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Abstract 
 

A three level fractional programming problem is presented in this paper with a random rough coefficient 
in constraints at the first phase of the solution approach and to avoid the complexity of this problem we 
begin with converting fractional programming problem into linear problem using Charnes & Cooper 
method, Then interval technique is used to convert the rough nature in constraints into equivalent crisp 
model. At the final phase, a membership function is constructed to develop a fuzzy model for obtaining a 
compromised solution of the three level programming problem. Finally results are illustrated by a 
numerical example. 

 

Keywords: Linear programming problem; fractional programming problem; rough in constraints; interval 
coefficient. 

 

1 Introduction 
 
The multilevel programming (MLP) problem is a hierarchical optimization problem where a subset of 
variables is constrained to be a solution of a given optimization problem parameterized by the remaining 
variables ,they are formulated in order to solve decentralized planning problems involving several decision 
makers (DMs) in a hierarchical organization based on the concept of Stackelberg game theory [1]. 
 
Multilevel programming has been applied to decentralized planning problems involving a decision process 
with a hierarchical structure as it involves optimization problems where the constraint region of the first 
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level problem is implicitly determined by the second level problem and the constrained region of the second 
level problem is determined by the third level problem, and so on. 
 
Optimization of one or several ratios of functions is called a fractional programming problem [2]. These 
models arise naturally in decision making when several rates need to be optimized simultaneously such as 
production planning, financial and corporate planning, health care and hospital planning. Several methods 
were suggested for solving this problem such as the variable transformation method [3], Several new 
methods are proposed in [4,5].  
 
Almost all concepts which we are using in natural language are vague. Perhaps some people think that they 
are subjective probability or fuzzy. However, a lot of investigations have been shown that those imprecise 
quantities behave neither like randomness nor like fuzziness. In modern times, scholars are often faced with 
complex decision making problems concerning uncertainty. These uncertainties are stated by interval data, 
roughness or their hybrid with fuzziness and randomness [6,7]. 
 
Interval programming based on the interval analysis has been developed as a useful and simple method to 
deal with uncertainty, the rough intervals (RIs) [8] are used to deal with partially unknown or ill-defined 
parameters and variables. RI is introduced to adapt the rough set principles to model continuous variables. 
 
Ali Hamzehee et al. [8] presented a method to solve a linear problem (LP) with rough interval coefficient in 
the objective function and/or constraints by constructing two linear problems with interval coefficients. One 
of these problems is an LP where all of its coefficients are upper approximations of rough intervals and the 
other is an LP where all of its coefficients are lower approximations of rough intervals. 
 
Omar M. Saad et al. [9] presented a method of solving a three-level quadratic programming (QP) problem 
where some or all of its coefficients in the objective function are rough intervals. The solution based on 
formulating two problems with interval coefficient one of these problems all of its coefficients are upper 
approximation of rough intervals and the other problem all of its coefficients are lower approximations of 
rough intervals then a membership function is constructed to develop a fuzzy model for obtaining the 
optimal solution. 
 
O. E. Emam et al. [10] presented three-level quadratic programming problem with random rough coefficient 
in constraints, solution concept based on converting the rough nature in constraints into equivalent crisp 
using intervals technique and a membership function is constructed to develop a fuzzy model for obtaining a 
compromise solution of the problem. 
 
In [11] authors proposed two fuzzy goal programming (FGP) models to multi-level linear fractional 
programming problem (MLFPP) with single decision maker (DM) at each level, The linear fractional 
membership functions for the fuzzily described linear fractional objective functions of level decision makers 
are developed first then  First order Taylor polynomial series is employed in order to transform the linear 
fractional membership functions into equivalent linear membership functions, Then the FGP technique is 
utilized to achieve compromise optimal solution of the multi-level system by minimizing negative 
deviational variables two fuzzy goal programming (FGP) models to multi-level linear fractional 
programming problem (MLFPP) with single decision maker (DM) at each level.  
 
