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Abstract
In this paper, we consider an almost periodic discrete multispecies Lotka-Volterra competition
predator-prey system. By the almost periodicity, sufficient conditions which guarantee the existence
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1 Introduction
In 2006, Chen[1] had studied the following discrete n+m-species Lotka-Volerra competition predator-
prey system

xi(k + 1) = xi(k) exp

[
bi(k)−

n∑
l=1

ail(k)xl(k)−
m∑
l=1

cil(k)yl(k)

]
,

yj(k + 1) = yj(k) exp

[
− rj(k) +

n∑
l=1

djl(k)xl(k)−
m∑
l=1

ejl(k)yl(k)

]
, (1.1)

where i = 1, 2, · · · , n; j = 1, 2, · · · ,m; xi(k) is the density of prey species i at kth generation. yj(k)
is the density of predator species j at kth generation. ail(k) and ejl(k) measures the intensity of
intraspecific competition or interspecific action of prey species and predator species, respectively.
bi(k) representing the intrinsic growth rate of the prey species xi(k); rj(k) representing the death
rate of the predator species yj(k). Sufficient conditions which ensure the permanence and the
global stability of systems (1.1) are obtained; for periodic case, sufficient conditions which ensure
the existence of a globally stable positive periodic solution of the systems are obtained.

In real world phenomenon, the environment varies due to the factors such as seasonal effects
of weather, food supplies, mating habits, harvesting. So it is usual to assume the periodicity of
parameters in the systems. However, if the various constituent components of the temporally nonuniform
environment is with incommensurable (non-integral multiples) periods, then one has to consider the
environment to be almost periodic since there is no a priori reason to expect the existence of periodic
solutions. For this reason, the assumption of almost periodicity is more realistic, more important
and more general when we consider the effects of the environmental factors. In fact, there have been
many nice works on the positive almost periodic solutions of continuous and discrete dynamics model
with almost periodic coefficients[2,3,4,5,6,7,8,9,10,11,12,13,14,15 and the references cited therein].
Zhang et al.[5] studied an almost periodic discrete multispecies Lotka-Volterra mutualism system

xi(k + 1) = xi(k) exp

{
ai(k)− bi(k)xi(k) +

n∑
j=1,j 6=i

cij(k)
xj(k)

dij + xj(k)

}
, i = 1, 2, · · · , n.

Sufficient conditions are obtained for the existence of a unique almost periodic solution which is
globally attractive. Specially, for the discrete two-species Lotka-Volterra mutualism system, the sufficient
conditions for the existence of a unique uniformly asymptotically stable almost periodic solution are
obtained. Li et al.[13] studied an almost periodic discrete predator-prey models with time delays

x(k + 1) = x(k) exp

{
a(k)− b(k)x(k)− p(k, x(k), y(k), x(k − µ), y(k − ν))

y(k)

x(k)

}
,

y(k + 1) = y(k) exp

{
c(k)− d(k)y(k)

x(k − µ)

}
.

Sufficient conditions for the permanence of the system and the existence of a unique uniformly
asymptotically stable positive almost periodic sequence solution are obtained.

But to the best of the author’s knowledge, to this day, still no scholars have studied the almost
periodic version which is corresponding to system (1.1). Therefore, with stimulation from the works of
[5,9,16,17], we will further investigate the the existence of a unique almost periodic solution of system
(1.1) which is globally attractive.

Denote as Z and Z+ the set of integers and the set of nonnegative integers, respectively. For
any bounded sequence g(n) defined on Z, define gu = sup

n∈Z
g(n), gl = inf

n∈Z
g(n).

Throughout this paper, we assume that:
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(H1) bi(k), ail(k), cil(k), rj(k), djl(k) and ejl(k) are all bounded nonnegative almost periodic
sequences such that

0 < bli ≤ bi(k) ≤ bui , 0 < alil ≤ ail(k) ≤ auil, 0 < dljl ≤ djl(k) ≤ dujl, l = 1, 2, · · · , n;

0 < rlj ≤ rj(k) ≤ ruj , 0 < clil ≤ cil(k) ≤ cuil, 0 < eljl ≤ ejl(k) ≤ eujl, l = 1, 2, · · · ,m,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
From the point of view of biology, in the sequel, we assume that x(0) = (x1(0), x2(0), · · · , xn(0),

y1(0), y2(0), · · · , ym(0)) > 0. Then it is easy to see that, for given x(0) > 0, the system (1.1)
has a positive sequence solution x(k) = (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k))(k ∈ Z+)
passing through x(0).

The remaining part of this paper is organized as follows: In Section 2, we will introduce some
definitions and several useful lemmas. In Section 3, we present the permanence results for system
(1.1). In Section 4, we establish the sufficient conditions for the existence of a unique globally
attractive almost periodic solution of system (1.1). The main results are illustrated by an example
with numerical simulation in Section 5. Finally, the conclusion ends with brief remarks in the last
section.

