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Abstract 
 

In this paper, the solution of mixed integral equation (MIE) of the first and second kind in time and 
position is discussed and obtained in the space ����1,1� � 	�0, ��, � � 1. The kernel of position is 
established in the logarithmic form, while the kernels of time are continuous and positive functions in 
C[0,T]. A numerical method is used to obtain a linear system of Fredholm integral equations (SFIEs). In 
addition, the solution FIE of the second kind, with singular kernel, is solved, using Legendre polynomials. 
Moreover, Orthogonal polynomials methods are used to obtain the solution of singular FIE of the first 
kind. 

 

Keywords: Mixed integral equation; contact problem; Legendre polynomial; Krein's method; Chebyshev 
polynomial. 

 
AMS: 45E-65R. 
 

1 Introduction 
 
The mathematical physics and contact problems in the theory of elasticity lead to an integral equation of the 
first or second kind, see [1,2,3]. Mkhitarian and Abdou [4,5] discussed some different methods for solving 
the FIE of the first kind, with logarithmic kernel [4], and Carleman kernel [5] respectively. More 
information for solving the integral equations and the fractional partial differential equations with its 
applications can be found in [6-9]. 

Original Research Article 
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In this work, we consider the MIE 
 


 
 ���, ��� ����
� � ���, ������� ���� + 
 !��, ����", ������ = �$��� � %∗�"�� = %�", ��,               (1.1) 

 
Where 
 

��'� = 12 ) tanh .. /012�.
∞

�∞
   , 4 = √�1, 

 
under the condition     
                                                                                    


 ��", ���" = 6������                                                                                                                       (1.2)  
 
The two given functions ���, τ� and !��, τ�, for � ∈ �0, ��, � � 1 are positive, continuous with its derivatives 

in the class 	�0, ��, and represent the two kernels of Volterra  integral term. The bad function � ����
� � , 8 ∈�0,∞� is called the kernel of Fredholm integral term, in the domain ��1,1�. The given continuous functions $��� and %�"� belongs, respectively to the class 	�0, ��, and the space ����1,1�. The given function %�", �� 

is continuous with its partial derivatives. The unknown function ��", �� will be obtained in the space                     ����1,1� � 	�0, ��, � � 1 The integral equation (1.1), under the condition (1.2), is investigated from the 
contact problem of a rigid surface �!, '� having an elastic material, where ! is the displacement magnitude 
and ' is Poisson’s coefficient. If a stamp of length 2 unit and its surface is describing by the formula  %∗�"�, 
is impressed into an elastic layer surface of a strip by a variable force 6���, 0 ≤ � ≤ � � 1, whose 
eccentricity of application /���, that cases rigid displacement $���. Here the function ���, τ� represents the 
resistance force of material in the domain of contact ��1,1�, through the time � ∈ �0, �� and !��, �� is the 
external force that supplied through the domain of contact problem to increase the resistance of the domain. 
As in Ref. [10], the kernel of position of (1.1) can be written in the form 
 ��'� = �

� 
 :;<= 1
1 /012�.∞�∞ = � ln ?tanh @2

A ? , ' = ����
� � , 8 ∈ �0,∞�.                                          (1.3)   

 
If 8 → ∞ and �" � �� is very small, so that the condition tanh D ≈ D, then we have 
 

FG ?�HGℎ @2
A ? = FG|'| � � , � = FG A�

@  , � = FG A�
@                                                                             (1.4) 

 
Hence, the formula (1.1) becomes 
 � 
 
 ���, ���ln|" � �| � �����, ������� ���� + 
 !��, ����", ������ = %�", ��,                            (1.5) 
 
In order to guarantee the existence of a unique solution of Eq. (1.1) or (1.5), under the condition (1.2), we 
assume the following conditions: 
 

(i) The kernel of position ��|" � �|� satisfies the discontinuous condition 

K
 
 �� �?���
� ?� �"��� ����� L� �M � N , N is a constant. 

(ii)  For all values of �, � ∈ �0, �� the two functions ���, �� , !��, ��  with its derivatives belong to For 
all values of �, � ∈ �0, ��  the two functions ��, �� , !��, ��  |���, ��| � O ; |!��, ��| � P,  for all 	��0, �� � �0, ���  and satisfy the following conditions. values of � ∈ �0, �� , where O  and P  are  
constants. 

