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Abstract

A three level fractional programming problem is presented sxghper with a random rough coefficignt
in constraints at the first phase of the solution approachcaadaid the complexity of this problem we
begin with converting fractional programming problem into linpesblem using Charnes & Coopgr
method, Then interval technique is used to convert the rpagire in constraints into equivalent crisp
model. At the final phase, a membership function is constructdevielop a fuzzy model for obtaining| a
compromised solution of the three level programming problemalllyi results are illustrated by |a
numerical example.

Keywords: Linear programming problem; fractional programmimglpem; rough in constraints; interval
coefficient

1 Introduction

The multilevel programming (MLP) problem is a hierarchiogtimization problem where a subset of
variables is constrained to be a solution of a given opditioiz problem parameterized by the remaining
variables ,they are formulated in order to solve decengdlanning problems involving several decision
makers (DMs) in a hierarchical organization based ondaheeapt of Stackelberg game theory [1].

Multilevel programming has been applied to decentralized plarpriolgems involving a decision process
with a hierarchical structure as it involves optimizationlggms where the constraint region of the first
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level problem is implicitly determined by the seconekleproblem and the constrained region of the second
level problem is determined by the third level problem, smadn.

Optimization of one or several ratios of functions idexhla fractional programming problem [2]. These

models arise naturally in decision making when severas$ ra¢ed to be optimized simultaneously such as
production planning, financial and corporate planning, hezltle and hospital planning. Several methods
were suggested for solving this problem such as the variaohsformation method [3], Several new

methods are proposed in [4,5].

Almost all concepts which we are using in natural languageeaayee. Perhaps some people think that they
are subjective probability or fuzzy. However, a lotirofestigations have been shown that those imprecise
quantities behave neither like randomness nor like fieza. In modern times, scholars are often faced with
complex decision making problems concerning uncertainty. Tinesertainties are stated by interval data,
roughness or their hybrid with fuzziness and randomness [6,7].

Interval programming based on the interval analysisble@ developed as a useful and simple method to
deal with uncertainty, the rough intervals (RIs) [8] asedito deal with partially unknown or ill-defined
parameters and variables. Rl is introduced to adapt tighreet principles to model continuous variables.

Ali Hamzehee et al. [8] presented a method to solveeatiproblem (LP) with rough interval coefficient in
the objective function and/or constraints by constructinglimear problems with interval coefficients. One
of these problems is an LP where all of its coeffitdeare upper approximations of rough intervals and the
other is an LP where all of its coefficients are éowepproximations of rough intervals.

Omar M. Saad et al. [9] presented a method of solvingeslevel quadratic programming (QP) problem
where some or all of its coefficients in the objective fiomcare rough intervals. The solution based on
formulating two problems with interval coefficient onéthese problems all of its coefficients are upper
approximation of rough intervals and the other problem all ofaefficients are lower approximations of
rough intervals then a membership function is constructed velafe a fuzzy model for obtaining the
optimal solution.

O. E. Emam et al. [10] presented three-level quadratic @nuging problem with random rough coefficient
in constraints, solution concept based on converting thghroature in constraints into equivalent crisp
using intervals technique and a membership function is cotetirtec develop a fuzzy model for obtaining a
compromise solution of the problem.

In [11] authors proposed two fuzzy goal programming (FGP) rsottel multi-level linear fractional
programming problem (MLFPP) with single decision maker (DM)each level, The linear fractional
membership functions for the fuzzily described lineactfomal objective functions of level decision makers
are developed first then First order Taylor polynoméales is employed in order to transform the linear
fractional membership functions into equivalent linear memiersimctions, Then the FGP technique is
utilized to achieve compromise optimal solution of the meltel system by minimizing negative
deviational variables two fuzzy goal programming (FGPddets to multi-level linear fractional
programming problem (MLFPP) with single decision maker j@t/each level.