2 Preliminaries
Firstly, we give the definitions of the terminologies involved.

Definition 2.1.[18 ] A sequence x : Z → R is called an almost periodic sequence if the ε-translation
set of x

E{ε, x} = {τ ∈ Z :| x(n+ τ)− x(n) |< ε, ∀n ∈ Z}
is a relatively dense set in Z for all ε > 0; that is, for any given ε > 0, there exists an integer l(ε) > 0
such that each interval of length l(ε) contains an integer τ ∈ E{ε, x} with

| x(n+ τ)− x(n) |< ε, ∀n ∈ Z.

τ is called an ε-translation number of x(n).

Definition 2.2.[19 ] Let D be an open subset of Rm, f : Z × D → Rm. f(n, x) is said to be
almost periodic in n uniformly for x ∈ D if for any ε > 0 and any compact set S ⊂ D, there exists a
positive integer l = l(ε, S) such that any interval of length l contains an integer τ for which

|f(n+ τ, x)− f(n, x)| < ε, ∀(n, x) ∈ Z × S.

τ is called an ε-translation number of f(n, x).

Definition 2.3.[20 ] The hull of f, denoted by H(f), is defined by

H(f) = {g(n, x) : lim
k→∞

f(n+ τk, x) = g(n, x) uniformly on Z × S},

for some sequence {τk}, where S is any compact set in D.

Definition 2.4.[21] A sequence x : Z+ → R is called an asymptotically almost periodic sequence if

x(n) = p(n) + q(n), ∀n ∈ Z+,

where p(n) is an almost periodic sequence and lim
n→+∞

q(n) = 0.

Lemma 2.5.[22] {x(n)} is an almost periodic sequence if and only if for any integer sequence {k′i},
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there exists a subsequence {ki} ⊂ {k′i} such that the sequence {x(n+ ki)} converges uniformly for
all n ∈ Z as i→∞. Furthermore, the limit sequence is also an almost periodic sequence.

Lemma 2.6.[21] {x(n)} is an asymptotically almost periodic sequence if and only if, for any sequence
mi ⊂ Z satisfying mi > 0 and mi → ∞ as i → ∞ there exists a subsequence {mik} ⊂ {mi} such
that the sequence {x(n+mik )} converges uniformly for all n ∈ Z+ as k →∞.

3 Permanence
In this section, we establish a permanence result for system (1.1), which can be given in [1].

Proposition 3.1.[1] For every solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of system
(1.1), we have

lim sup
n→+∞

xi(k) ≤Mi, i = 1, 2, · · · , n,

where

Mi =
1

alii
exp{bui − 1}. (3.1)

Proposition 3.2.[1] Assume that

(H2) − rlj +
n∑

l=1

dujlMl > 0

holds, whereMl(l = 1, 2, · · · , n) are defined by (3.1). Then for every solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k),
· · · , ym(k)) of system (1.1), we have

lim sup
n→+∞

yj(k) ≤ Nj , j = 1, 2, · · · ,m,

where

Nj =
1

e1jj
exp{−rlj +

n∑
l=1

dujlMl − 1}. (3.2)

Proposition 3.3.[1] In addition to (H2), assume further that

(H3) bli −
n∑

l=1,l 6=i

auilMl −
m∑
l=1

cuilNl > 0

hold for all i = 1, 2, · · · , n, where Ml, Nl are defined by (2.1) and (2.2), respectively. Then for every
solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of system (1.1), we have

lim inf
n→+∞

xi(k) ≥ mi, i = 1, 2, · · · , n,

where

mi =

bli −
n∑

l=1,l 6=i

auilMl −
m∑
l=1

cuilNl

auii
exp{bli −

n∑
l=1,l 6=i

auilMl −
m∑
l=1

cuilNl}. (3.3)

Proposition 3.4.[1] In addition to (H2) and (H3), assume further that

(H4) − ruj +
n∑

l=1

dljlml −
m∑

l=1,l 6=j

eujlNl > 0
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hold, whereNl andml are defined by (2.2) and (2.3), respectively. Then for every solution (x1(k), x2(k), · · · ,
xn(k), y1(k), y2(k), · · · , ym(k)) of system (1.1), we have

lim inf
n→+∞

yj(k) ≥ nj , j = 1, 2, · · · ,m,

where

nj =

−ruj +
n∑

l=1

dljlml −
m∑

l=1,l 6=j

eujlNl

eujj
exp{−ruj +

n∑
l=1

dljlml −
m∑

l=1,l 6=j

eujlNl}.

Theorem 3.5. Assume that (H1)-(H4) hold, then system (1.1) is permanent.

The next result tells us that there exist solutions of system (1.1) totally in the interval of Theorem
3.5. We denote by Ω the set of all solutions (x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k)) of
system (1.1) satisfying mi ≤ xi(k) ≤ Mi, nj ≤ yj(k) ≤ Nj(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) for all
k ∈ Z+.

