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Abstract

In this paper, the solution of mixed integral equation (MbEXhe first and second kind in time and
position is discussed and obtained in the sga¢e1,1] x C[0,T],T < 1. The kernel of position i$
established in the logarithmic form, while the kernelgimie are continuous and positive functions|in
C[0,T]. A numerical method is used to obtain a ling@mtesm of Fredholm integral equations (SFIES)] In
addition, the solution FIE of the second kind, with singk&anel, is solved, using Legendre polynomials.
Moreover, Orthogonal polynomials methods are used to obtairsolution of singular FIE of the first
kind.

Keywords: Mixed integral equation; contact problem; Legendg/rmpmial; Krein's method; Chebyshev
polynomial.

AMS: 45E-65R.

1 Introduction

The mathematical physics and contact problems in the tleé@hasticity lead to an integral equation of the
first or second kind, see [1,2,3]. Mkhitarian and Abdo®][4liscussed some different methods for solving
the FIE of the first kind with logarithmic kernel [4], and Carleman kernel [5]spectively. More
information for solving the integral equations and the tivaal partial differential equations with its
applications can be found in [6-9].
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In this work, we consider thd | E

1L R0k (52) o, n)dy dr + [} 6t Do, 1)de = [y(8) = £.0] = f(x, 1), (1.1)
Where
k(v) =% jwe““’d i=+-1,

—0

under the condition

L Cx, t)dx = P(¢) (1.2)

The two given function#'(t,t) andG(t, 1), fort € [0,T],T < 1 are positive, continuous with its derivatives
in the clas<C[0, T], and represent the two kernels of Volterra integgah. The bad functiok (%) LA E

(0,00) is called the kernel of Fredholm integral term, in thedim [—1,1]. The given continuous functions
y(t) andf(x) belongs, respectively to the cladf, T], and the spack,[—1,1]. The given functiorf (x, t)

is continuous with its partial derivatives. The unknown fiomcip(x,t) will be obtained in the space
L,[-1,1] X C[0,T],T < 1 The integral equation (1.1), under the condition (1.2), isstigated from the
contact problem of a rigid surfa€é€, v) having an elastic material, whefeis the displacement magnitude
andv is Poisson’s coefficient. If a stamp of length 2 @mtl its surface is describing by the formufldéx),

is impressed into an elastic layer surface of a stsipabvariable forceP(t),0 <t <T <1, whose
eccentricity of applicatior(t), that cases rigid displacemen(t). Here the functiorF (t,t) represents the
resistance force of material in the domain of confadt,1], through the time € [0,T] andG (¢, 1) is the
external force that supplied through the domain of comBablem to increase the resistance of the domain.
As in Ref. [10], the kernel of position of (1.1) can bdtten in the form

k(v) = %fi%eim’du =—In |tanh%| V= (xa;y) ,A € (0,0). (1.3)

If A » woand(x — y) is very small, so that the condititamh z = z, then we have
zn|tanhﬂ|=zn|v|—d,d=znﬂ,d=znﬂ (1.4)
4 T T
Hence, the formula (1.1) becomes

—Jy I P&, D nlx -y = dlp(y, )dy dr + [ G(t, D)p(x, T)dT = f(x,1), (1.5)

In order to guarantee the existence of a unique solutidégo{1.1) or (1.5), under the condition (1.2), we
assume the following conditions:

(i) The kernel of positiot(|x — y|) satisfies the discontinuous condition

{fl % ( ﬂD dx aly}l/Z < A,Ais a constant

-1J-1 2 ’ '

(i) For all values ot, t € [0,T] the two functiong (¢t,7),G(t,7) with its derivatives belong to For
all values oft,t € [0,T] the two functions(t,7),G(t,7) |F(t,T)| < B; |G(t,7)| < D, for all
C([0,T] x [0,T]) and satisfy the following conditionsalues ofr € [0,T], whereB andD are
constants.

(iii) The functionf (x,t) € L,[—1,1] X C[0,T] and its normality inL,[—1,1] x C[0,T] is defined as

1
19Ge, )1l = maxoseer fy {1, 2,0} dr
(iv) The unknown functiongp(x,t) satisfies Holder condition with respect to tiewed Lipschitz
condition with respect to position.
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In this work, a numerical method is used to ob&HhEs of the first kind or of the second kind according to
on the relation between the derivatives of the two fonstF (t,7) and G(t, 1), for all the values ofr €
[0,T], with respect to the time. In section 3, we represent the unknown function in the rdrge
polynomial form. In addition, in section 4, orthogopalynomials method is used to discuss the solution of
FIE of the first kind in the form of spectral relationship The stability of the solution is discussed. In
section 5, numerical results and general conclusions with nrapgrtant cases are considered and
discussed.