(iii)  The function %�", �� ∈ ����1,1� � 	�0, �� and its normality in ����1,1� � 	�0, �� is defined as 

‖∅�", ��‖ = SH"�T�TU 
 K
 %��", ���"��� L� �M ����  

(iv) The unknown function ��", �� satisfies Hölder condition with respect to time and Lipschitz 
condition with respect to position.  



 
 
 

Abdou and Elsayed; BJMCS, 12(6): 1-10, 2016; Article no.BJMCS.21984 
 
 
 

3 
 
 

In this work, a numerical method is used to obtain SFIEs of the first kind or of the second kind according to 
on the relation between the derivatives of the two functions ���, ��

 and !��, ��, for all the values of � ∈�0, ��, with respect to the time �. In section 3, we represent the unknown function in the Legendre 
polynomial form. In addition, in section 4, orthogonal polynomials method is used to discuss the solution of 
FIE of the first kind in the form of spectral relationships.  The stability of the solution is discussed. In 
section 5, numerical results and general conclusions with many important cases are considered and 
discussed. 
 

2 Numerical Methods            
                                                                            
To discuss the solution of (1.5), under (1.2), we divide the interval �0, ��, 0 ≤ � ≤ � � 1 as  0 = �� � �� �⋯ � �W = � ; 0 =� � = �Y  , � = 1,2,3, … , \, to get 
 � 
 
 ���Y , ���ln|" � �| � �����, ������� ���]� + 
 !��Y , ����", �����]� = %�", �Y�,                   (2.1) 
 


 ��", �Y��"��� = 6��Y�
 

                                                                                                                 (2.2)      
                                                                            
Hence, we have  
 � ∑ ._�`�Y, �_aY_b� 
 �ln|" � �| � ���`�, �_a����� + ∑ ._!`�Y, �_a�`", �_aY_b� + c`ℏ_ef�a = %�", �Y�   (2.3)      
                                                                               
Where  ℏ_ = max�T_TY ℎ_  , ℏ0 = max�T0TY ℎ0  , ℎ� = �if� � �i..     
                                               
The values of ._ , 6, '0 and 6j are depending on the number of the derivatives of ���, �� and !��, ��, for � ∈ �0, ��, with respect to �. For example, if ���, �� ∈ 	A�0, ��,, then we have 6 = 4, � ≅ 4 in the first 

integral term of Eq. (2.3), where we get .� = mn� , .A = mo� ; .p = ℎp; G = 1,2,3. and .p = 0, for G > 4. 

While, if !��, �� ∈ 	r�0, �� then we have 6j = 3, � ≅ 3 for the second term of (2.3), hence '� = mn� , sr =
mt� ;  .p = ℎp; G = 1,2 , S = 1,2 and 'p = 0 for S > 3. More information for the characteristic points and 

the quadrature coefficients are found in [11,12]. Using the following notations  
 �`�Y, �_a = �Y,_  , !��Y , �0� = !Y,0 , ���, �p� = �p��� , %�", �u� = %u�"�                                      (2.4) 
 �v, 4, G, S = 0,1, … , � ; 0 � � ≤ \�. The formula (2.4) rewrite in the form  
 � ∑ ._�Y,_ 
 �ln|" � �| � ���_��������Y_b� + ∑ ._!Y,_�_�"�Y_b� = %Y�"�                                     (2.5) 
 
In addition, the boundary condition (2.2) becomes  
 


 �Y�"��"��� = 6Y  , 0 � � ≤ \ ; �6Y    	wGx. �.                                                                              (2.6) 
 
Now, we have the following discussion 
 

(1) The formula (2.5) represents a linear system of FIE of the second kind, for all cases when the two 
functions ���, ��and !��, �� have the same derivatives with respect to time � ∈ �0, ��. (2) When the 
function G(t,τ) has n derivatives such that G � � the formula (2.5), in this case, takes the forms 
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� y ._�p,_ )�ln|" � �| � ���_�����
�

��

p

_b�
+ y ._!p,_�_�"�p

_b�
= %p�"�,        

�G � �, � = 1,2, … \�,                                                                                                                    (2.7) 
 

and 
 � ∑ ._�Y,_ 
 �ln|" � �| � ���_��������Y_bpf� = %Y�"� � ∑ z_`._ , !p,_ , �p,_a�_�"�Y_b�                  (2.8) 
 
Hence, the formula (2.7) represents linear SFIEs of the second kind, which can solve using the recurrence 
relations. After obtaining the solution of the system (2.7), we can obtain the solution of Eq. (2.8), which 
represents linear SFIEs of the first kind. 
 