In this paper, first we introduce a multilevel linear fractional programming problem (MLFPP) with rough 
coefficient in constraints. Then converting the fractional Programming problem to a linear programming 
problem is essential to solve the problem for each level. Also the transformation of random rough coefficient 
in the constraints into crisp is presented finally fuzzy approach of an equivalent crisp three-level linear 
programming problem is suggested , an example is presented to illustrate the developed results. 
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2 Problem Formulation and Solution Concept 
 
Considering a three-level programming problem (TLPP) of maximization-type with random rough 
coefficient in the constraints can be written as: 
 Max ��� f	 
x� =  a	x + α	b	x + β	                                                                                                                                    
1� 

 Max ��� f� 
x� =  a�x + α�b�x + β�                                                                                                                                    
2� 

 Max ��� f� 
x� =  a�x + α�b�x + β�                                                                                                                                    
3� 

 
Subject to 

 x ∈ s = �∑ �[�� ,� �!	 �"�], �$%� , &�'()� ≤ +, )� ≥ 0, . = 1, … , 0� 1                                                              (4) 
 
Where  f	, f	 and f�  are the objective functions of the first level decision maker (FLDM), second level 
decision maker (SDLM) and third level decision maker (TLDM), $a4, b4', $c4, d4'  are rough intervals 
coefficient of the constraints for the three levels. 
 
To tackle problem (1)-(4) and to deal with rough nature in (TLPP) the problem is transformed using the 
Intervals method to transform the rough coefficient in constraints into crisp number presented in the 
following section. 
 
Definition 1 [8]:  
 
Consider all of the corresponding (TLLFPR) Problem (1)-(4) 
 

a) The interval [Z∗8, Z∗9]
[Z∗8, Z∗9]� is called the surely optimal range of problem (1)-(4), if the optimal 
range of each LPIC problem is a superset of [Z∗8, Z∗9]
[Z∗8, Z∗9]�. 

b) Let [Z∗8, Z∗9]
[Z∗8, Z∗9]�  be surely optimal range of problem (1)-(4).Then the rough interval 
([Z∗8, Z∗9]
[Z∗8, Z∗9]� is called the rough optimal range of problem (1)-(4). 

c) The optimal solution of each corresponding LP problem of the problem (1)-(4).Which its optimal 
value belongs to $Z∗: , Z∗;'
$Z∗:, Z∗;'� is called a completely satisfactory solution of the problem (1)-(4). 

 
Definition 2: In problem (1)-(4), we define the following sets: 
 

<	 = =) ∈ >�| @ &�)� ≤ +; )� ≥ 0, . = 1, … , 0 
�!	

� <� = =) ∈ >�| @ "�)� ≤ +; )� ≥ 0, . = 1, … , 0 
�!	

� 
<� = =) ∈ >�| @ %�)� ≤ +; )� ≥ 0, . = 1, … , 0 

�!	
� <B = =) ∈ >�| @ ��)� ≤ +; )� ≥ 0, . = 1, … , 0 

�!	
� 

 
Here, the interval [P1, P2] is the possibly optimal range (upper), and the interval [P3, P4] is the surely 
optimal range (lower). 
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2.1 The Equivalent Crisp Model for Three-level Linear Problem with Rough in 
Constraints 

 
The equivalent problem of three-level fractional programming problem with rough in constraints by using 
Intervals method can be written as: 
 

P1 P2 Max ��� f	 
x� =  a	x + α	b	x + β	  , 
Max ��� f� 
x� =  a�x + α�b�x + β�  ,    
Max ��� f� 
x� =  a�x + α�b�x + β�  ,  
Subject to s = �    ∑ &�)� ≤ +�, )� ≥ 0 �∑ 1�. 

Max ��� f	 
x� =  a	x + α	b	x + β	  , 
Max ��� f� 
x� =  a�x + α�b�x + β�  ,    
Max ��� f� 
x� =  a�x + α�b�x + β�  ,  
Subject to s = �    ∑ "�)� ≤ +�, )� ≥ 0 �∑ 1�. 

P3 P4 Max ��� f	 
x� =  a	x + α	b	x + β	  , 
Max ��� f� 
x� =  a�x + α�b�x + β�  ,    
Max ��� f� 
x� =  a�x + α�b�x + β�  ,  
Subject to s = �    ∑ %�)� ≤ +�, )� ≥ 0 �∑ 1�. 

Max ��� f	 
x� =  a	x + α	b	x + β	  , 
Max ��� f� 
x� =  a�x + α�b�x + β�  ,    
Max ��� f� 
x� =  a�x + α�b�x + β�  ,  
Subject to s = �    ∑ ��)� ≤ +� , )� ≥ 0 �∑ 1�. 

