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Abstract
An acoustic emission (AE) approach for non-destructive evaluation of structures has been
developed over the last two decades. In complex structures, one of the limitations of AE testing
is to find the location of the AE source. Time of flight and wave velocity are typically employed
to localise AE sources. However, complex rail structures generate multiple wave modes
travelling at varying speeds, making localisation difficult. In this paper, the challenge of
localisation has been split into two parts: (a) identification of the AE source zone, i.e. head, web
or foot, and (b) identification of location along the length of the rail. AE events are simulated
using a pencil lead break (PLB) as the source. Three models including an artificial neural
network and 1D and 2D convolutional neural networks (CNNs) are trained and tested using AE
signals generated by PLB sources. The accuracy of zone identification is reported as 94.79%
when using the 2DCNN algorithm. For location classification it is also found that 2DCNN
performed best with 73.12%, 79.37% and 67.50% accuracy of localising the AE source along
the length in the head, web and foot, respectively. For AE signal generation from actual damage
in a rail, a bending test on an inverted damaged rail section was then performed with loads of
100 kN, 150 kN and 200 kN. For all loads, the 2DCNN model resulted in accurate prediction of
the zone of the AE source, and it accurately predicted the AE source location along the length
for the loads of higher intensity (150 kN, 200 kN). It is envisaged that the deep learning
approach presented in this research work will be helpful in developing a real-time monitoring
system for rail inspection based on AE.

Keywords: non-destructive testing, acoustic emission, rail health monitoring,
damage localisation, deep learning application, data-driven solution
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1. Introduction

A railroad network is a cost-effective, time-efficient and
dependable form of transportation. It connects major cities,
ports, industrial centres and distant locations, thereby boosting
a country’s economy tremendously. Rail transportation safety
must be addressed to minimise the direct and indirect expenses
associated with rail failure. Safety can be achieved bymonitor-
ing and maintaining rails on a regular basis. Traditionally, the
ultrasonic method is used to detect the presence of a fault in a
rail section based on backscattering from damage. However,
the cascading effect of a surface crack over major damage,
low efficiency and the slow speed of testing limit the effect-
ive use of the current technique. Acoustic emission (AE) is
a rapidly advancing, non-destructive testing method used to
monitor structures in service. AE is a transient wave which is
produced when stored energy is suddenly released from dam-
age under service loads. The AE waves propagate through the
rail and carry information regarding the damage through vari-
ous wave properties. Analysing the wave parameters of AE
signals and correlating them with damage parameters can help
to understand the damage mechanism and characteristics.

Over the last two decades, substantial research has been
carried out to monitor rail cracks using AE technology. Ini-
tially, Bruzelius and Mba [1] explored the possibility of the
application of AE technology through a small test rig. This
study provided the rationale for using AE signals for rail test-
ing. Bollas et al [2] presented raw data from sensors moun-
ted on wheels and concluded that the bigger the size of the
defect, the larger the number of AE hits. Zhang et al [3] invest-
igated the effect of distance, depth and type of simulated AE
source in rails. The complications of noise in AE signals and a
wavelet-based denoising technique have been studied by Hao
et al [4]. Using the wavelet transform method, Bianchi et al
[5] investigated the extraction of an AE signal generated due
to rolling contact fatigue. Kuang et al [6] investigated an AE-
based crack monitoring strategy utilising wavelet entropy. Li
et al [7] demonstrated a method for crack size determination
in rail steel using wavelet packet analysis of AE signals gen-
erated during crack opening and closing in a steel bar sample.
Zhang et al [8] proposed a long short-term memory network-
based method to eliminate noise interference from AE sig-
nals and demonstrated its effectiveness in actual application.
Zhang and colleagues also proposed [9] a parameter-optimised
variational mode decomposition method to decompose AE
signals.