(2) When the function ���, �� has n derivatives such that G � �, hence the formula (2.5) leads to Eq. 
(2.7) and the following  algebraic system 

             � ∑ '_!Y,_�_�"�Y_bpf� = %Y�"� � ∑ {_`._ , !p,_ , �p,_a�_�"�p_b� ;                                                    (2.9) 
 
where  {_ are constants 
 

3 Fredholm Integral Equation of the Second Kind  
                                         
To obtain the solution of Eq. (2.7), we adapt it in the form  
 

zY�Y�"� � zY′ )�ln|" � �| � ���Y�����
�

��
= y ._�Y,_ )�ln|" � �| � ���_�����

�

��

Y��

_b�
 

 

= %Y�"� � ∑ '_!Y,_�_�"�Y��_b� ;  �zY = m]� !Y,Y , zY′ = m]� �Y,Y , !Y,Y ≠ 0, �Y,Y ≠ 0�                         (3.1) 

 
The solution of (3.1) can be obtained using the recurrence relation, for this let � = 0 in (3.1) to get  
 z����"� � z�′ 
 �ln|" � �| � ������������ = %��"�                                                                     (3.2) 
 
To obtain the solution of (3.2), we assume the unknown function ���"� in the Legendre polynomials form 
 ���"� = ∑ 	p���6p�"�∞pb�                                                                                                                 (3.3) 
 
where 	p��� are constants and 6p�"� are the Legendre polynomials that satisfy the orthogonal relation [13] 

 


 6p�"�6u�"��"��� = } �
�pf� G = S

0 G ≠ S~                                                      (3.4) 

 
The polynomial series (3.3), at the two end points of contact " = ±1, behaves as    ����1� = ∑ ��1�p	p���∞pb� . Also, we say that, if ���"� ∈ ����1,1� then the polynomial series (3.3) belongs 
to ����1,1�, see [13]. In view of (3.3), we differentiate (3.2) with respect to ", hence we obtain 
 

����′ � 
 �n�����
���

��� = �� ;   ��� = �n�n′  , ���"� = �′���
�n′ �                                                                    (3.5) 
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In addition, from (3.3), we have, see [13] 
 �

�� ���"� = ∑ 	p�6p′ �"�. �1 � "�����∞pb�                                                                                            (3.6) 

 
Here,  6pu�"�, G , S ≥ 0 are the associated Legendre polynomials of the first kind, that satisfy the following 
general orthogonal relation, see [14.p.808] 
 


 6pi�"�6ui �"��"��� = } ��pfi�!
�p�Y�!��pfi� G = S

0 G ≠ S~                                                                                  (3.7) 

 
In view of Eq. (3.3) and Eq.(3.6), the known function of Eq. (3.5) can be represented as, see [9]. 
 

���"� = � ∑ ��p���6p′ �"�. �1 � "�����∞pb�                                                                                          (3.8)  
 

the coefficients  �p��� , G ≥ 0  are constants, which can be determined after using Eq. (3.7). When �� ∈����1,1�, it follows that, the polynomial series (3.8) belongs to ����1,1�.  
 
Using the following relation, (see [14], p.835) 
 

�p�"� = �
� 
 e������

���
���                                                                                                                       (3.9)    

                                                  
The integral equation (3.5), with the aid of (3.6), (3.8) and (3.9), becomes  
 2√1 � "� ∑ 	p����p�"�∞pb� = ∑ `��p��� + ��	p���a6p′ �"�∞pb�                                                            (3.10)  
 �pi �"�, G, F ≥ 0 are the associated Legendre functions of the second kind that satisfy the relations (see [14], 
Eq.7112, p.807;p.808)   
 


 �pi �"�6ui �"��"��� = �����������������pfi�!
�u�p��ufpfi��p�i�!  , F ≥ 0                                                                      (3.11) 

 
and 
 


 √1 � "��p�"�6u′ �"��"��� = � ��p�uf����f��������
�u�p����u�pf���ufp��ufpf�� G ≠ S ± 1

0 G = S ± 1~                              (3.12) 

 
Multiplying both sides of (3.10) by the term 6p′�",,then integrating the result from �1 to 1, and using Eq. 
(3.12), we have  
 

 ��	u��� + 2 ∑ �p�uf����f�����������n�
�u�p����u�pf���ufp��ufpf��∞pb� = �u��� , �	u��� = en� ; S ≥ 1�                             (3.13) 