 
Interval method has been used to convert problem (1)-(4) from rough nature to crisp that resulted in four 
multi-level fractional programming problem, each level has his optimal solution. 
 
To deal with the conflict between solutions the fuzzy approach is used. 
 

3 Fuzzy Approach of Three Level Linear Fractional Programming 
Problems [12] 

 
To solve Three-level linear programming problem, by using fuzzy approach combine with a computer 
oriented technique, the fuzzy approach split the problem into three separated problems.   
 
3.1 FLDM Problem  
 
First, The FLDM solves his Problem and find the individual best and the worst solution  F	∗ = �f	̅8, f	̅9, f	8, f	9(,  F	E = �f	̅8, f	̅9, f	8, f	9( where F	∗ = maxG∈H F	
x� ,  F	E = min  G∈H F	
x� 
 
This data can then be formulated as the following membership function: 
 

µ[F	
x�] =
JKL
KM 1                   if                  F	
x� > F	∗,F	
x� − FP	F	∗ − FP	         if         FP	 ≤ F	
x� ≤ F	∗,0                    if                    FP	 ≥ F	
x�.

�                                                                              
5� 
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Solution of the FLDM can be obtained by solving the Tchebycheff Problem: 
 max λ                                                                                                                                                                   
6�  
 
Subject to 
 
 x ∈ G , 
 

µ[F	
x�] ≥ λ , 
 

λ ∈ [0,1]. 
 
Whose solution is assumed to be [x	U, x�U, x�U,F	U, λU] where λU is satisfactory level. 
 
3.2 SLDM Problem  
 
The SLDM do the same action like the FLDM till solution had been obtained to be [x	V, x�V, x�V,F�V,λV] where 
λ

V is satisfactory level. 
 
3.3 TLDM Problem  
 
The TLDM do the same action like the SLDM till solution had been obtained to be [x	W, x�W, x�W,F�W, λW] where 
λ

W is satisfactory level. 
 
FLDM, SLDM, and TLDM solution are now disclosed, and due the difference in the objective function these 
solutions are usually different, and a conflict arise when FLDM uses his optimal decision x	U as a control 
factors for the SLDM, and TLDM, as a solution there must be a tolerance that gives the SLDM, TLDM a 
possibility to search for their optimal solution by extending their a feasible region. 
 
Again, the same problem arise when SLDM using his optimal decisions x	V as a control factor for TLDM ,as 
a practical solution there must be a tolerance that gives the TLDM a possibility to search for his optimal 
solution by extending his feasible region. 
 

In this way, the range of decision variable 21,xx should be around
SF xx 21 , with maximum tolerance 21,tt

and the following membership function specifiesx	, x� as: 
 

X
)	� = YZ�E�Z�[E\�(\�        )	] − ^	 ≤ )	 ≤ )	] ,
EZ�_�Z�[_\�(\�      )	] ≤ )	 ≤ )	] − ^	,�                                                                                   (7) 

 

X
)�� =
JKL
KM )� − 
)�̀ − ^��^� )�̀ − ^� ≤ )� ≤ )�̀ ,−)� + 
)�̀ + ^��^� )�̀ ≤ )� ≤ )�̀ − ^�.�                                                                                       
8� 

 
The FLDM goals are absolutely acceptable if F	 ≥ F	U and absolutely unacceptable if F	 ≤ F	U , and that the 
preference with [F	,b F	U] is linearly increasing. This due to the fact that the SLDM obtained the optimum at �x	V, x�V, x�V( , which in turn provides the FLDM the objective function values F	b , make any F	 ≥ F	b =F	
x	V, x�V, x�V� unattractive in practice. 
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The following membership functions of the FLDM can be stated as: 
 

µ̀[F	
x�] =
JKL
KM1                               F	
x� > F	U,F	
x� − F	bF	U − F	b F	b ≤ F	
x� ≤ F	U,

0                           F	b ≥ F	
x�.
�                                                                                               
9� 

 
Second, the SLDM goals may reasonably consider that F� ≥ F�V  is absolutely acceptable and F� ≤ F�V  is 
absolutely unacceptable, and that the preference with [F�,b F�V] is linearly increasing. In this way, the SLDM 
has the following membership functions for his/her goal as (9).  
 