In general,damage in any structure can be characterised by
its type, location and severity. Locating damage is a vital part
of the qualitative and quantitative analysis of damage. In the
case of AE, location becomesmore crucial for filtering out sig-
nals from a relevant source. A few researchers have looked at
the localisation problem in AE testing. Using the least squares
method, Ohtsu and Ono [10] developed a technique to determ-
ine the location of an AE source due to a tensile crack. The
technique was based on the amplitude of P-waves. Using a
local Newton iterative method, Ciampa and Meo [11] utilised

the time of arrival of the flexural Ao mode in a composite plate
to identify the location of the AE source. Dehghan Niri and
Salamone [12] proposed a probabilistic framework by consid-
ering the time of flight and wave velocity as Gaussian random
variables. They used continuouswavelet transform (CWT) and
an extended Kalman filter to iteratively estimate the AE source
location.Mostafapour et al [13] used the cross time–frequency
spectrum and calculated the time delay between signals and
the corresponding frequency to obtain wave velocity at a spe-
cified frequency. To locate AE sources in composite structures,
Al-Jumaili et al [14] presented a fully automatic delta T map-
ping technique using clustering algorithms. Mirgal et al [15]
used a planar source localisation algorithm and particle swarm
optimisation techniques to locate AE sources in concrete struc-
tures.

Currently, most localisation techniques are based on wave
velocity and time of flight. These are limited to planar struc-
tures. For complex structures such as rails, it is very difficult to
analyse and determine the location of the AE source for vari-
ous reasons, such as the complex geometry of the rail, the wide
frequency band of AE signals and numerous sources of AE
signals and noise. A rail serves as a complex waveguide res-
ulting in high dispersion, especially because of the presence
of numerous modes travelling at close wave velocities for a
given frequency. An AE wave is a combination of various fre-
quencies, which in turn makes localisation a very complicated
task. The AE approach can be incorporated into the real-time
condition monitoring of a rail section by using the appropriate
tools. AE testing generates an enormous number of data which
are complex to analyse in a conventional manner. However,
large datasets also provide leverage to utilise machine learn-
ing (ML) and deep learning algorithms, which are subsets of
artificial intelligence (AI)-based techniques. AI can be help-
ful in mapping various parameters of AE waves to the dam-
age parameters such as location, severity and so forth. The
application of ML and deep learning algorithms to solve com-
plex problems in the domain of structural health monitoring
and fault detection has been growing in recent years [16–22].
Ebrahimkhanlou et al [23] utilised deep stacked encoders to
determine coordinates of AE sources in an aluminium plate
observing 100% accuracy for zonal localisation. Yang and Xu
developed a stacked denoising autoencoder-based approach
for AE source localisation in metallic plates with a laser clad-
ding layer. Hesser et al [24] demonstrated the application of
deep neural networks for source identification and zonal local-
isation in plate structures. Sikdar et al [25] proposed a convo-
lutional neural network (CNN)-based algorithm for identific-
ation of the region of damage in a composite panel. Barbosh
et al [26] utilised a combination of the CWT and a deep neural
network to detect the location of damage in wooden beams,
wooden plates and concrete beams. The application of ML
in the monitoring of rails is rather sparse. Recently, Li et al
[27] developed a multi-branch CNN to automatically classify
AE waves in rails generated due to impact, crack propagation
and operational noise. Using ultrasonic guided waves gener-
ated through surface-bonded piezoelectric sensors, Mahajan

2



Meas. Sci. Technol. 34 (2023) 044010 H Mahajan and S Banerjee

and Banerjee [28] applied ML algorithms to detect damage
parameters in rails. Localisation approaches based on the time
of flight and velocity of wave modes are typically limited to
simple geometries with well-defined dispersion characterist-
ics, such as bars, plates and cylinders. High dispersion, i.e. the
occurrence of several wave modes at a specific frequency, pre-
vents implementation of a velocity-based approach for local-
ising AE sources in rails. The recent literature demonstrates
that the use of deep learning in such a complex problem is
increasing due to its capability to capture pattern change in the
input with respect to various external conditions. This research
proposes employing a deep learning algorithm trained by an
artificial AE source to solve the localisation problem. The cap-
ability of the algorithm is then evaluated by locating the source
of the AE signal created by actual crack opening in a rail
section under a load.

The overall localisation problem has been divided into two
parts: first, the AE source zone is identified then the source is
located along the length of the rail. Three models are proposed
for zone identification and localisation of the AE source along
the length based on the combination of signal features and
AI techniques, including an artificial neural network (ANN),
a 1D convolutional neural network (1DCNN) and a 2D con-
volutional neural network (2DCNN). For the simulated AE
source, a pencil-lead break (PLB) is chosen for the study. PLB
sources are reliable for the calibration of sensors and help in
understanding AE wave propagation in any structure [29]. AE
signals generated by a PLB source are recorded and denoised
using an elliptical filter. Afterwards, deep learning algorithm-
based classification strategies are employed to identify the AE
source zone in a rail using PLB signals. After training and test-
ing various models, the most accurate algorithm is deployed to
estimate the zone and location of the AE source generated in
a rail due to crack opening under a bending load. This paper
is organised as follows. The experimental setups are discussed
in section 2. The proposed methodologies are presented and
discussed in section 3. An overview of signal processing and
data preparation is presented in section 4. The results and dis-
cussion are presented in section 5, followed by the conclusion
and scope of future work in section 6.