Proposition 3.6. Assume that (H1)-(H4) hold. Then Ω 6= Φ.
Proof. By the almost periodicity of bi(k), ail(k), cil(k), rj(k), djl(k) and ejl(k), there exists an integer
valued sequence {δp} with δp → +∞ as p→ +∞ such that

bi(k + δp)→ bi(k), ail(k + δp)→ ail(k), cil(k + δp)→ cil(k),

rj(k + δp)→ rj(k), djl(k + δp)→ djl(k), ejl(k + δp)→ ejl(k), as p→ +∞.
Let ε be an arbitrary small positive number. It follows from Theorem 3.5 that there exists a positive

integer N0 such that

mi − ε ≤ xi(k) ≤Mi + ε, nj − ε ≤ yj(k) ≤ Nj + ε, k > N0.

Write xip(k) = xi(k + δp) and yjp(k) = yj(k + δp) for k ≥ N0 − δp and p = 1, 2, · · · . For any positive
integer q, it is easy to see that there exists two sequences {xip(k) : p ≥ q} and {yjp(k) : p ≥ q} such
that the sequences {xip(k)} and {yjp(k)} have two subsequences, respectively, denoted by {xip(k)}
and {yjp(k)} again, converging on any finite interval of Z as p→ +∞. Thus we have two sequences
{x̃i(k)} and {ỹj(k)} such that

xip(k)→ x̃i(k), yjp(k)→ ỹj(k) for k ∈ Z as p→ +∞.
This, combined with

xi(k + 1 + δp) = xi(k + δp) exp

[
bi(k + δp)−

n∑
l=1

ail(k + δp)xl(k + δp)−
m∑
l=1

cil(k + δp)yl(k + δp)

]
,

yj(k + 1 + δp) = yj(k + δp) exp

[
− rj(k + δp) +

n∑
l=1

djl(k + δp)xl(k + δp)−
m∑
l=1

ejl(k + δp)yl(k + δp)

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m

gives us

x̃i(k + 1) = x̃i(k) exp

[
bi(k)−

n∑
l=1

ail(k)x̃l(k)−
m∑
l=1

cil(k)ỹl(k)

]
,

ỹj(k + 1) = ỹj(k) exp

[
− rj(k) +

n∑
l=1

djl(k)x̃l(k)−
m∑
l=1

ejl(k)ỹl(k)

]
,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

We can easily see that (x̃1(k), x̃2(k), · · · , x̃n(k), ỹ1(k), ỹ2(k), · · · , ỹm(k)) is a solution of system (1.1)
and mi−ε ≤ x̃i(k) ≤Mi +ε, nj−ε ≤ ỹj(k) ≤ Nj +ε for k ∈ Z. Since ε is an arbitrary small positive
number, it follows that mi ≤ x̃i(k) ≤Mi, nj ≤ ỹj(k) ≤ Nj and hence we complete the proof.
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4 Almost Periodic Solution

The main result of this paper concerns the existence of a unique global attractive almost periodic
solution of system (1.1).

Theorem 4.1. Assume that (H1)-(H4) and

(H5) ρi = max{|1− aliimi|, |1− auiiMi|}+
n∑

l=1,l 6=i

auilMl +
m∑
l=1

cuilNl < 1, i = 1, 2, · · · , n,

σj = max{|1− eljjnj |, |1− eujjNj |}+
m∑

l=1,l 6=i

eujlNl +
n∑

l=1

dujlMl < 1, j = 1, 2, · · · ,m,

hold. Then system (1.1) admits a unique almost periodic solution which is globally attractive.

Proof. It follows from Proposition 3.6 that there exists a solution (x1(k), x2(k), · · · , xn(k), y1(k), y2(k),
· · · , ym(k)) of system (1.1) satisfyingmi ≤ xi(k) ≤Mi, nj ≤ yj(k) ≤ Nj , k ∈ Z+(i = 1, 2, · · · , n, j =
1, 2, · · · ,m). Let {δk} be any integer valued sequence such that δk → +∞ as k → +∞. Using the
Mean Value Theorem, for p 6= q, we get

lnxi(k + δp)− lnxi(k + δq) =
1

ξi(k, p, q)
[xi(k + δp)− xi(k + δq)],

ln yj(k + δp)− ln yj(k + δq) =
1

ηj(k, p, q)
[yj(k + δp)− yj(k + δq)], (4.1)

where ξi(k, p, q) lies between xi(k + δp) and xi(k + δq), and ηj(k, p, q) lies between yj(k + δp) and
yj(k + δq). Then

|xi(k + δp)− xi(k + δq)| ≤Mi| lnxi(k + δp)− lnxi(k + δq)|,
|yj(k + δp)− yj(k + δq)| ≤ Nj | ln yj(k + δp)− ln yj(k + δq)|, k ∈ Z+. (4.2)

For convenience, we introduce Λs(k, δp, δq) through

Λs(k, δp, δq) =

{
ϕs(k, δp, δq), 1 ≤ s ≤ n,
ψs−n(k, δp, δq), n+ 1 ≤ s ≤ n+m, k ∈ Z+, δp > 0, δq > 0,

(4.3)

where

ϕi(k, δp, δq) = | lnxi(k + δp)− lnxi(k + δq)|, s = i = 1, 2, · · · , n,
ψj(k, δp, δq) = | ln yj(k + δp)− ln yj(k + δq)|, s− n = j = 1, 2, · · · ,m.
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Thus, when 1 ≤ s ≤ n, we have