Third, the TLDM goals may reasonably consider that F� ≥ F�W  is absolutely acceptable and F� ≤ F�W  is 
absolutely unacceptable, and that the preference with [F�,b F�W] is linearly increasing. In this way, the TLDM 
has the following membership functions for his/her goal as (9). 
 
Finally, in order to generate the satisfactory solution, which is also a Pareto optimal solution with overall 
satisfaction for all decision-makers, we can solve the following Tchebycheff problem. 
 max β ,                                                                                                                                                               
10�                                                                                                  
 
Subject to 
 

µ̀[F	
x�] ≥ β, 
 
µ̀[F�
x�] ≥ β, 
 
µ̀[F�
x�] ≥ β, 
 [x	 − 
x	U − t	�]t	 ≥ β, 
 −x	 + 
x	U + t	�t	 ≥ β, 
 [x� − �x�V − t�(]t� ≥ β, 
 −x� + �x�V + t�(t� ≥ β, 
 x ∈ G, 
 tf > 0 , 
 
β ∈ [0,1]. 

 

4 Numerical Example 
 
The three-level Fractional Linear programming problem with rough in objective function can be formulated 
as: 
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maxZ� g	 = 2)	 + )� + 3)�)	 + )� + )�  

 maxZ� g� = )	 + 4)� − 2)�2)	 + 2)� + )� + 3 

 maxZ� g� = 3)	 + )� − )�4)	 + 3)� − )� 

 
Subject to 
 
[7,9][6,10]�)	 +   
[10,11][8,12]�)� +   
[11,13][10,12]�)�  ≤ 7, 

 
[6,8][5,9]�)	 −   
[9,10][7,11]�)� +   
[5,7][4,8]�)� ≤ 4, 
 −
[8,10][7,11]�)	 +  
[13,15][12,16]�)� +   
[8,10][7,11]�)� ≥ 1, 
 
[5,7][4,8]�)	 +   
[6,8][5,9]�)� ≥ 3, 
 )	 ≥ 0, )� ≥ 0, )� ≥ 0. 

 

4.1 FLDM Problem 
 
By converting the FLPP into its equivalent LPP using Charnes and Cooper transforms the FLPP into the 
following linear programming problem: 
 max   2j	 + j� + 3j� 
 
Subject to 
 j	 + j� + j� = 1, 

 
[7,9][6,10]�j	 +   
[10,11][8,12]�j� +   
[11,13][10,12]�j� − 7k	  ≤ 0, 
 
[6,8][5,9]�j	 −   
[9,10][7,11]�j� +   
[5,7][4,8]�j� −   4k	 ≤ 0, 
 −
[8,10][7,11]�j	 +   
[13,15][12,16]�j� +  
[8,10][7,11]�j� − k	 ≥ 0, 
 
[5,7][4,8]�j	 +   
[5,7][4,8]�j� − 3k	 ≥ 0, 
 j	 ≥ 0, j� ≥ 0, j� ≥ 0, �0& k	 > 0. 

 
The equivalent problem of the first level programming problem with rough in objective function by using 
Intervals method can be written as 
 

Table 1. The upper and lower FLDM problems 
 

Upper Lower lm: = opq   rsm + sr + tst 
 

Subject to j	 + j� + j� = 1, 6j	 +   8j� +   10j� − 7k	  ≤ 0, 5j	 −   7j� +   4j� −   4k	 ≤ 0, −7j	 +   12j� +   7j� − k	 ≥ 0, 4j	 +   4j� − 3k	 ≥ 0, 

lt: opq   rsm + sr + tst 
 

Subject to j	 + j� + j� = 1, 7j	 +   10j� +   11j� − 7k	  ≤ 0, 6j	 −   9j� +  5j� −   4k	 ≤ 0, −8j	 +   13j� +   8j� − k	 ≥ 0, 5j	 +   5j� − 3k	 ≥ 0, 
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Upper Lower lr: opq   rsm + sr + tst 
 