2. Experimental setup

2.1. Experimental setup for an artificial AE source

A pencil lead of diameter 0.5 mm and length 3 mm was used
for the PLB experiment. The lead was pressed against a sur-
face at 45◦, breaking it due to the reaction of the collet of a
mechanical pencil. WSα sensors manufactured by Physical
Acoustics were used with a characteristic operating frequency
between 100 and 1000 kHz and an operational temperature
in the range −65 ◦C to +177 ◦C. This range of temperature
ensures the workability of sensors in field testing. The AE
signal generated due to the PLB was acquired through two
sensors placed at 50 mm and 100 mm from the centre of the
provided damage in the rail. The webwas chosen for mounting

the sensors as it was more accessible and less affected by train
vibration, lateral forces and high temperature compared with
the head. The sensors were then connected to the PAC AE
system through a pre-amplifier with gain of 40 dB. Figure 1
shows the experimental setup, sensor location and source loc-
ation over the rail.

PLB experiments were performed at various locations on
the rail (as shown in figure 2) to analyse the signal variation
and create a dataset for the training and testing of algorithms.
PLB experiments were performed at 336 different points, and
data from the two sensors were collected. The location of the
lead break is marked with reference to the centre between
sensor 1 and sensor 2. Details on the locations of experiments
are shown in table 1.

2.2. Bending experiment for AE signal generation due to
crack opening in the rail section

A train moving over a rail track imposes a dynamic load on
the rail surface with variable amplitudes. The train move-
ment generates an alternating cycle of tensile and compressive
stress, thereby causing damage in the rail section as it sud-
denly opens and closes. This results in the development of AE
waves, which are caused by the formation of a plastic zone at
the crack tip and subsequent propagation of the crack subjec-
ted to the fatigue cycle. By recording and analysing such sig-
nals, one can better understand the degree of damage. A three-
point bending experiment on an inverted rail with transverse
damage in the rail head was conducted in the laboratory to
replicate AE generation due to a crack opening. The test speci-
men was a 1500 mm long rail piece with 38% head area trans-
verse damage in the centre. Sensors were located in exactly the
same location as in the PLB experiment. Figures 3 and 4 show
detailed schematics of the inverted rail bending test and actual
experiment setup respectively. The specimen was loaded using
a compressive loading machine equipped with a bending load
arrangement. Three different loadings were applied to the spe-
cimen: 100 kN, 150 kN and 200 kN.

3. Proposed schemes for source zone and location
classification

The behaviours of the AE waves generated by PLBs at differ-
ent zones of the rail, namely head, web and foot, are different.
Similarly, variations may also be observed with the locations
of AE sources with respect to the position of sensors along the
length of the rail. Conventional methods involving the rela-
tionship between time of flight, wave velocity, wave modes
etc., have limitations for AE source localisation in rails. Pat-
tern recognition algorithms such as deep neural networks can
notice the change in wave output with respect to the source
location. Hence, the location may be predicted by analysing
the change in pattern using powerful tools such as deep neural
network algorithms. The problem of locating anAE source in a
rail can be divided into two parts: the zone of the rail and loca-
tion along the length. The first algorithmwas trained and tested
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Figure 1. Experimental setup: (a) AE system and sensor, (b) location of lead break source and sensors, (c) pencil lead break (simulated AE
source).

Figure 2. Schematic for locations of PLB experiments over a rail: (a) three-dimensional view (b) section and elevation.
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Table 1. Dataset for the lead break source.

Location

L1 L2 L3 L4 L5 L6 L7 L8 Total

Zone Head 14 14 14 14 14 14 14 14 112
Web 14 14 14 14 14 14 14 14 112
Foot 14 14 14 14 14 14 14 14 112
Total 42 42 42 42 42 42 42 42 336

Figure 3. Experimental setup for a three-point bending test on an inverted rail: (a) front view, (b) rail section with support plate, (c) location
of AE sensor and crack.

to identify the zone of the rail section where the AE source
exists. Next, separate algorithms were trained and tested for
each zone to predict the location of the AE source along the
length of the rail. Figure 5 shows a flowchart of the proposed
scheme. Combining the outcomes of these algorithms can help
in locating the AE source within the complex geometry of the
rail section. For both algorithms, three neural network struc-
tures were worked out, namely ANN, 1DCNN and 2DCNN.