Λs(k + 1, δp, δq) = ϕi(k + 1, δp, δq) = | lnxi(k + 1 + δp)− lnxi(k + 1 + δq)|

=

∣∣∣∣ lnxi(k + δp)− lnxi(k + δq)

+ bi(k + δp)−
n∑

l=1

ail(k + δp)xl(k + δp)−
m∑
l=1

cil(k + δp)yl(k + δp)

− bi(k + δq) +

n∑
l=1

ail(k + δq)xl(k + δq) +

m∑
l=1

cil(k + δq)yl(k + δq)

∣∣∣∣
≤
∣∣∣∣ lnxi(k + δp)− lnxi(k + δq)− aii(k + δp)[xi(k + δp)− xi(k + δq)]

∣∣∣∣
+

∣∣∣∣bi(k + δp)− bi(k + δq)

∣∣∣∣+

∣∣∣∣[aii(k + δq)− aii(k + δp)]xi(k + δq)

∣∣∣∣
+

n∑
l=1,l 6=i

∣∣∣∣ail(k + δp)
[
xl(k + δp)− xl(k + δq)

]∣∣∣∣
+

n∑
l=1,l 6=i

∣∣∣∣[ail(k + δp)− ail(k + δq)
]
xl(k + δq)

∣∣∣∣
+

m∑
l=1

∣∣∣∣cil(k + δp)
[
yl(k + δp)− yl(k + δq)

]∣∣∣∣
+

m∑
l=1

∣∣∣∣[cil(k + δp)− cil(k + δq)
]
yl(k + δq)

∣∣∣∣. (4.4)

When n+ 1 ≤ s ≤ n+m, we have

Λs(k + 1, δp, δq) = ψj(k + 1, δp, δq) = | ln yj(k + 1 + δp)− ln yj(k + 1 + δq)|

=

∣∣∣∣ ln yj(k + δp)− ln yj(k + δq)

− rj(k + δp) +

n∑
l=1

djl(k + δp)xl(k + δp)−
m∑
l=1

ejl(k + δp)yl(k + δp)

+ rj(k + δq)−
n∑

l=1

djl(k + δq)xl(k + δq) +

m∑
l=1

ejl(k + δq)yl(k + δq)

∣∣∣∣
≤
∣∣∣∣ ln yj(k + δp)− ln yj(k + δq)− ejj(k + δp)[yj(k + δp)− yj(k + δq)]

∣∣∣∣
+

∣∣∣∣rj(k + δp)− rj(k + δq)

∣∣∣∣+

∣∣∣∣[ejj(k + δq)− ejj(k + δp)]yj(k + δq)

∣∣∣∣
+

m∑
l=1,l 6=i

∣∣∣∣ejl(k + δp)
[
yl(k + δp)− yl(k + δq)

]∣∣∣∣
+

m∑
l=1,l 6=i

∣∣∣∣[ejl(k + δp)− ejl(k + δq)
]
yl(k + δq)

∣∣∣∣

209



Zhang et al.; JSRR, 5(3), 203-219, 2015; Article no.JSRR.2015.088

+

n∑
l=1

∣∣∣∣djl(k + δp)
[
xl(k + δp)− xl(k + δq)

]∣∣∣∣
+

n∑
l=1

∣∣∣∣[djl(k + δp)− djl(k + δq)
]
xl(k + δq)

∣∣∣∣. (4.5)

Let ε1 be an arbitrary positive number. By the almost periodicity of {bi(k)}, {ail(k)}, {cil(k)}, {rj(k)}, {djl(k)}
and {ejl(k)} and the boundedness of {(x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k))}, it follows
from Lemmas 2.2 and 2.4 that there exists a positive integer K1 = K1(ε1) such that, for any
δq ≥ δp ≥ K1 and k ∈ Z+(if necessary, we can choose subsequences of {δp} and {δq}),∣∣∣∣bi(k + δp)− bi(k + δq)

∣∣∣∣ < ε1
4
,

∣∣∣∣[aii(k + δq)− aii(k + δp)]xi(k + δq)

∣∣∣∣ < ε1
4
,

n∑
l=1,l 6=i

∣∣∣∣ail(k + δp)
[
xl(k + δp)− xl(k + δq)

]∣∣∣∣ < ε1
4
,

m∑
l=1

∣∣∣∣[cil(k + δp)− cil(k + δq)
]
yl(k + δq)

∣∣∣∣ < ε1
4
,∣∣∣∣rj(k + δp)− rj(k + δq)

∣∣∣∣ < ε1
4
,

∣∣∣∣[ejj(k + δq)− ejj(k + δp)]yj(k + δq)

∣∣∣∣ < ε1
4
,

m∑
l=1,l 6=i

∣∣∣∣[ejl(k + δp)− ejl(k + δq)
]
yl(k + δq)

∣∣∣∣ < ε1
4
,

n∑
l=1

∣∣∣∣[djl(k + δp)− djl(k + δq)
]
xl(k + δq)