Subject to j	 + j� + j� = 1, 10j	 +   12j� +   12j� − 7k	  ≤ 0, 9j	 −   11j� +  8j� −   4k	 ≤ 0, −11j	 +   16j� +   11j� − k	 ≥ 0, 8j	 +   8j� − 3k	 ≥ 0, 

lu: opq   rsm + sr + tst 
 

Subject to j	 + j� + j� = 1, 9j	 +   11j� +   13j� − 7k	  ≤ 0, 8j	 −   10j� +   7j� −   4k	 ≤ 0, −10j	 +   15j� +   10j� − k	 ≥ 0, 7j	 +   7j� − 3k	 ≥ 0, 
 

The FLDM build the membership functions µ
f	̅8, f	̅9, f	8, f	9�
x� from Table 1 then solve problem (6) as 
follows: 
 

Table 2. The upper and lower Tchebycheff problems 
 

P1 P3 max v , 
subject to  2j	 + j� + 3j� ≤ 1.94v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�] , k	]� = 
0,1,0,1.14�, 
xPmy �z = m, v] = 0.9 . 

max v , 
subject to  2j	 + j� + 3j� ≤ 2v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( = 
0,1,0,1.4�, 
xmy �z = m, v] = 0.9 . 

P2 P4 max λ , 
subject to  2j	 + j� + 3j� ≤ 2.271 λ, x ∈ G , 
λ ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( = 
0,1,0,1.7�, 
xPm{�z = m, v] = 0.9 . 

max v , 
subject to  2j	 + j� + 3j� ≤ 2.15v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�] , k	]� =
0,1,0,1.57�, 
xm{�z = m, v] = 0.9 . 

 

4.2 SLDM Problem 
 
By converting the SLDM into its equivalent LPP using Charnes and Cooper transforms the SLDM into the 
following linear programming problem: 
 max   j	 + 4j� − 2j� 
 
Subject to 
 2j	 + 2j� + j� + 3k	 = 1, 

 
[7,9][6,10]�j	 +   
[10,11][8,12]�j� +   
[11,13][10,12]�j� − 7k	  ≤ 0, 
 
[6,8][5,9]�j	 −   
[9,10][7,11]�j� +   
[5,7][4,8]�j� −   4k	 ≤ 0, 
 −
[8,10][7,11]�j	 +   
[13,15][12,16]�j� +  
[8,10][7,11]�j� − k	 ≥ 0, 
 
[5,7][4,8]�j	 +   
[5,7][4,8]�j� − 3k	 ≥ 0, 
 j	 ≥ 0, j� ≥ 0, j� ≥ 0, �0& k	 > 0. 
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The equivalent problem of the first level programming problem with rough in objective function by using 
Intervals method can be written as 
 
Upper Lower lm: = opq   j	 + 4j� − 2j� 
 
Subject to 2j	 + 2j� + j� + 3k	 = 1, 6j	 +   8j� +   10j� − 7k	  ≤ 0, 5j	 −   7j� +   4j� −   4k	 ≤ 0, −7j	 +   12j� +   7j� − k	 ≥ 0, 4j	 +   4j� − 3k	 ≥ 0, 
 

lt: opq   j	 + 4j� − 2j� 
 
Subject to 2j	 + 2j� + j� + 3k	 = 1, 7j	 +   10j� +   11j� − 7k	  ≤ 0, 6j	 −   9j� +   5j� −   4k	 ≤ 0, −8j	 +   13j� +   8j� − k	 ≥ 0, 5j	 +   5j� − 3k	 ≥ 0, 
 lr: opq   j	 + 4j� − 2j� 

 
Subject to 2j	 + 2j� + j� + 3k	 = 1, 10j	 +   12j� +  12j� − 7k	  ≤ 0, 9j	 −   11j� +   8j� −   4k	 ≤ 0, −11j	 +   16j� +   11j� − k	 ≥ 0, 8j	 +   8j� − 3k	 ≥ 0, 

lu: opq   j	 + 4j� − 2j� 
 
Subject to 2j	 + 2j� + j� + 3k	 = 1, 9j	 +   11j� +   13j� − 7k	  ≤ 0, 8j	 −   10j� +   7j� −   4k	 ≤ 0, −10j	 +   15j� +   10j� − k	 ≥ 0, 7j	 +   7j� − 3k	 ≥ 0, 

  
The SLDM build the membership functions µ
f�̅8, f�̅9, f�8, f�9�
x� from Table 1 then solve problem (6) as 
follows: 
 

P1 P3 max v , 
subject to  j	 + 4j� − 2j� ≤ .7368v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�] , k	]� =
. 10, .5, .4, .21�, 
xPry �z =. rt|r, v] = 0.9 . 

max v , 
subject to  j	 + 4j� − 2j� ≤ .6363v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( = 
. 90, .45, .45, .227�, 
xry �z =. m|m|, v] = 0.9 . 