An ANN is a computing algorithm that imitates the neural
network of the human brain. An ANN consists of a set of
nodes or neurons [30]. Neurons are interconnected, provid-
ing a network topology comparable to that of the biological
brain network, the source of human intelligence. Each layer
of an ANN contains a finite number of neurons. An ANN
has input, hidden and output layers. These neurons are the
primary prediction-generating processing units of the neural
network. In this investigation, a neural network with complete

connectivity is utilised, in which all neurons between lay-
ers are interconnected. Figure 6(a) displays the architectural
layout of the proposed ANN. Every input is independently
weighted, and the sum of weighted inputs is processed by a
linear or nonlinear activation function.

SoftMax is utilised in the output layer to solve multiclass
problems. The program returns a probability between 0 and 1,
which is an indicator of the data sample belonging to a par-
ticular class. In all prior layers, tanh, rectified linear activa-
tion function (ReLU), Leaky ReLU [31] and scaled exponen-
tial linear units (SeLU) [32] are employed. Table 2 shows the
different activation functions used in hidden layers. A CNN
is a deep learning algorithm having a grid-like data processing
algorithm. The input of a 1DCNN is a time series, while that of
a 2DCNN can be a red/green/blue (RGB) colour image hav-
ing three dimensions. The first and second dimensions of a
colour image represent the width and height of each image,
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Figure 4. Pictures of the actual experimental setup: (a) three-point bending setup and AE system, (b) AE sensors, (c) crack and crack
opening displacement sensor.

respectively. The third dimension corresponds to the RGB col-
our channels. Change in the location of the AE source causes
a relative waveform shift in both sensors. The scalogram gen-
erated using the CWT displays wavelet coefficients on a time
and frequency scale. A change in position produces a shift in
the relative magnitude of the wavelet coefficient, resulting in
a change in the RGB concentration of the scalogram image.
This change in colour concentration can be correlated with
the location of the AE source and is detected by a 2DCNN.
Figure 7 shows the input for ANN, 1DCNN and 2DCNN used
for the localisation of the AE source in a rail. A CNN has two
architectural benefits compared with an ANN. First, inform-
ation can be weight-shared by introducing a filter or kernel
across layers, requiring fewer training parameters than a fully
connected feedforward network. Secondly, the local receptive
field also enables the CNN to recognise geometric elements
such as lines and edges. The parameters ‘stride’ and ‘pad-
ding’ determine the convolutional layer’s receptive fields. In
the 2DCNN, the stride parameter determines the amount of
vertical and horizontal filter movement, while in the 1DCNN
the filter only moves vertically. The spectral feature extrac-
tion of the image increases when the stride value is decreased.
Padding aids in adding extra rows and columns to the exter-
ior dimensions of an image in order to preserve information
from corners and edges. In the proposed method, the stride
value was kept at 1 to capture every detail of the input image,

while padding was maintained such that the output has the
same dimensions as the input to capture information from the
image’s corners and edges. The CNN structure is made up of
several convolutional and pooling layers that are responsible
for analysing AE signals, and dense layers that are responsible
for classifying AE sources. Figures 6(b) and (c) exhibit the
suggested Conv1D and Conv2D architectures, respectively.
After adjusting the activation function and hyperparameters,
such as the number of epochs, mini-batch size and learning
rate, the most accurate models will be compared and carefully
chosen. The top models for zone classification and location
classification will be used to test the location of cracks in a rail
section.

4. Signal processing and data preparation

4.1. Signal filtering and normalisation

Filtering is needed to isolate useful information from the
raw signal by eliminating unwanted components, i.e. noise.
Through digital signal processing, digital filters of various
types can be utilised for such tasks. An acoustic signal is sus-
ceptible to low- and high-frequency noise with varying amp-
litudes and needs to be filtered before further analysis. In this
study, an infinite impulse response (IIR) filter has been con-
sidered because, for a given filter order, it exhibits the much
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Figure 5. Flowchart for AE source localisation in a rail section.