∣∣∣∣ < ε1
4
. (4.6)

It follows from (4.1) and (4.3)-(4.6) that, for k ∈ Z+ and δq ≥ δp ≥ K1,

ϕi(k + 1, δp, δq) <

∣∣∣∣1− aii(k + δp)ξi(k, p, q)

∣∣∣∣ϕi(k, δp, δq)

+

n∑
l=1,l 6=i

∣∣∣∣ail(k + δp)ξl(k, p, q)

∣∣∣∣ϕl(k, δp, δq)

+

m∑
l=1

∣∣∣∣cil(k + δp)ηl(k, p, q)

∣∣∣∣ψl(k, δp, δq) + ε1

≤ ρi max{ϕi(k, δp, δq), ψj(k, δp, δq)}+ ε1,

ψj(k + 1, δp, δq) <

∣∣∣∣1− ejj(k + δp)ηj(k, p, q)

∣∣∣∣ψj(k, δp, δq)

+

m∑
l=1,l 6=i

∣∣∣∣ejl(k + δp)ηl(k, p, q)

∣∣∣∣ψl(k, δp, δq)

+

n∑
l=1

∣∣∣∣djl(k + δp)ξl(k, p, q)

∣∣∣∣ϕl(k, δp, δq) + ε1

≤ σj max{ϕi(k, δp, δq), ψj(k, δp, δq)}+ ε1.

Then

ϕi(k, δp, δq) < ρi max{ϕi(k − 1, δp, δq), ψj(k − 1, δp, δq)}+ ε1,

ϕi(k − 1, δp, δq) < ρi max{ϕi(k − 2, δp, δq), ψj(k − 2, δp, δq)}+ ε1,

· · · · · · · · · · · · ,
ϕi(1, δp, δq) < ρi max{ϕi(0, δp, δq), ψj(0, δp, δq)}+ ε1.
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And we have

ϕi(k, δp, δq) < ρki max{ϕi(0, δp, δq), ψj(0, δp, δq)}+
1− ρki
1− ρi

ε1, (4.7)

for k ∈ Z+ and δq ≥ δq ≥ K1.
By a similar argument as that in (4.7), we could easily obtain that

ψj(k, δp, δq) < σk
j max{ϕi(0, δp, δq), ψj(0, δp, δq)}+

1− σk
j

1− σj
ε1,

Since ρi < 1 and σj < 1, for arbitrary ε > 0, there exists a positive integer K = K(ε) > K1 such
that, for any δq ≥ δp ≥ K,

ϕi(k, δp, δq) <
ε

max
1≤i≤n

{Mi}
, ψj(k, δp, δq) <

ε

max
1≤j≤m

{Nj}

for k ∈ Z+.
This combined with (4.2) gives us∣∣∣∣xi(k + δp)− xi(k + δq)

∣∣∣∣ < ε,

∣∣∣∣yj(k + δp)− yj(k + δq)

∣∣∣∣ < ε.

for k ∈ Z+ and δq ≥ δq ≥ K. It follows from Lemma 2.6 that the sequence {(x1(k), x2(k), · · · , xn(k),
y1(k), y2(k), · · · , ym(k))} is asymptotically almost periodic. Thus, by Definition 2.4, we can express
it as

xi(k) = pi(k) + qi(k), yj(k) = uj(k) + vj(k), (4.8)

i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where {pi(k)} and {uj(k)} are almost periodic in k ∈ Z and qi(k)→
0, vj(k) → 0 as k → +∞. In the following we show that {(p1(k), p2(k), · · · , pn(k), u1(k), u2(k),
· · · , um(k))} is an almost periodic solution of system (1.1).

Define

Fs(k) =

{
fs(k), 1 ≤ s ≤ n,

f̃s−n(k), n+ 1 ≤ s ≤ n+m,

and

Gs(k) =

{
gs(k), 1 ≤ s ≤ n,
g̃s−n(k), n+ 1 ≤ s ≤ n+m,

where

fi(k) = bi(k)−
n∑

l=1

ail(k)(pl(k) + ql(k))−
m∑
l=1

cil(k)(ul(k) + vl(k)), s = i = 1, 2, · · · , n,

f̃j(k) = −rj(k) +

n∑
l=1

djl(k)(pl(k) + ql(k))−
m∑
l=1

ejl(k)(ul(k) + vl(k)), s− n = j = 1, 2, · · · ,m,

gi(k) = bi(k)−
n∑

l=1

ail(k)pl(k)−
m∑
l=1

cil(k)ul(k), s = i = 1, 2, · · · , n,

g̃j(k) = −rj(k) +

n∑
l=1

djl(k)pl(k)−
m∑
l=1

ejl(k)ul(k), s− n = j = 1, 2, · · · ,m,
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It follows from (1.1), (4.8) and the Mean Value Theorem that

pi(k + 1) + qi(k + 1)

= [pi(k) + qi(k)] exp{fi(k)}
= pi(k)[exp{fi(k)} − exp{gi(k)}] + pi(k) exp{gi(k)}+ qi(k) exp{fi(k)}