2 Numerical Methods

To discuss the solution of (1.5), under (1.2), we divideitterval[0,T],0 <t <T <las0=ty,<t; <
<ty =T;0=<t=¢t,,k=123,..,N, toget

= ¥ [ Ft D) (nlx = y| = d)p(y, )dy dr + f,* Gt Dp(x,1)dT = f(x, 1), (2.1)

f_ll (p(x! tk)dx = P(tk) (22)

Hence, we have

- Zf:o wiF(ty, t;) f_ll(lnlx -yl — ey, t;)dy + Z’;:(, wiG(te t)o(x, t;) + O(h]’-’“) = f(x,t,) (2.3)
Where h] = maXOSjsk h] B hl' = MaXp<i<k hi :hl = tl+1 - tl"

The values ofu;, P, v; and P are depending on the number of the derivative§ @fr) and G(t,t), for

7 € [0,T], with respect tat. For example, ifF(t,t) € C*[0,T], then we haveP = 4,k = 4 in the first
integral term of Eq. (2.3), where we gej = % Uy = %; u, = hy,; n=123. andu, =0, forn >4

While, if G(t,7) € C3[0,T] then we have® = 3,k = 3 for the second term of (2.3), henzg= %,1@ =

%; u, =h,;;n=12,m=12 andv, = 0 for m > 3. More information for the characteristic points and

the quadrature coefficients are found in [11,12]. Using ¢dlevfing notations

F(tk, tj) =Fpj Gt t) = G, @, tn) = 0,(¥) , f(x, t) = frn(x) (2.4)
(,i,n,m=0,1,..,k;0 <k < N). The formula (2.4) rewrite in the form

— Y owFy; 1 (nlx = y| — g, () dy + T w6y ;9 (x) = fie(x) (2.5)
In addition, the boundary condition (2.2) becomes

f_ll @r(x)dx =P, ,0<k <N; (P, Cons.). (2.6)
Now, we have the following discussion

(1) The formula (2.5) represents a linear system of FIthefsecond kind, for all cases when the two
functionsF (t, t)and G (¢, t) have the same derivatives with respect to tirgeg[0, T']. (2) When the
function G(tr) has n derivatives such tha k the formula (2.5), in this case, takes the forms
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n 1 n
=Y iy [ nlx =1 = Dg;0)dy + ) 1650 = (0,
j=0 -1 j=0
(m<kk=12.N), 2.7)
and
— XX wF [1(nlx =yl = D0 dy = fi &) = Z5o 115 (), G, Fr )0 (6) (2.8)

Hence, the formula (2.7) represents linektE3 of the second kind, which can solve using the recurrence
relations. After obtaining the solution of the system (2w®, can obtain the solution of Eq. (2.8), which
represents lineg®FI Es of the first kind.

(2) When the functior¥(t, t) has n derivatives such thai k, hence the formula (2.5) leads to Eq.
(2.7) and the following algebraic system

—ZfznanGk,j%'(X) = fi(x) — Xi=o B;i(w, G js Fr ) () ; (2.9)

where §; are constants
3 Fredholm Integral Equation of the Second Kind

To obtain the solution of Eq. (2.7), we adapt it in thenfo

k-1 1

1
() = s, [ (nlx = y1 = Do)y = Y wyFiey [l =31 = Doy 0)dy
-1 j=0 -1

- h ' h
= fi(x) — Z?:éVij,jfpj(x) ; (Mk = 7ka,k y Mg = ?ka,k yGrp # 0, F e # 0) (3.1)
The solution of (3.1) can be obtained using the recuereglation, for this lek = 0 in (3.1) to get

Ho@o(x) — o [, (nlx — y| — Ao (¥)dy = fo(x) (32)

To obtain the solution of (3.2), we assume the unknown fungij¢m) in the Legendre polynomials form
9o (%) = Tizo G P () (3.3)

WhereC,(lo) are constants amg (x) are the Legendre polynomials that satisfy the orthogetfetion [13]

2
[ B (0P, (x)dx = {m n=m (3.4)
0 n+m

The polynomial series (3.3), at the two end points of agintx =11, behaves as
@o(—1) = ﬁzo(—l)"c,(lo). Also, we say that, ifp,(x) € L,[—1,1] then the polynomial series (3.3) belongs
toL,[—1,1], see [13]. In view of (3.3), we differentiate (3.2) widspect toc, hence we obtain

, 1 @o(y)d (x)
Sopo — |-, P = gy ; (60=Z—Z,go(x)=f?‘) (3.5)

-1 x-y Ho
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In addition, from (3.3), we have, see [13]
1
S po(x) = Bino CIP(x). (1 = x?) 2 (3.6)

Here, B (x),n,m > 0 are the associated Legendre polynomials of the finst, khat satisfy the following
general orthogonal relation, see [14.p.808]

1 2(n+1)! n=m
S PLCO)PL(x)dx = {(n—k)!(2n+l) (3.7)
0 n#*m

In view of Eq. (3.3) and Eq.(3.6), the known function of Eq. (8e5) be represented as, see [9].