 
Following the same previous way, and using the mathematical induction, we can obtain the following 
relation: 
 

�Y	u�Y� + 2 y �2S + 1��1 + ��1�pfu�	p�Y�
�S � G � 1��S � G + 1��S + G��S + G + 2�

∞

pb�
= �u�Y� + y ._�_,Y	_�Y�Y��

_b�
; 

 

�	u�Y� = e]� ; � = 0, 1, … , \�                                                                                                         (3.14) 
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Abdou, in [15], proved that the infinite system of the linear algebraic Eq. (3.13) is regular for all values of �Y , 0 ≤ � ≤ \, that must satisfy the inequality minY��|�Y| > ��
�  . Following the same way of Abdou [15], 

we can write Eq. (3.14) in the form of even functions; 
 ��Y��u��Y� + ∑ ��u,�p��p��Y� = ��u��Y�∞pb� � e�]� ��u,� ,                                                                    (3.15) 

 ��u��Y� = ��u��Y� + ∑ .�_��_,�Y	�u��Y��Y��_b�  , � = 0, 1, … , \ 2⁄ ,                                                          (3.16) 
 
for odd functions 
 ���Y������u�����Y��� + ∑ ���u��,�p������p�����Y���∞pb� = ���u�����Y��� � r

� ���Y������u��,��,                          (3.17) 

 ���u�����Y��� = ���u�����Y��� + ∑ .��_������_��,�Y���	��u�����Y����Y��_b� , � = 0, 1, … , W
� .                                    (3.18) 

 
The regularity of the infinite system can be discussed, by following [15]. 
 

4 Fredholm Integral Equation of the First Kind  
 
In this section, the solution of the linear system of FIE the first kind will be obtained using orthogonal 
polynomials method. This method has large applications in the theory of elasticity and contact problems. 
 
Consider the FIE of the first kind in the form 
 z 
 �� ln|" � �| + ����������� = ��"�                                                                                        (4.1) 
 
under static condition 
 


 ��������� = �, � is a constant                                                                                       (4.2)   
 
Theorem 1: The spectral relationships of the FIE of the first kind with logarithmic kernel, and when the free 
term is represented in a Chebyshev polynomial form for even function, takes the form 
 


 �� ln|" � �| + �� U�����
����� ����� = }�ln 2 + ���� G = 0U�����

�p G = 1, 2, …~                                                     (4.3) 

 
and for odd function , takes the form 
 


 �� ln|" � �| + �� U�������
����� ����� = U�������

�p�� , G ≥ 1                                                                     (4.4) 

 
Where �p�"� is the Chebyshev polynomial of the first kind. 
 
For the Chebyshev polynomials, one assumes �p�"� = �wx�G �wx�� "� , " ∈ ��1,1� , G ≥ 0 as the Chebyshev 

polynomials of the first kind, while  p�"� = ¡¢<��pf�� £¤¡�� ��
¡¢<�£¤¡�� ��  , G ≥ 0 , the Chebyshev polynomials of the 

second kind.  We know that ¥�p�"�¦ an orthogonal sequence of functions with respect to the weight function 

�1 � "�����, while ¥ p�"�¦ form an orthogonal sequence of functions with respect to the weight function 

�1 � "����. It appears reasonable to attempt a series expansion to ∅�"� in Eq. (4.1) in terms of Chebyshev 
polynomials of the first kind. This choice is not arbitrary since one can identity a portion of the integral as the 
weight function associated with �p�"�. 
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For convenience, we use the orthogonal polynomials method with some known algebraic and integral 
relations associated with Chebyshev polynomials see [16,17]. Thus, in this aim, we represent ∅�"� , ��"� in 
the following forms 
 

∅�"� = �
����� ∑ Hp�p�"�∞pb� , ��"� = ∑ §�U����

�����∞pb�  ,                                                 (4.5) 

 
Using the above expressions of (4.5) in (4.1), hence Theorem 1is completely proved. 
 
Differentiating (4.3) with respect to x, we get 
 


 U���� ��
���������� = ¨ p����� �"� , G ≥ 1.                                                                    (4.6) 

 
The formula (4.6) represents spectral relationships of FIE of the first kind by Chebyshev of the second kind. 
 

5 Numerical Results 
 
Example (1): The solution of the IE (3.2) depends on the Cauchy, and the value of the given function %�"�. 
Here, we assume the following: 6��"� = " , � = 0.8, and \ = 20 and we use the general assumption of the 
solution ��"� = ∑ H_6_�"���_b� , where 6_�"� is Legendre polynomial and the coefficients H_ are the solution 
of the linear system (4.5), we used Maple (12) to solve such system. These coefficients are tabulated in 
Table 1. 