In this paper, first we introduce a multilevel linearctianal programming problem (MLFPP) with rough
coefficient in constraints. Then converting the fractioReogramming problem to a linear programming
problem is essential to solve the problem for each .|é&lsb the transformation of random rough coefficient
in the constraints into crisp is presented finally fuzzyreagh of an equivalent crisp three-level linear
programming problem is suggested , an example is preseriiedtrate the developed results.
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2 Problem Formulation and Solution Concept

Considering a three-level programming problem (TLPP) ofximization-type with random rough
coefficient in the constraints can be written as:

X+ oy

Max f = 1
)_ix 1 () b1X+B1 (€]
ax + o,
Max f, = — 2
o £ 00 = @
azx + o3
Max f. = — 3
Xa;( 3 (%) bax+ B, (3)
Subject to
XES= {25":1([(111)}], [Cj,dj])xj < l,x] = O,] = 1, ...,n} (4)

Where f},f; and f; are the objective functions of the first level decisionkena(FLDM), second level
decision maker (SDLM) and third level decision maker (TLDA),b;],[c;,d;] are rough intervals
coefficient of the constraints for the three levels.

To tackle problem (1)-(4) and to deal with rough nature ibP@) the problem is transformed using the
Intervals method to transform the rough coefficient in comgtainto crisp number presented in the
following section.

Definition 1 [8]:
Consider all of the corresponding (TLLFPR) Problem (1)-(4)

a) The interval[zl, ZV]([Z*,Z*]) is called the surely optimal range of problem (1)-{)he optimal
range of each LPIC problem is a supersdzbfzV]([Z*%, Z*Y]).

b) Let [zL,ZY91([Zz*%,Z*U]) be surely optimal range of problem (1)-(4).Then the rough iakerv
([ZL,Z2Y1([2*%, 2*V)) is called the rough optimal range of problem (1)-(4).

c) The optimal solution of each corresponding LP problem of the gmolfll)-(4).Which its optimal
value belongs t¢z!, 24| ([2, Z"V]) is called a completely satisfactory solution of the prob{#)-(4).

Definition 2: In problem (1)-(4), we define the following sets:

n n

P1= x€R2|Zdjijl;xj20,j=1,...,n P2= xERZ|ijijl;ijO,jzl,...,n
=1 =1
n n

P, = xeR2|Zij]-Sl;x]-ZO,jzl,...,n P, = xeR2|Zajx]-Sl;x]-ZO,jzl,...,n
j=1 j=1

Here, the interval [P1, P2] is the possibly optimaige (upper), and the interval [P3, P4] is the surely
optimal range (lower).
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2.1 The Equivalent Crisp Model for Threellevel Linear Problem with Rough in
Constraints

The equivalent problem of three-level fractional programgmproblem with rough in constraints by using
Intervals method can be written as:

P1 P2
a;x + oy X+ oy
Max f. = , Max f; = ,
lax £, 00 = o7 B, lax 1 00 = o7 B,
ax + o, axX + o,
Max f. = —, Max f. = —,
lax ;00 = {7 B, lax £, 00 = 5+ B,
azx + o3 azx + o3
Max f. = —, Max f. = —,
lax 500 = 5% B, lax 500 = ¥ B,
Subject to Subject to
S={ Zdjxjsl],xJZO } S={ Zb]xjslj,xJZO }
P3 P4
X+ oy X+ oy
Max f. = , Max f; = ,
lax f, ) = $ 57 B, lax £, 00 = {57 B,
ax + o, aX + o,
Max f, () = Z——=, Max f, (x) = -2,
w2 () b,x + B, o ) b,x + B,
azx + o3 azxX + 03
Max f. = —, Max f. = —,
lax 500 = § 5% B, lax 500 = £ 27 B,
Subject to Subject to
s={ 2ex < l,x; =20 }. s={ Yax <l,x =0 }.

Interval method has been used to convert problem (1)-(4) foargh nature to crisp that resulted in four
multi-level fractional programming problem, each level hagptsnal solution.

To deal with the conflict between solutions the fuzzy apgréascsed.

3 Fuzzy Approach of Three Level Linear Fractional Programming
Problems [12]

To solve Three-level linear programming problem, by usumyy approach combine with a computer
oriented technique, the fuzzy approach split the problemlinée tseparated problems.