= −pi(k) exp{ξi(k)}

[
n∑

l=1

ail(k)ql(k) +

m∑
l=1

cil(k)vl(k)

]
+ pi(k) exp{gi(k)}+ qi(k) exp{fi(k)},

uj(k + 1) + vj(k + 1)

= [uj(k) + vj(k)] exp{f̃j(k)}
= uj(k)[exp{f̃j(k)} − exp{g̃j(k)}] + uj(k) exp{g̃j(k)}+ vj(k) exp{f̃j(k)}

= uj(k) exp{ηj(k)}

[
n∑

l=1

djl(k)ql(k)−
m∑
l=1

ejl(k)vl(k)

]
+ uj(k) exp{g̃j(k)}+ vj(k) exp{f̃j(k)},

where ξi(k) = θi(k)fi(k) + (1 − θi(k))gi(k) and ηj(k) = γj(k)f̃j(k) + (1 − γj(k))g̃j(k) for some
θi(k), γj(k) ∈ [0, 1]. Thus

pi(k + 1)− pi(k) exp{gi(k)}

= −pi(k) exp{ξi(k)}

[
n∑

l=1

ail(k)ql(k) +

m∑
l=1

cil(k)vl(k)

]
− qi(k + 1) + qi(k) exp{fi(k)},

uj(k + 1)− uj(k) exp{g̃j(k)}

= uj(k) exp{ηj(k)}

[
n∑

l=1

djl(k)ql(k)−
m∑
l=1

ejl(k)vl(k)

]
+ vj(k) exp{f̃j(k)}.

Let
Vi(k) = pi(k + 1)− pi(k) exp{gi(k)},

and
Ui(k) = uj(k + 1)− uj(k) exp{g̃j(k)}.

By the boundedness of the almost periodic sequences {ail(k)},{cil(k)},{djl(k)},{ejl(k)} and the fact
that qi(k)→ 0, vj(k)→ 0 as k → +∞, we obtain

Vi(k)→ 0, Uj(k)→ 0 as k → +∞.
We claim that Vi(k) ≡ 0 and Uj(k) ≡ 0. Otherwise, there exists an integer k0 ∈ Z such that
Vi(k0) 6= 0. By the almost periodicity of {bi(k)},{ail(k)},{cil(k)} and {pi(k)}, there exists an integer
valued sequence τp such that τp → +∞ as p→ +∞ and

bi(k + τp)→ bi(k), ail(k + τp)→ ail(k), cil(k + τp)→ cil(k), pi(k + τp)→ pi(k)

uniformly for all k ∈ Z+. Then we have

Vi(k0 + τp) = pi(k0 + τp + 1)− pi(k0 + τp) exp{gi(k0 + τp)}
→ pi(k0 + 1)− pi(k0) exp{gi(k0)}
= Vi(k0)

as p→ +∞, which contradicts that Vi(k)→ 0 as k → +∞. This proves the claim. Hence

pi(k + 1) = pi(k) exp{gi(k)}. (4.9)
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By a similar argument as that in (4.9), we could obtain that

uj(k + 1) = uj(k) exp{g̃j(k)};

that is, {(p1(k), p2(k), · · · , pn(k), u1(k), u2(k), · · · , um(k))} is an almost periodic solution of system
(1.1).

Then, we prove that almost periodic solution {(p1(k), p2(k), · · · , pn(k), u1(k), u2(k), · · · , um(k))}
is globally attractive. The proof is similar to the proof of Theorem 2 in [1]. However, for the sake of
completeness, here we give the complete proof.

Assume that {(x1(k), x2(k), · · · , xn(k), y1(k), y2(k), · · · , ym(k))} is a solution of system (1.1)
satisfying (H1)-(H4). Let

xi(k) = pi(k) exp{αi(k)}, i = 1, 2, · · · , n,

yj(k) = uj(k) exp{βj(k)}, j = 1, 2, · · · ,m.

Then system (1.1) is equivalent to

αi(k + 1) = lnxi(k + 1)− ln pi(k + 1)

= lnxi(k) + bi(k)−
n∑

l=1

ail(k)xl(k)−
m∑
l=1

cil(k)yl(k)

− ln pi(k)− bi(k) +

n∑
l=1

ail(k)pl(k) +

m∑
l=1

cil(k)ul(k)

= αi(k)− aii(k)[xi(k)− pi(k)]−
n∑

l=1,l 6=i

ail(k)[xl(k)− pl(k)]−
m∑
l=1

cil(k)[yl(k)− ul(k)]

= αi(k)− aii(k)pi(k)[exp{αi(k)} − 1]−
n∑

l=1,l 6=i

ail(k)pl(k)[exp{αl(k)} − 1]

−
m∑
l=1

cil(k)ul(k)[exp{βl(k)} − 1], i = 1, 2, · · · , n,

βj(k + 1) = ln yj(k + 1)− lnuj(k + 1)

= ln yj(k)− rj(k) +

n∑
l=1

djl(k)xl(k)−
m∑
l=1

ejl(k)yl(k)