Figure 6. Architecture of the deep learning models: (a) ANN, (b) 1DCNN and (c) 2DCNN.

sharper transition required for proper filtering of noise from an
acquired acoustic signal [33]. In the IIR digital filter an elliptic
filter was used as it could achieve a sharper cut-off than a

Chebyshev filter. The filter details are provided in table 3. The
frequency range was chosen based on the operating frequency
range of the sensors.
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Table 2. Activation functions.

Sample no. Activation function Expression Plot

1. Tanh g(Z) = eZ−e−Z

eZ+e−Z

2. Rectified linear unit (ReLU) g(Z) = max{0,Z}

3. Leaky ReLU g(Z) =

{
Z if Z> 0
αZ if Z≤ 0

Here α = 0.1

4. Scaled exponential linear unit (SeLU) g(Z) = λ

{
Z

α(eZ− 1)
Here α = 1.673 λ = 1.051

Figure 7. Example of inputs for algorithms (a) for the ANN and 1DCNN and (b) for the 2DCNN.

Table 3. Filter design parameter.

Parameter Value

Response type IIR
Design method Elliptic
Exactly match Passband
Filter order 4
Sampling frequency 10 000 kHz
First stopband frequency 125 kHz
First passband frequency 150 kHz
Second passband frequency 600 kHz
Second stopband frequency 650 kHz

The fracture of the pencil lead against the surface generates
an AE signal in the specimen. However, the energy released
from each PLB may be different due to the difference in
lengths of the leads, the angle between the lead and the

surface while breaking, applied force, etc. Signals received
at the sensors may have a different range of values. Hence,
normalisation of signals is especially important for correctly
interpreting and comparing AE signals. To scale the captured
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signal to be within a specific range [−1,+1], a general method
is to normalise the wave signal with respect to its maximum
and minimum values [34]. Min–max normalization is given
by equation (1)

Fnew =

(
fold −Minold

Maxold −Minold

)
(Maxnew −Minnew)+Minnew

(1)

whereMaxnew = 1, Minnew =−1, Minold =minimum value of
the original signal, Maxold = maximum value of the original
signal. Max–min normalisation is a linear transformation that
maintains all the informationwith relationships included in the
original signal.

4.2. Wavelet transform

Fourier transform only provides information about the fre-
quency domain. To generate an input image for pattern recog-
nition algorithms, it is required to have time-localised fre-
quency information. Short-time Fourier transform (STFT)
and wavelet transform are the methods for generating time–
frequency information for a signal. A wavelet transform util-
ises dilation and transition parameters to represent the signal
in the frequency and time domains [35]. CWT of the signal
can be carried out using a mother wavelet, resulting in wavelet
coefficients for a different times and pseudo-frequencies. The
value of the wavelet coefficient and its association with time
and frequency is a vital feature of a signal. The CWT coeffi-
cients are generated using equation (2)

CWT(a,b) = (f,ψa,b) =
1√
a

∞̂

−∞

f(t)ψ∗
(
t− b
a

)
dt. (2)

Compared with STFT, CWT applies an orthogonal filter
bank over the entire signal. In this way, one can generate a sig-
nal resolution pattern ranging from coarse to fine in the time–
frequency domain. This high-resolution RGB image offers
critical information regarding the pattern change in the AE sig-
nal in relation to the location of the damage. Therefore, this
study used CWT to produce inputs for the 2DCNN.

4.3. Data preparation

A total of 336 PLB experiments were carried out. These data
were utilised for training and testing AI-based algorithms for
zone and location classification. All the signals were corrup-
ted to incorporate the effect of noise by adding white Gaussian
noise of amplitude 5%, 10%, 15% and 20% of the main signal
amplitude. This makes the dataset comprise a total 1680 sig-
nals generated from three parts, namely head, web and foot,
and at various locations L1–L8. The dataset containing the ori-
ginal signals was divided into training and testing data in the

ratio 70:30 before adding noise to avoid the problem of data
leakage, which may occur due to a randomised train–test split.

Each sensor had an AE signal of the length of 3000 samples
based on sampling rate (1× 107 samples s−1) and time of sig-
nal recording (300 µs). The input was provided differently for
different algorithms. For the ANN and 1DCNN, only the time
series data were required. For the 2DCNN, continuous wavelet
transformation of a one-dimensional signal was carried out to
generate the time–frequency representation of a signal, which
is called a scalogram. The scalogram is then stored as an image
file with three layers of information in RGB colour concentra-
tions. Figure 7 shows the inputs for the ANN, 1DCNN and
2DCNN.