3.1 FLDM Problem

First, The FLDM solves his Problem and find the individual bestd the worst solution
F; = (f1 B (1 £7), Fr = (1, FYL £, £) whereF; = maxyeq Fi(X) , Ff = min yeq F1 (%)

This data can then be formulated as the following merhigefanction:

(1 if F,(x) > F},
F,(x) - F ) _
wF (x)] = {1—_1 if F,<F,®&<F, 5)
| F1 - F1
(o if F, = F,(x).
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Solution of the FLDM can be obtained by solving the TchebydPreblem:

max A (6)
Subject to

X€G,

H[Fl(x)] =L,

A € [0,1].
Whose solution is assumed to s&, k5, x5 FF,1F] where)® is satisfactory level.

3.2SLDM Problem

The SLDM do the same action like the FLDM till sotutihad been obtained to be [x$, x5 ,F5 5] where
25 is satisfactory level.

3.3TLDM Problem

The TLDM do the same action like the SLDM till solution Hmeen obtained to be}, x1,x1 FT, AT] where
AT is satisfactory level.

FLDM, SLDM, and TLDM solution are now disclosed, and cue difference in the objective function these
solutions are usually different, and a conflict ariseewlifLDM uses his optimal decisiafi as a control
factors for the SLDM, and TLDM, as a solution there trhes a tolerance that gives the SLDM, TLDM a
possibility to search for their optimal solution by extengdiheir a feasible region.

Again, the same problem arise when SLDM using his optinesidasx; as a control factor for TLDM ,as
a practical solution there must be a tolerance that dheeSLDM a possibility to search for his optimal
solution by extending his feasible region.

FoXS t
In this way, the range of decision varia?)<1ex2should be aroun8t * X2 with maximum tolerancé?’ 2

and the following membership function specifigs, as:

F
x1—(x1 -t
f1=(1-t) =ty <x; <af,

t1
M(xl) =9_ F (7)
7’(“&?1”1) xf <x <xf —ty,

xz_(xz _tz)
—1:2 <x, <x2,

(
|
Hxs) = { —x, + (x2 +t,)

ty

®)

x; S x; < x5 — .

The FLDM goals are absolutely acceptablg,it= Ff and absolutely unacceptableFif < FY , and that the
preference witfF;, Ff]is linearly increasing. This due to the fact that 8iéM obtained the optimum at
(Xl,xz, ) which in turn provides the FLDM the objective function valtg, make anyF, > F, =
F,(x$,x35,x3) unattractive in practice.
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The following membership functions of the FLDM can be stated as

1 F,(x) > Ff,
F,(x) - F; .
n[F; (x)] = 4 %ﬂ <F,(x) <F, (€C)]
1 1
0 Fi = F, ().

Second, the SLDM goals may reasonably considerRthat F5 is absolutely acceptable afig < F$ is
absolutely unacceptable, and that the preference[®iti5] is linearly increasing. In this way, the SLDM
has the following membership functions for his/her goabas (

Third, the TLDM goals may reasonably consider that> FI is absolutely acceptable afig < F1 is
absolutely unacceptable, and that the preference[R4ii7] is linearly increasing. In this way, the TLDM
has the following membership functions for his/her goabas (

Finally, in order to generate the satisfactory solutiohictv is also a Pareto optimal solution with overall
satisfaction for all decision-makers, we can solve ttleWing Tchebycheff problem.

maxp, (10)
Subject to

ALF (0] 2 B,

AR, (0] 2 B,

AlF3(0] 2 B,

[x; — (ff —ty)] > p,
1

XA
t -

B,

urwf—anzﬁ

—x; + (x5 +t;) >

B € [0,1].
4 Numerical Example

The three-level Fractional Linear programming problem wathgh in objective function can be formulated
as:
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2x1 +x, + 3x3

maxZ, =

X1 X1+ X, + X3

X1+ 4x, — 23

maxZ, =

x2 2x1 +2x; +x3+ 3

3x1+x, — X3

maxZ; = ————————

x3 4x1 + 3x, — X3

Subject to

([7,91[6,10Dx; + ([10,11][8,12])x, + ([11,13][10,12])x; < 7,
([6,81[5,9Dx; — ([9,10][7,11])x, + ([5,7][4,8])x; < 4,
—([8,10][7,11])x; + ([13,15][12,16])x, + ([8,10][7,11])x; = 1,
([5,71[4,8D)x, + ([68][59]x, = 3,

X, 20,0, 2 0,x3 > 0.