− lnuj(k) + rj(k)−
n∑

l=1

djl(k)pl(k) +

m∑
l=1

ejl(k)ul(k)

= βj(k)− ejj(k)[yj(k)− uj(k)]−
m∑

l=1,l 6=i

eil(k)[yl(k)− ul(k)] +

n∑
l=1

djl(k)[xl(k)− pl(k)]

= βj(k)− ejj(k)uj(k)[exp{βj(k)} − 1]−
m∑

l=1,l 6=i

eil(k)ul(k)[exp{βl(k)} − 1]

+

n∑
l=1

djl(k)pl(k)[exp{αl(k)} − 1], j = 1, 2, · · · ,m.
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Therefore,

αi(k + 1) = αi(k)[1− aii(k)pi(k) exp{λi(k)αi(k)}]−
n∑

l=1,l 6=i

ail(k)pl(k)αl(k) exp{λl(k)αl(k)}

−
m∑
l=1

cil(k)ul(k)βl(k) exp{λl(k)βl(k)}, i = 1, 2, · · · , n, (4.10)

βj(k + 1) = βj(k)[1− ejj(k)uj(k) exp{λj(k)βj(k)}]−
m∑

l=1,l 6=i

eil(k)ul(k)βl(k) exp{λl(k)βl(k)}

+

n∑
l=1

dil(k)pl(k)αl(k) exp{λl(k)αl(k)}, j = 1, 2, · · · ,m. (4.11)

where λi(k), λj(k) ∈ [0, 1]. To complete the proof, it suffices to show that

lim
k→+∞

αi(k) = 0, i = 1, 2, · · · , n, (4.12)

lim
k→+∞

βj(k) = 0, j = 1, 2, · · · ,m. (4.13)

In view of (H5), we can choose ε > 0 such that

ρεi = max{|1− alii(mi − ε)|, |1− auii(Mi + ε)|}+

n∑
l=1,l 6=i

auil(Ml + ε) +

m∑
l=1

cuil(Nl + ε) < 1,

σε
j = max{|1− eljj(nj − ε)|, |1− eujj(Nj + ε)|}+

m∑
l=1,l 6=i

eujl(Nl + ε) +

n∑
l=1

dujl(Ml + ε) < 1,

i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Let ρ = max{ρεi} and σ = max{σε

j}, then ρ < 1 and σ < 1. According to Theorem 3.5, there
exists a positive integer k0 ∈ Z+ such that

mi − ε ≤ xi(k) ≤Mi + ε, mi − ε ≤ pi(k) ≤Mi + ε, i = 1, 2, · · · , n,

nj − ε ≤ yj(k) ≤ Nj + ε, nj − ε ≤ uj(k) ≤ Nj + ε, j = 1, 2, · · · ,m

for k ≥ k0.
Notice that λi(k) ∈ [0, 1] implies that pi(k) exp{λi(k)αi(k)} lies between pi(k) and xi(k), λj(k) ∈

[0, 1] implies that uj(k) exp{λj(k)βj(k)} lies between uj(k) and yj(k). From (4.10) and (4.11), we
get

|αi(k + 1)| ≤ max{|1− alii(mi − ε)|, |1− auii(Mi + ε)|}|αi(k)|+
n∑

l=1,l 6=i

auil(Ml + ε)|αl(k)|

+

m∑
l=1

cuil(Nl + ε)|βl(k)|, i = 1, 2, · · · , n, (4.14)

|βj(k + 1)| ≤ max{|1− eljj(nj − ε)|, |1− eujj(Nj + ε)|}|βj(k)|+
m∑

l=1,l 6=i

eujl(Nl + ε)|βl(k)|

+

n∑
l=1

dujl(Ml + ε)|αl(k)|, j = 1, 2, · · · ,m, (4.15)

for k ≥ k0.
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In view of (4.14) and (4.15), we get

max
1≤i≤n

|αi(k + 1)| ≤ ρ max
1≤i≤n,1≤j≤m

{|αi(k)|, |βj(k)|},

max
1≤i≤n

|βj(k + 1)| ≤ σ max
1≤i≤n,1≤j≤m

{|αi(k)|, |βj(k)|}, k ≥ k0.

This implies
max
1≤i≤n

|αi(k)| ≤ ρk−k0 max
1≤i≤n,1≤j≤m

{|αi(k)|, |βj(k)|},

max
1≤i≤n

|βj(k)| ≤ σk−k0 max
1≤i≤n,1≤j≤m

{|αi(k)|, |βj(k)|}, k ≥ k0.