5. Results and discussion

5.1. Results for PLB at various zones of the rail section

The output from the PLB at the head, web and foot in loca-
tion zone 4 is shown in figure 8. It can be observed that even
for the same PLB source location, the waveforms generated
at the different zones, i.e. head, web and foot, are different.
In the case of the head, the dispersion of the wave over time
can be noticed, while in the case of the web, the waveform
has a specific peak with less dispersion. Since the sensors are
attached to the web, the clear peak of the wave can first be
observed on the web. The foot is thinner than the head; hence,
less dispersion is observed. Due to the dispersive character-
istics of waves in the rail and the generation of the waveform
over a broad frequency, it is difficult to identify the zone of the
AE source. However, by analysing the pattern of some distinct
parameters, such as dispersion, time of arrival and energy con-
centration, it is possible to identify the zone of the AE source.
The deep learning algorithm can help in observing such a pat-
tern change.

5.2. Result of deep learning algorithms on the testing dataset
of the AE signal in a rail

The output received from theAE system for a PLB is corrupted
with white noise of varying amplitude, creating a noisy dataset
to replicate the effect of field testing. All these signals are then
filtered and normalised. Later, the dataset is converted into the
array and scalogram images as inputs for various algorithms.
A total of 1680 signals are provided as input, among which
1200 were used for training and 480 for testing. After com-
pletion of the training, all the models are validated using the
testing dataset. Overall accuracy can be used to compare the
efficiency of any given algorithm. Figure 9 shows a compar-
ison of the accuracy of various models for zone classification.
Among all the algorithms, 2DCNN with the SeLU activation
function performed best for zone classification with an accur-
acy of 94.79% on the testing data. All algorithms are again
trained and tested for location classification along the length
of rail. Here, the output layer is modified for eight location
zones. The algorithm attempts to observe pattern change in
the signal of both sensors with respect to location. Figure 10
shows the accuracy of various algorithms with the testing data
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Figure 8. Time history of the acoustic signal generated due to PLB at various zones of the rail in location L4 (x-axis: time in µs, y-axis:
normalised amplitude).

Figure 9. Testing accuracy for zone identification of an AE source in the rail.

of location classification. Even for location classification along
the length, 2DCNN with the SeLU activation function outper-
formed other algorithms in all three zones. ANN/CNN lead
by a gradient-based process known as backpropagation. In the
ReLU activation function the problem of a vanishing gradient
arises where learning can stop. SeLU cannot have a vanishing
gradient and hence it has better performance than ReLU. In a
classification task, the confusion matrix indicates the relative

accuracies for each class. The confusion matrix for the best
performing algorithm for zone and location classifications is
shown in figure 11. Table 4 presents performance metrics for
zone classification test results, such as recall, precision and F1
score. Table 5 also provides the performance metrics for loca-
tion classification along the length for each of the three zones,
head, web and foot. The AE signals are easily distinguishable
for the three rail zones, resulting in very good accuracy. The
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Figure 10. Testing accuracy for location zone identification of an AE source in the rail.

Figure 11. Confusion matrix of testing data for the best algorithms for zone classification and location along the length.

accuracies for location classification along the length for head,
web and foot are lower because there are only slight changes
in signal for adjacent locations along the length. In the head
and foot, the signals reaching the sensor, which is located at

the web, had a lot of dispersion and hence their accuracies are
low. In the web, the signal suffers less dispersion, resulting
in good accuracy. In all three zones, the accuracies are much
better than random guessing.
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Table 4. Performance metrics for zone classification of an AE source in a rail.

Zone R (%) P (%) F1

Foot 93.08 94.37 96.89
Head 92.50 94.37 97.50
Web 92.78 94.37 97.19

Table 5. Performance metrics for location classification of an AE source in a rail along the length.

Head Web Foot

Location R (%) P (%) F1 R (%) P (%) F1 R (%) P (%) F1

L1 100 74.07 85.11 100 100 100 75 68.18 71.42
L2 50 66.67 57.14 100 80 88.88 75 51.72 61.22
L3 75 100 85.71 55 100 70.96 65 59.09 61.9
L4 75 65.21 69.76 100 83.33 90.91 50 100 66.67
L5 75 68.18 71.42 100 80 88.88 65 72.22 68.42
L6 50 38.46 43.47 55 100 70.96 75 55.55 63.82
L7 60 100 75 50 52.63 51.28 60 70.58 64.86
L8 100 100 100 75 60 66.67 75 100 85.71

R, recall; P, precision; F1, F1 score.