4.1 FLDM Problem

By converting the FLPP into its equivalent LPP using @&srrand Cooper transforms the FLPP into the
following linear programming problem:

max 2y; +y, + 3y3

Subject to
Vi+y, +ys =1,
([7,91[6,10)y; + ([10,11][8,12])y, + ([11,13][10,12])y; —7p; <O,
([6,81[5,9Dy, — ([9,101[7,11Dy, + ([5,71[4.8])ys — 4p1 <0,
—([8,101[7,11])y; + ([13,15][12,16])y, + ([8,10][7,11])y; — p; = O,
([5,71[4.8Dy, + ([571[4.8])y, —3p;, 2 0,
y120,y, 20,y; > 0,and p; > 0.

The equivalent problem of the first level programming probleth wough in objective function by using
Intervals method can be written as

Table 1. The upper and lower FLDM problems

Upper L ower

P1:=max 2y, +y, +3y3 P3:max 2y, +y, +3y3

Subject to Subject to
ity +ys=1, ity +ys=1,
6y, + 8y, + 10y;—7p; <0, 7y: + 10y, + 11y; —7p; <0,
S5y1— Ty, + 4ys — 4p1 <0, 6y1— 9y, + 5y; — 4p; <0,
—7y1 + 12y2 + 7y3 — P1 > 0, —8y1 + 13y2 + 8y3 — pP1 > 0,
4y, + 4y, —3p1 20, 5y1+ 5y, =3p, =20,
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Upper

L ower

P2:max 2y, +y,; +3y3
Subject to

P4:max 2y, +y,; +3y3
Subject to

yi+y2+ys =1,

9y, + 11y, + 13y;—7p; <0,
8y1— 10y, + 7y; — 4p; <0,
—10y, + 15y, + 10y; —p; =0,
7y1+ 7y, =3p; 20,

yity,+ys=1,

10y; + 12y, + 12y;—7p; <0,
9y, — 11y, + 8y; — 4p; <0,
-11y, + 16y, + 11ly; —p; =0,
8y, + 8y, —3p; =0,

The FLDM build the membership functiopgfl, £, f-, £Y)(x) from Table 1 then solve problem (6) as
follows:

Table 2. The upper and lower Tchebycheff problems

P1 P3
max A, max A,
subject to subject to
2y; +y, +3y; < 1.944, 2y; +y, +3y; < 24,
X€EG, X€EG,
A€ [0,1]. A €[0,1].
Whose solution is(y{, 5,y , pf) = (0,1,0,1.14),  Whose solution is(yf, y5,¥£, pf) = (0,1,0,1.4),
qur =t (D =1,
A =09, 2 =09,
P2 P4
maxA, maxA,
subject to subject to
2y; +y; +3y; < 2.2711, 2y, + y, + 3y; < 2152,
X €QG, X€EG,
A €[0,1]. A €[0,1].
Whose solution is(yf, v, y5, pf') = (0,1,0,1.7), ~ Whose solution is(y{, y3,y3, pf) =
FDf =1, (0,1,0,1.57),
AF=009. HF=1,
AF=009.

4.2 SL. DM Problem

By converting the SLDM into its equivalent LPP using Charaed Cooper transforms the SLDM into the
following linear programming problem:

max y, + 4y, — 2y,
Subject to

2y + 2y, +y;+3p; = 1,

([7,91[6,10])y, + ([10,11][8,12])y, + ([11,13][10,12])y; —7p, <O,

([6,8][5,9Dy: — ([9,101[7,11Dy, + ([5.7][4.8])ys — 4p1 <0,

—([8,10][7,11D)y, + ([13,15][12,16])y, + ([8,10][7,11])y; — p; = O,

([5.7][4.8Dy1 + ([5,71[4.8D)y, = 3p1 2 0,

v, =0,y,=>0,y; =0,and p; > 0.
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The equivalent problem of the first level programming probleth wough in objective function by using
Intervals method can be written as

Upper L ower

P1l:=max y; +4y, — 2y; P3:max y, +4y, — 2y;