9000) = =320 GOPI(x). (1 — x2)2 (3.8)

the coefficients g,(f’),n > 0 are constants, which can be determined after using(Ed). Wheng, €

L,[—1,1], it follows that, the polynomial series (3.8) belong&tp—1,1].
Using the following relation, (see [14], p.835)
1 1 Py(y)d
Q) =3[, 2Z= (3.9)
The integral equation (3.5), with the aid of (3.6), (3.8) &), becomes
VT = 22550 € 0u(0) = To(3Y + 8C) Py (x) (3.10)

0L (x),n,1 = 0 are the associated Legendre functions of the secondhandatisfy the relations (see [14],
Eq.7112, p.807;p.808)

D 1-(=D™ ™| (n+D)!

1 9t l —
f—l Qn () B (x)dx = (m—-n)(m+n+)(n—1)! 120 (3.11)
and
1 —2n(m+1)[1+(-1)"™] " +1
f—l V1 — x2Q,,(x)P,,(x)dx = {n—n-1)(m-n+1)(m+n)(m+n+2) n=mx (3.12)

0 n=m+1

Multiplying both sides of (3.10) by the terdx, then integrating the result froml to 1, and using Eq.
(3.12), we have ,

2n(m+1)[1+(- 1) m] (O O (
n-1)(m-n+1)(m+n)(m+n+2) Gm” >

R e ¢ =" m>1) (3.13)

2’

Following the same previous way, and using the maglieal induction, we can obtain the following
relation:

© k-1
2m + D[1 + (—)r+mc
5}((;1(:)_'_22 ( )1+ (=D"™]C, =gr(,lf)+zqujkC-(k);
0(m—n—1)(m—n+1)(m+n)(m+n+2) i e
n= j=
(c,(,{‘) =% k=01, N) (3.14)
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Abdou, in [15], proved that the infinite system of the linalgebraic Eq. (3.13) is regular for all values of
6r,0 < k < N, that must satisfy the inequalitying |5, | > % . Following the same way of Abdou [15],
we can write Eq. (3.14) in the form of even functions;

» P
Sszéfr{() + Xn=1 b2m,2nxz($lk) = Hz(frlf) - %kbzmo ’ (3.15)
H2 = g@ 4+ $202 0y Fy 0 C2F k= 0,1, ..., N /2 3.16
2m me +Z]:O u21 2j,2k~2m " T Wby e / ’ ( . )

for odd functions

2k-1 2k-1 2k-1) _3
6(2k—1)X((2m_1)) + X1 b(Zm—l,Zn—l)X((Zn_l)) = H((Zm_1)) — > M@r-nbam-1,0) (3.17)
(2k-1) _ _(2k-1) 2k-1 (2k-1) _ N
Heom 1) = 9Gm-1) + Zj=o Yej-0Fej-12-0Com-1), k = 0,1, Y (3.18)

The regularity of the infinite system can be discussedoligwing [15].
4 Fredholm Integral Equation of the First Kind

In this section, the solution of the linear systemFbE the first kind will be obtained using orthogonal
polynomials method. This method has large applicatiotiseinheory of elasticity and contact problems.

Consider thd=I E of the first kind in the form

ufl (=nlx =yl + DY ()dy = g(x) (4.1)
under static condition

f_lllp(y)dy =L, L is a constant 4.2)

Theorem 1: The spectral relationships of théE of the first kind with logarithmic kernel, and when finee
term is represented in a Chebyshev polynomial form fan &wection, takes the form

-1 —
Ton() dy _ {(ln 2+ d) n=20

1
LGl =yl + d) 755 L p=1,2,. 43
and for odd function , takes the form
1 Ton-1) Ton—1(x)
JiGInlx =yl + )22 dy = =, 2 1 (4.4)

WhereT, (x) is the Chebyshev polynomial of the first kind.

For the Chebyshev polynomials, one assufés) = cos(ncos™'x) ,x € [-1,1],n = 0 as the Chebyshev
polynomials of the first kind, whil&/,,(x) =% ,n=0, the Chebyshev polynomials of the
second kind. We know thé&T,, (x)} an orthogonal sequence of functions with respect tavilight function
1- xz)‘%, while {U,,(x)} form an orthogonal sequence of functions with respedhdéoweight function

1
(1 —x?)z. It appears reasonable to attempt a series expansidfxtan Eq. (4.1) in terms of Chebyshev
polynomials of the first kind. This choice is not arbitraigce one can identity a portion of the integral as the
weight function associated wiffy (x).
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For convenience, we use the orthogonal polynomials method switte known algebraic and integral
relations associated with Chebyshev polynomials see [16,hidk, Th this aim, we represepitx) , g(x) in
the following forms

D) = == Bino anTn(x), g () = B 222, Y.
Using the above expressions of (4.5) in (4.1), hence Theorerorhjdetely proved.