 
Table 1. The values of Legendre polynomial series from ª = « to ª = ¬­ 

 

0.79651 1.28296 -1.39797 1.45698 -1.54907 
1.47988 -1.56738 1.41765 -1.55909 1.17834 
-1.39227 2.03712 -1.59626 -2.92476 -5.24833 
8.38416 6.33867 1.70470 -0.25283 -1.19672 

 

 
 

Fig. 1. Values of ∅�®� for Legendre polynomial to 20 terms 
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Example (2): The behavior of the solution �i�"� which is represented numerically by (4.1) and its solution, 
when F = 0 is given by Eq. (3.3). The general behavior can be described in Fig. 1 when the constant z� = �

� , � = �
� , %�0,0� = �

�  and the portion points � = 10 . In Fig. 2 for the same values of z, �, % and � = 50, we have the approximate solution of  ���"� .  
 

 
 

Fig. 2. Values of ∅�®� for Legender polynomial to 50 terms 
 

6 Conclusion 
 
From the above results and discussion, the following may be conclude. 
 

1. The mixed type of integral equation with Carleman kernel can be established from this work, by 
using the following famous relation see [17], 

 ln|" � �| = ��", ��|" � �|�°           0 ≤∝� 1                                                                   (5.1)  
 

Where ��", �� = |" � �|∝ ln|" � �| ∈ 	��1,1�. The importance of Carleman function came from the work 
of Artiurian [18], has shown that the plane contact problems of the nonlinear theory of plasticity, in its first 
approximation, reduce to FIE of the first kind with Carleman.  
   

 2. The formula (3.5), after using the transformations � = 2. � 1, " = 2s � 1 we obtain the following 
integral equation, 

 �Θ
�² � 8′ 
 Θ�1��1

²�1
�� = D�s�                                                                                                                 (5.2)     

 
This equation has appeared in both combined infra-red gaseous radiations and molecular conduction. 8′, in 
Eq. (5.2), is the radiations conduction number for the large path length limit, represents the single parameter 

of the dimensionless system. Under the conditions Θ�±1� = 0, D�.� = �
� � .. The solution is obtained and 

discussed by Frankel [19]. 
 

3. For an infinite rigid strip with 2H impressed in a layer of viscous liquid of thickness for ³ =³�/�0´� where ³� is a constant and µ is the angular velocity resulting from rotating the strip about 

z-axis, the integral equation of such problem takes the form 
 ������� ln ?tanh @�����
Am ? �� = ¨¶³� 

 
Where ¶ the velocity coefficient.  
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4. The function �:;<= 1
1 � is called the symbol kernel of position of the integral Eq. (1.1). If we present � as a complex variable � = . + 4s in (1.1), we easily see that the symbol kernel satisfies the 

regular analytic function in the strip |.| � ∞. 
5. The kernel of position can be written in the following forms 
 

(i)  Weber-Sonien formula 
 

ln|. � s| = √.s ) ·±���µ.�·±���µs��µ
∞

�
 

 

where, ± �
� for symmetric and skew-symmetric kernel, respectively, and ·p�"� is the Bessel function of 

the first kind. 
 

(ii)  The Legendre polynomial formula 
 

ln|. � s| = �1²
� � ∑ Γ�pf��e�

���1�e�
���²�

Γ
��t�fp���f�p���∞pb�           (Skew- symmetric problem)   

 

ln|. � s| = ∑ �<Γ�p�e�
���1�e�

���²�
Γ

����fp�∞pb�    (Symmetric problem) 

 

when Γ�G� is the Gamma function and 6pu�"� is the associated Legendre polynomial of the first kind. 
 
6. The contact problem of a rigid surface having an elastic material, when a stamp of length 2 unit is 

impressed into an elastic layer surface of a strip by a variable force ¹��� , 0 ≤ � ≤ � � 1, whose 
eccentricity of application /��� represents Fredholm – Volterra integral equation.  

7. The numerical method used enables us to obtain the solution of the system of Fredholm equations 
by the recurrence relations. 

8. The kind of the system of Fredholm equation depends of the resistance force of material ���, �� and 
the external resistance force !��, ��.   

9.  The three kinds of the displacement problems, in the theory of elasticity and contact problem, 
which included and discussed in [20], are consider special case of this work. 
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