Subject to Subject to
2y1+ 2y, +ys+3p. =1, 2y1+2y; +y3+3p, =1,
6y, + 8y, + 10y; —7p; <0, 7y, + 10y, + 11y; —7p; <0,
5y1— 7y, + 4ys; — 4p; <0, 6y1— 9y, + 5Syz;— 4p; <0,
—7y1+ 12y, + 7y3 —p, 20, —8y;+ 13y, + 8y —p; 20,
4y, + 4y, —3p; 20, 5y; + 5y; —=3p; 20,

P2:max y, +4y, — 2y; P4:max y, + 4y, — 2y,

Subject to Subject to
2y;+ 2y, +y3 +3p1 =1, 2y; + 2y, +y3 +3p, =1,
10y, + 12y, + 12y, —7p, <0, 9y, + 11y, + 13y; —7p; <0,
9y; — 11y, + 8y; — 4p; <0, 8y1 — 10y, + 7y3;— 4p; =0,
11y, + 16y, + 1ly; —p; =0, —-10y, + 15y, + 10y; —p; =0,
8y; + 8y, —3p; =20, y1+ 7y, —=3p; 20,

The SLDM build the membership functiopéfy, £Y, £, £)(x) from Table 1 then solve problem (6) as
follows:

P1 P3

max A, max A,

subject to subject to

y1 + 4y, — 2y; < 73684, y1 + 4y, — 2y; < .63631,

xX€EG, xX€EG,

A€]0,1]. A €]0,1].

Whose solution is(yf, y£,y% , pf) = Whose solution is

(.10,.5,.4,.21), (vf,v5,v5, pf) = (.90, .45, 45, .227),
(f3)F =.2382, (fbf =.1818,

/1F=0.9. AF=0.9.

P2 P4

maxA, max A,

subject to subject to

yi + 4y, — 2y; < .5600, v, + 4y, — 2y; < .59574,

X€EG, XEG,

A € [0,1]. A €]0,1].

Whose solution is(yf, y{, 5, pf) = Whose solution is

(.72,.21,.64, .249), Of.y3,¥5.p1) = (.75,.3,.54,.24),
(FHF =.29332, (fHF =.8563,

AF=09. AF=09.

43 TLDM Problem

By converting the TLDM into its equivalent LPP using Charaad Cooper transforms the TLDM into the
following linear programming problem:

max 3y, +y, — s
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Subject to
4y, +3y, —y; =1,
([7.916,10])y; + ([10,11][8,12])y, + ([11,13][10,12])y5 — 7p; <0,
([6,81[5,9Dy: — ([9,101[7,11Dy, + ([5.71[4.8])ys — 4p1 <0,
—([8,10][7,11y, + ([13,15][12,16])y, + ([8,10][7,11])y5 — p; = 0,
([5,7114,8Dy, + (I5,71[4,8D)y, — 3p, = 0,
y1=0,y,>0,y; =0,and p; > 0.

The equivalent problem of the first level programming fmebwith rough in objective function by using
Intervals method can be written as

L ower
P3:max 3y, +y, —y;

Upper
Pl:=max 3y, +y, —y3

Subject to
4y, + 3y, —y3 =1,

Subject to
4y, + 3y, —y3 =1,

6y, + 8y, + 10y;—7p; <0,
51— 7y, + 4y;— 4p; <0,
—7y1 + 12y2 + 7y3 — P1 > 0,
4‘y1 + 4y2 - 3p1 2 0,

7y: + 10y, + 11y; —7p; <0,
6y:1 — 9y, + 5y; — 4p; <0,
—8y1 + 13y2 + 8y3 — pP1 > 0,
5y1 + 5y2 - 3p1 > 0,

P2:max 3y, +y, —y3

Subject to

4y +3y, —ys =1,

10y, + 12y, + 12y, —7p, <0,
9y; — 11y, + 8y;— 4p; <0,
-11y, + 16y, + 11ly; —p; =0,
8y: + 8y, —3p; 20,

P4:max 3y, +y, —y;

Subject

to

4y, +3y, —y3 =1,

9y; + 11y, + 13y; —7p; <0,
8y, — 10y, + 7y; — 4p; <0,
—10y, + 15y, + 10y; —p; =0,
Ty1+ 7y, =3p, 20,

The TLDM build the membership functiongfy, fY, £k, £7)(x) from Table 1 then solve problem (6) as

follows:
P1 P3
max A, max A,
subject to subject to
3y, +y, —y3 <.60491, 3y; +y, —y3 <.60004,
xX€EG, xX€EG,
A €]0,1]. A €]0,1].