P2 P4 max λ , 
subject to  j	 + 4j� − 2j� ≤ .5600λ, x ∈ G , 
λ ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( =
. 72, .21, .64, .249�, 
xPr{�z =. r}ttr, v] = 0.9 . 

max v , 
subject to  j	 + 4j� − 2j� ≤ .5957v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�] , k	]� = 
. 75, .3, .54, .24�, 
xr{�z =. |~�t, v] = 0.9 . 

 
4.3 TLDM Problem 
 
By converting the TLDM into its equivalent LPP using Charnes and Cooper transforms the TLDM into the 
following linear programming problem: 
 max   3j	 + j� − j� 
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Subject to 
 4j	 + 3j� − j� = 1, 

 
[7,9][6,10]�j	 +   
[10,11][8,12]�j� +   
[11,13][10,12]�j� − 7k	  ≤ 0, 
 
[6,8][5,9]�j	 −   
[9,10][7,11]�j� +   
[5,7][4,8]�j� −   4k	 ≤ 0, 
 −
[8,10][7,11]�j	 +   
[13,15][12,16]�j� +  
[8,10][7,11]�j� − k	 ≥ 0, 
 
[5,7][4,8]�j	 +   
[5,7][4,8]�j� − 3k	 ≥ 0, 
 j	 ≥ 0, j� ≥ 0, j� ≥ 0, �0& k	 > 0. 

 
The equivalent problem of the first level programming problem with rough in objective function by using 
Intervals method can be written as 
 

Upper Lower lm: = opq   3j	 + j� − j� 
 
Subject to 4j	 + 3j� − j� = 1, 6j	 +   8j� +   10j� − 7k	  ≤ 0, 5j	 −   7j� +   4j� −   4k	 ≤ 0, −7j	 +   12j� +   7j� − k	 ≥ 0, 4j	 +   4j� − 3k	 ≥ 0, 
 

lt: opq   3j	 + j� − j� 
 
Subject to 4j	 + 3j� − j� = 1, 7j	 +   10j� +   11j� − 7k	  ≤ 0, 6j	 −   9j� +   5j� −   4k	 ≤ 0, −8j	 +   13j� +   8j� − k	 ≥ 0, 5j	 +   5j� − 3k	 ≥ 0, 
 lr: opq   3j	 + j� − j� 

 
Subject to 4j	 + 3j� − j� = 1, 10j	 +   12j� +   12j� − 7k	  ≤ 0, 9j	 −   11j� +  8j� −   4k	 ≤ 0, −11j	 +   16j� +   11j� − k	 ≥ 0, 8j	 +   8j� − 3k	 ≥ 0, 

lu: opq   3j	 + j� − j� 
 
Subject to 4j	 + 3j� − j� = 1, 9j	 +   11j� +   13j� − 7k	  ≤ 0, 8j	 −   10j� +   7j� −   4k	 ≤ 0, −10j	 +  15j� +   10j� − k	 ≥ 0, 7j	 +   7j� − 3k	 ≥ 0, 

 
The TLDM build the membership functions µ
f�̅8, f�̅9, f�8, f�9�
x� from Table 1 then solve problem (6) as 
follows: 
 
P1 P3 max v , 
subject to  3j	 + j� − j� ≤ .6049v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�] , k	]� = 
0, .34, .46, .46�, 
xPry �z =. t�rt, v] = 0.9 . 

max v , 
subject to  3j	 + j� − j� ≤ .6000v, ) ∈ w , v ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( =
0, .35, .53, .58�, 
xry �z =. r}�|, v] = 0.9 . 

