformation [26]. Similar behaviour was
reported in the literature [15,27-30] for normally consolidated London clay, Bangkok clay,
Boston Blue Clay III, natural Bothkennar clay and Magnus clay, respectively. It is also noted
that the normalized stiffness of high plasticity offshore clay increases with OCR, which is
also in agreement with the findings of Seah and Lai [27] and Sangatana [28] on Bangkok
clay and Boston Blue Clay, respectively. The stiffness of normally consolidated offshore clay
degrades faster at lower strains than that of overconsolidated offshore clay and thus, Eu/σvc’
is lower at higher strains. Abdulhadi [31] also reported the same finding on normally
consolidated and overconsolidated reconstituted Boston Blue Clay tested under
anisotropically triaxial compression test.

Fig. 5. Normalized soil stiffness–axial strain relationship in triaxial compression test
for high plasticity offshore clay

3.4 Rate Effects

Fig. 6 indicates the effect of varying strain rates on normalized shear strength of Norwegian
clay [10] and high plasticity offshore clay (present study). The standard strain rates used for
both Norwegian clay and high plasticity offshore clay are 3%/hr and 0.55-0.75%/hr,
respectively. The relationship of normalized shear strength and strain rates for Norwegian
clay is determined from both DSS and anisotropically consolidated undrained (CAU) triaxial
tests [10]. On the other hand, isotropically consolidated undrained (CIU) triaxial tests were
carried out in present study to establish the relationship of normalized shear strength and
strain rates for high plasticity offshore clay.

As shown in Fig. 6, the normalized shear strength (su/su, standard, where su is the peak strength
of soil sample, and su, standard is the peak strength of soil sample at standard strain rate) of
high plasticity offshore clay and Norwegian clay increases with increasing strain rates
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(rate/standard rate). The finding is consistent with those reported by Lefebve and LeBoeuf
[32], Sheahan [33]; Zhu and Yin [34] and Sorensen [35]. Undrained shear strength of clay is
associated closely to the pore water pressure development induced by shearing. Fig. 7
depicts the pore water pressure response of high plasticity offshore clay at various strain
rates. The pore water pressure generated in the specimen during shearing is higher at a
lower strain rate than at a higher strain rate, as identified in several studies such as
Richardson and Whitman [36], Sheahan [33] and Zhu and Yin [34]. Richardson and Whitman
[36] and Sheahan [33] reported that the decrease of pore pressure is the primary
mechanism of strength increase with increasing strain rate.

Fig. 6. Comparison of normalized shear strength for both Norwegian clay and high
plasticity offshore clay

Fig. 7. Pore water pressure development for high plasticity offshore clay subjected to
400kPa confining pressure with various strain rates
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Fig. 8. Relationship of Skempton parameter at failure, Af, with OCR for high plasticity
clay

Fig. 9. Observed trend between Af values and OCR for isotropically consolidated clays
in triaxial compression

Present study



British Journal of Applied Science & Technology, 4(31): 4468-4479, 2014

4476

3.5 Pore-pressure Failure Parameter, Af Parameter

Fig. 8 above indicates the variation of Skempton pore-water pressure parameter at failure,
Af, with increasing OCR for isotropically overconsolidated marine clay specimens. The value
of Af decreases with increasing OCR, and it tends to become negative when OCR is greater
than 4. It is in agreement with CIU test results on many types of clays reported in the
literature [37-43]. The test results presented by Bishop and Henkel [44] and Duncan and
Seed [45, 46] also indicate that Af becomes zero at OCR 4 and the values become negative
at greater OCRs. The Oslo clay, Weald clay and London clay also yield approximately zero
Af values at an overconsolidation value of about 3 or 4 [47]. The magnitude of Af may be
negative for highly overconsolidated clay soils [48]. It is interesting to note that the variation
of Af with OCR is considerably small at higher OCR ranges as compared to the low OCR
values.

Nakase and Kobayashi [49] found that Af values from isotropically consolidated specimens
became negative at lower OCR, while Af values from Ko-consolidated specimens remained
positive at OCRs greater than 10. This is because isotropic consolidation gives lower values
of Af than anisotropic consolidation at high OCRs [50]. The trend of Af values for 9 different
clays [8,37-40,51-53] subjected to a series of CIU triaxial tests are shown in Fig. 9 above.

4. CONCLUSION

High plasticity offshore clay displays different shear behaviour when it is sheared under CIU
and DSS test conditions due to the different shearing mechanisms. However, the results
obtained from both types of tests are comparable to those of Drammen clay under the same
test conditions. The offshore clay exhibits contractive behaviour as indicated by the
generation of positive excess pore pressure in CIU tests. The undrained secant stiffness of
normally consolidated high plasticity offshore clay degrades more rapidly at lower strain
levels that that of overconsolidated offshore clay, and hence, the soil stiffness of normally
consolidated clay is lower at higher strain levels. The pore water pressure generated in
offshore clay specimen during shearing is higher at lower strain rate than that at higher strain
rate, thus it results in strength increase with increasing strain rates.
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