Whose solution is

Whose solution is(yf, y%, v, pf) =

Ot y3,%,p1) = (0,.34, 46, .46), (0,.35,.53,.58),
();lz)F =.3023, (FYF =.2978,
A" =09. F=09.

P2 P4

maxA\, max A,

subject to subject to

3y1 + Yo — V3 < 6025)\,,

3y1 + yz — y3 S 5976/’{,

10
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x€G, xXEG,

A€ [0,1]. A €[0,1].

Whose solution is Whose solution is(yF, y£,v{, pf) =
(f,¥5, 95, o) = (0, .40,.22,1.09), (0,.38,.15,.90),

(F4)F =.1818, FHF =.2277,

AF=09. AF=09.

Finally, in order to generate the satisfactory solution, whigtlsis a Pareto optimal solution with overall
satisfaction for all decision-makers, by using (10):

1- We assume the FLDM'S control decisjcilwith the tolerance 1, and assume the SLDM'’'S control
decisionx3 with the tolerance 1.2.

2- By using [(5)—(7)] calculating membership functignshen solves the Tchebycheff problem for
equivalent crisp model for each level.

Maxw,, Maxw;,

Subject to Subject to

2y, +y, + 3y3 — 1.9 =2 - 9w,
v, +4y, —2y; — 4 = -3.7618w,,
3y1+ ¥2—y3 —42—-.0%;,
x+12=w,y,

—X1 +1= w1,

Xy +.7 2 1.2w,,

—x, + 1.7 =2 1.2w4,

X € G,

t;>0,(i=12),

w; € [0,1].

(ylr 3"2; YS) = (01501166)
Objective value 1

2y, +y; + 3y3 — 3.6 2 —2.6w;,,
y1+ 4y, —2y; — 4 = —3.8182w;,,
31+ ¥2—ys — 2.7 2 —24w,,

X1 +1= w3,

—x1+1 2= ws,

X, +.75 = 1.2w;,

-x, +1.65 = 1.2w;,

x €QG,

t;>0,(i=12),

w3 € [0,1].
(y1,¥2,v3) = (.1666,.4700,.1800)..
Objective value .9833

Maxw,,

Subject to

2y, +y, + 3y; —3.57 =2 -2.57w,,
v, +4y, —2y; —4 = —3.70668w,,
3y; + ¥y —y3 — 1.73 =2 —1.548w,,
X +12= wy,

—x; +12= w,,

X +1=12w,,
—x,+1.4>12w,,

X E G,

t; >0,(i=12)),

w, € [0,1].

Maxw,,

Subject to

2y1 +y, + 3y; — 342 = —2.42w,,
y1 + 4y, — 2y; — 4 > —3.1437w,,
3y;1 + Yo —y3 —2.01 > —1.7823 w4,
X1+ 12wy,

—X1 + 12 w,,

X, +.92>12w,,

—x, + 1.5 > 1.20,,

X € G,

t;>0,(i=12)),

w, € [0,1].

(y1,¥2, ¥3) = (.6013,.3721,2176).
Objective value .9398

(51, V2, ¥3) = (.8688,.3042,.2484).
Objective value .913
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After using fuzzy approach to solve multi-level programgnproblem we get the final intervals:

The possibly range The surely range
FLDM: [1, 2.8] FLDM: [1.5, 2.2].
SLDM: [1.7, 1.6]. SLDM: [1.7, 1.6].
TLDM: [.3, 2.7]. TLDM: [.8, 2].

5 Conclusion

A three level linear fractional programming problem was i&red where some or all of its coefficient in

the constraints are rough intervals, at the first ph&s$beosolution converting the fractional programming

problem into linear programming problem for each level @segsary then two problems with interval

coefficient will be constructed one of these problethsfédts coefficient are upper approximation and other
problem all of its coefficients are lower approximatiminrough intervals. As a final phase a membership
function was constructed to develop a fuzzy model for pistgithe optimal solution of the three level

programming problem.
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