P2 P4 max λ , 
subject to  3j	 + j� − j� ≤ .6025λ, 

max v , 
subject to  3j	 + j� − j� ≤ .5976v, 
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x ∈ G , 
λ ∈ [0,1]. 
Whose solution is  �j	] , j�] , j�,] , k	]( = 
0, .40, .22,1.09�, 
xPr{�z =. m|m|, v] = 0.9 . 

) ∈ w , v ∈ [0,1]. 
Whose solution is  
j	] , j�] , j�], k	]� =
0, .38, .15, .90�, 
xr{�z =. rr��, v] = 0.9 . 

 
Finally, in order to generate the satisfactory solution, which is also a Pareto optimal solution with overall 
satisfaction for all decision-makers, by using (10): 
 

1- We assume the FLDM’S control decisionx	Uwith the tolerance 1, and assume the SLDM’S control 
decision x�V with the tolerance 1.2. 

2- By using [(5)–(7)] calculating membership functionsµ̀, then solves the Tchebycheff problem for 
equivalent crisp model for each level. 

 

 
 
 

����m, 
2j	 + j� +  3j� − 1.9 ≥ −.9�	, j	 + 4j� − 2j� − 4 ≥ −3.7618�	, 3j	 +  j� − j� − .4 ≥ −.09�	, )	 + 1 ≥ �	, −)	 + 1 ≥ �	, )� + .7 ≥ 1.2�	, −)� + 1.7 ≥ 1.2�	, ) ∈ w, ^� > 0, 
� = 1,2� , �	 ∈ [0,1]. 

 
      Subject to 
 

(j	, j�, j�� = 
0, .50, .166�. 
Objective value 1 

����t, 
2j	 + j� +  3j� − 3.6 ≥ −2.6�	, j	 + 4j� − 2j� − 4 ≥ −3.8182�	, 3j	 +  j� − j� − 2.7 ≥ −2.4�	, )	 + 1 ≥ ��, −)	 + 1 ≥ ��, )� + .75 ≥ 1.2��, 
) ∈ w, ^� > 0, 
� = 1,2� , �� ∈ [0,1]. 

 
     Subject to 
 

-)� + 1.65 ≥ 1.2��, 
(j	, j�, j�� = 
. 1666, .4700, .1800�.. 
Objective value .9833 ����r, 

2j	 + j� +  3j� − 3.57 ≥ −2.57�	, j	 + 4j� − 2j� − 4 ≥ −3.70668�	, 3j	 +  j� − j� − 1.73 ≥ −1.548�	, )	 + 1 ≥ ��, 
)� + 1 ≥ 1.2��, −)� + 1.4 ≥ 1.2��, ) ∈ w, ^� > 0, 
� = 1,2� , �� ∈ [0,1]. 

 

       Subject to 
 

−)	 + 1 ≥ ��, 

(j	, j�, j�� = 
. 8688, .3042, .2484�. 
Objective value .913 

����u, 
2j	 + j� +  3j� − 3.42 ≥ −2.42�	, j	 + 4j� − 2j� − 4 ≥ −3.1437�	, 3j	 +  j� − j� − 2.01 ≥ −1.7823�	, )	 + 1 ≥ �B, −)	 + 1 ≥ �B, )� + .9 ≥ 1.2�B, −)� + 1.5 ≥ 1.2�B, ) ∈ w, ^� > 0, 
� = 1,2� , 

 

     Subject to 
 

�B ∈ [0,1]. 
(j	, j�, j�� = 
. 6013, .3721,2176�. 
Objective value .9398 
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After using fuzzy approach to solve multi-level programming problem we get the final intervals: 
 

The possibly range 
 

FLDM: [1, 2.8] 
SLDM: [1.7, 1.6]. 
TLDM: [.3, 2.7]. 

The surely range 
 

FLDM: [1.5, 2.2]. 
SLDM: [1.7, 1.6]. 
TLDM: [.8, 2]. 

 

5 Conclusion 
 
A three level linear fractional programming problem was considered where some or all of its coefficient in 
the constraints are rough intervals, at the first phase of the solution converting the fractional programming 
problem into linear programming problem for each level is necessary then two problems with interval 
coefficient will be constructed one of these problems all of its coefficient are upper approximation and other 
problem all of its  coefficients are lower approximation of rough intervals. As a final phase a membership 
function was constructed to develop a fuzzy model for obtaining the optimal solution of the three level 
programming problem. 
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