Figure 12. Time versus load and AE hit: (a) 100 kN, (b) 150 kN and (c) 200 kN.

5.3. Result of algorithms on output from the bending
experiment

Deep learning algorithms were trained and tested for the clas-
sification of zone and location of anAE source along the length
by using a dataset generated from a simulated AE source,
i.e. a PLB. Based on accuracy and other performance metrics,
2DCNNwith the SeLU activation function outperformed other
algorithms. Combining the outputs of zone and location clas-
sification algorithms results in location of the AE source in the
rail. To deploy the trained algorithm, the .h5 file of the model
is extracted and saved. The ‘.h5’ file format [36] stores the
structured data of weights and the configuration of a trained
model, which can be deployed and used to predict results for
new inputs. The model is then used to generate outputs for new
AE signals. To simulate AE signal generation from a crack
opening in rail, a bending test on an inverted damaged rail was
conductedwith loads of 100 kN, 150 kN and 200 kN. Figure 12

shows the application of the load and the increase in AE hits
with respect to it. The AE signal observed at peak load is con-
sidered for analysis. AE signals obtained from the bending
experiment are filtered and normalised. Scalogram images are
generated using CWT, as discussed in section 4.2. Generated
images are then used as input for trained algorithm to determ-
ine the location of the AE source. The inputs are provided to
both algorithms to identify both zone and location along the
length in the rail section. The outputs from the SoftMax layer
of the 2DCNN result in the probability of each class. Figure 13
shows the probability of the AE source being located in each
zone of the rail section. It can be observed that a high probab-
ility is found for the AE source lying in the head. Algorithms
show the accurate prediction for the zone class for each load.
Except for the 100 kN load, location class was predicted accur-
ately. This approach proves to be promising due to the similar-
ity between the AE signal generated from the PLB source and
crack opening.
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Figure 13. Output result for an AE source in the rail head, web and foot.

6. Conclusion

Due to the presence of multiple modes, excessive noise and the
broad frequency spectrum of AE signals, AE testing of rails is
a challenging task. Prior to completing any analysis on rail
damage, it is necessary to locate the AE source. However, for
a complex section such as a rail, conventional analysis meth-
ods based on velocity and time of flight are complicated and
ineffective. This study proposes acoustic source localisation in
the rail section by utilising AE waveform parameters. A PLB
source was initially used as a simulated AE source to gener-
ate training and testing data. Deep learning algorithms were
trained and tested based on the dataset to locate the AE source.
Then trained algorithms were deployed to determine the loca-
tion of the AE signal generated by the crack opening in the rail
under a bending load. The localisation of the AE source in rail
was divided into two parts: zone of the rail and location along
the length of the rail. For both problems, three algorithms were
used: ANN, 1DCNN and 2DCNN.

The following conclusions can be drawn from this study:
The experiments indicate distinctive patterns of AE wave-

forms generated in different rail zones.

(a) 2DCNN with the proposed architecture demonstrated the
highest accuracy of 94.79% on testing data for the identi-
fication of the rail zone in which the AE source is located.

(b) Similarly, for the identification of the location of the AE
source along the length of the rail, 2DCNN with the
proposed architecture shows good accuracy of 73.12%,

79.37% and 67.50% for locating an AE source in the head,
web and foot, respectively.

(c) A deep learning algorithm effectively reduces the manual
effort of feature extraction. This methodology captures
every pattern change and assigns it to various classes.

(d) The models prepared were applied over the AE signal gen-
erated from crack opening in an actual rail section. For
all three applied loads, the highest probability of location
was observed in the head zone. For crack opening under
150 kN and 200 kN loads, the location of the AE signal
generated from a crack in the rail was predicted accurately.

Due to attenuation in rail sections and limitations of the
present sensors and data acquisition system, the AE test in
this study was limited to a small section of rail only. How-
ever, the proposed methodology assists in determining the loc-
ation of an AE source in a rail and can be used for further
investigation, such as determining the severity of damage in a
field test. Additionally, this study stands as a proof of concept
for the employment of AI-based algorithms to evaluate dam-
age parameters such as type, source location and severity in
real time via AE in extremely complicated geometries such as
rails.
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