Then (4.12) and (4.13) hold. So, we can obtain

lim
k→+∞

|xi(k)− pi(k)| = 0, i = 1, 2, · · · , n, (4.16)

lim
k→+∞

|yi(k)− ui(k)| = 0, j = 1, 2, · · · ,m. (4.17)

Now, we show that there is only one positive almost periodic solution of system (1.1). For any two
positive almost periodic solutions (p1(k), p2(k), · · · , pn(k), u1(k), u2(k), · · · , um(k)) and (z1(k), z2(k),
· · · , zn(k), w1(k), w2(k), · · · , wm(k)) of system (1.1), we claim that pi(k) = zi(k), uj(k) = wj(k)(i =
1, 2, · · · , n, j = 1, 2, · · · ,m) for all k ∈ Z+. Otherwise there must be at least one positive integer
K∗ ∈ Z+ such that pi(K∗) 6= zi(K

∗) or uj(K
∗) 6= wj(K

∗) for a certain positive integer i or j, i.e.,
Ω1 = |pi(K∗)− zi(K∗)| > 0 or Ω2 = |uj(K

∗)− wj(K
∗)| > 0. So we can easily know that

Ω1 = | lim
p→+∞

pi(K
∗ + δp)− lim

p→+∞
zi(K

∗ + δp)| = lim
p→+∞

|pi(K∗ + δp)− zi(K∗ + δp)|

= lim
k→+∞

|pi(k)− zi(k)| > 0,

or
Ω2 = | lim

p→+∞
uj(K

∗ + δp)− lim
p→+∞

wj(K
∗ + δp)| = lim

p→+∞
|uj(K

∗ + δp)− wj(K
∗ + δp)|

= lim
k→+∞

|uj(k)− wj(k)| > 0,

which is a contradiction to (4.16) or (4.17). Thus pi(k) = zi(k), uj(k) = wj(k)(i = 1, 2, · · · , n, j =
1, 2, · · · ,m) hold for ∀k ∈ Z+. Therefore, system (1.1) admits a unique almost periodic solution which
is globally attractive. This completes the proof of Theorem 4.1.

5 Numerical Simulations
In this section, we give the following example to check the feasibility of our result.
Example Consider the following discrete Lotka-Volterra competition predator-prey system:

x1(k + 1) = x1(k) exp

{
1.2− 0.02 sin(

√
2k)− (1.05 + 0.01 sin(

√
3k))x1(k)

−(0.025 + 0.002 cos(
√

5k))y1(k)− (0.02 + 0.001 cos(
√

2k))y2(k)

}
,

y1(k + 1) = y1(k) exp

{
− 0.01− 0.025 cos(

√
3k) + (1.02 + 0.003 sin(

√
2k))x1(k)

−(1.08 + 0.015 sin(
√

2k))y1(k)− (0.025 + 0.002 cos(
√

5k))y2(k)

}
,

y2(k + 1) = y2(k) exp

{
− 0.015− 0.03 sin(

√
5k) + (1.03 + 0.0025 cos(

√
2k))x1(k)

−(0.028 + 0.0015 cos(
√

2k))y1(k)− (1.1 + 0.02 sin(
√

2n))y2(k)

}
.

(5.1)
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A computation shows that

m1 ≈ 0.9846, M1 ≈ 1.1739, m2 ≈ 0.9072, M2 ≈ 1.1138, m3 ≈ 0.8912, M3 ≈ 1.2794,

and moreover, we have
ρ1 ≈ 0.1842, ρ2 ≈ 0.0174, ρ3 ≈ 0.1246,

that max{ρ1, ρ2, ρ3} < 1. It is easy to see that the condition (H5) are satisfied. Hence, there exists a
unique globally attractive almost periodic solution of system (5.1). Our numerical simulations support
our results(see Figs.1,2 and 3).

Figure1: Dynamic behavior of x1(k) of the solution (x1(k), y1(k), y2(k)) to system (5.1) with the
initial conditions (1.13,1.17,1.2), (1.04,0.96,0.95) and (1.2,1.08,1.14) for k ∈ [1, 70], respectively.

Figure2: Dynamic behavior of y1(k) of the solution (x1(k), y1(k), y2(k)) to system (5.1) with the
initial conditions (1.13,1.17,1.2), (1.04,0.96,0.95) and (1.2,1.08,1.14) for k ∈ [1, 70], respectively.
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Figure3: Dynamic behavior of y2(k) of the solution (x1(k), y1(k), y2(k)) to system (5.1) with the
initial conditions (1.13,1.17,1.2), (1.04,0.96,0.95) and (1.2,1.08,1.14) for k ∈ [1, 70], respectively.

6 Concluding Remarks

In Ref.[1], a discrete multispecies Lotka-Volterra competition predator-prey system is considered, in
which the coefficients are all bounded non-negative sequence. Assuming that (H1)-(H3) and (3.1)
hold, system (1.1) is globally attractive, which can be given in[1]. In this paper, assuming that the
coefficients in system (1.1) are bounded non-negative almost periodic sequences, we obtain the
sufficient conditions for the existence of a unique almost periodic solution which is globally attractive.
By comparative analysis, we find that when the coefficients in system (1.1) are almost periodic, the
existence of a unique almost periodic solution of system (1.1) is determined by the global attractivity
of system (1.1), which implies that there is no additional condition to add.

Furthermore, for the almost periodic discrete multispecies Lotka-Volterra competition predator-
prey system (1.1) with time delays or feedback controls, we would like to mention here the question
of whether the existence of a unique almost periodic solution is determined by the global attractivity
of the system or not. It is, in fact, a very challenging problem, and we leave it for our future work.
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