Differentiating (4.3) with respect tqg we get

1 Tao)d
f-l#%yz =nlUp, (x),n =1 (4.6)

The formula (4.6) represents spectral relationshigd Bfof the first kind by Chebyshev of the second kind.
5 Numerical Results

Example (1): The solution of the IE (3.2) depends on the Caunlytha value of the given functigi(x).
Here, we assume the followinB;(x) = x , ¢ = 0.8, andN = 20 and we use the general assumption of the
solutiong (x) = 2}20 a;P;(x), whereP;(x) is Legendre polynomiaind the coefficients; are the solution

of the linear system (4.5), we used Maple (12) to solvé system. These coefficients are tabulated in
Table 1.

Table 1. The values of Legendre polynomial seriesfromn = 1ton = 20

0.79651 1.28296 -1.39797 1.45698 -1.54907
1.4798t¢ -1.5673¢ 1.4176¢ -1.5590¢ 1.1783¢

-1.39227 2.03712 -1.59626 -2.92476 -5.24833
8.38416 6.33867 1.70470 -0.25283 -1.19672

Fig. 1. Values of @(x) for Legendre polynomial to 20 terms
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Example (2): The behavior of the solutipp(x) which is represented numerically by (4.1) and its solution,
when! = 0 is given by Eqg. (3.3). The general behavior can be describdeéigi 1 when the constant

Uo = i,d = i,f(0,0) = i and the portion point®f = 10. In Fig. 2 for the same values pfd, f and
M = 50, we have the approximate solution @§(x) .

14

08|06 (D4

Fig. 2. Values of @(x) for Legender polynomial to 50 terms
6 Conclusion

From the above results and discussion, the following reagohclude.

1. The mixed type of integral equation with Carleman Kecae be established from this work, by
using the following famous relation see [17],

In|x —y| = H(x,y)|x —y|™® 0<x<1 (5.1)

WhereH(x,y) = |x — y|*In|x — y| € C[—1,1]. The importance of Carleman function came from the work
of Artiurian [18], has shown that the plane contact problefithe nonlinear theory of plasticity, in its first
approximation, reduce el E of the first kind with Carleman.

2. The formula (3.5), after using the transformatipns 2u — 1,x = 2v — 1 we obtain the following
integral equation,

ae Arfl O(u)du = z(v) (52)

dv 0 v-u

This equation has appeared in both combined infra-red gasstiations and molecular conductioh, in
Eq. (5.2), is the radiations conduction number for theelgath length limit, represents the single parameter

of the dimensionless system. Under the condit®ts1) = 0, z(u) =§— u. The solution is obtained and
discussed by Frankel [19].

3. For an infinite rigid strip with2za impressed in a layer of viscous liquid of thickness o=
Voe~™t whereV, is a constant ang is the angular velocity resulting from rotating thépsatbout

z-axis, the integral equation of such problem takes lrrn’efél 7(¥) In |tanh "(Z;x)

dy = npV,

Wherep the velocity coefficient.
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tanhu

The functior(T) is called the symbol kernel of position of the integral @dl). If we present

y as a complex variable = u + iv in (1.1), we easily see that the symbol kernel satisfies
regular analytic function in the strjp| < o.
The kernel of position can be written in the follogiforms

(i) Weber-Sonien formula

Inju —v| = \/Wf]il(wu)]ii(wv)dw
0

Where,ii for symmetric and skew-symmetric kernel, respegtjvahd/, (x) is the Bessel function of
the first kind.

(i) The Legendre polynomial formula

1 1
T(n+1)PZW)P2(v)
r? (§+n)(1+2n)—1

Infu - v| = (%) izo

(Skew- symmetric problem)

1 1
2nI'(M)P2W)P2(v)

Inju —v| =3¥3_, (1)
2

(Symmetric problem)

whenrl'(n) is the Gamma function ari]" (x) is the associated Legendre polynomial of the first kind.

6.

The contact problem of a rigid surface having an elaséterial, when a stamp of length 2 unit is
impressed into an elastic layer surface of a strip bgrable forcep(t) ,0 <t <T < 1, whose
eccentricity of applicatior(t) represents Fredholm — Volterra integral equation.

The numerical method used enables us to obtain the solfitibe system of Fredholm equations
by the recurrence relations.

The kind of the system of Fredholm equation depends of $letaece force of materiél(t, ) and
the external resistance for6ét, 7).

The three kinds of the displacement problems, in therythefoelasticity and contact problem,
which included and discussed in [20], are consider spessa of this work.
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