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Abstract

Face recognition is a dedicated process in the human brain. Automatic face recognition is
rewarding since an efficient and resilient recognition system is useful in many application areas.
Recent face recognition algorithms are still faced with the challenge of recognizing face image
under variable environmental constraints. This paper presents a statistical evaluation of the
performance of two face recognition algorithms namely, Principal Component Analysis with
Singular Value Decomposition (PCA/SVD) and Principal Component Analysis with Singular
Value Decomposition using Fast Fourier Transform for preprocessing (FFT-PCA/SVD) on
variable facial expressions (Angry, Disgust, Fear, Happy, Sad and Surprise) along with their
neutral expressions. We considered 42 individuals from Cohn Kanade Facial Expressions
database, Japanese Female Facial Expressions (JAFFE) and a created Ghanaian Face database
for recognition runs. Multivariate statistical methods were used in the assessment of the face
recognition algorithms. GNU Octave was used to perform all numerical runs and statistical
evaluation of the recognition algorithms. The results of the statistical evaluation show that,
FFT-PCA/SVD is comparatively consistent (Low variation) and efficient (Higher recognition
rate) than PCA/SVD algorithm in the recognition of variable facial expressions. The paper also
proposes Fast Fourier Transform as a viable noise removal mechanism that should be adopted
during image preprocessing.
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1 Introduction

The intricacy of a face features originate from continuous changes in the facial features that take
place over time. Regardless of these changes, we are able to recognize a person very easily [1].
Conventional methods for facial expressions extract features of facial organs such as eyes, mouth
and recognize the expressions from changes in their shapes or their geometrical relationships by
different facial expression [2].

It was shown by David Hubel and Torsten Wiesel as cited by [3] that, our brain has specialized
nerve cells responding to specific local features of a scene, such as lines, edges, angles or movement.
Automatic face recognition is all about extracting these meaningful features from an image, putting
them into a useful representation and performing some kind of classification on them [3]. The idea
of imitating this skill inherent in human beings by machines can be very rewarding though the idea
of developing an intelligent and self-learning system may require supply of sufficient information
to the machine. An efficient and resilient face recognition technique is worthwhile in a number
of application areas. These include, criminal identification, access management, law enforcement,
information security and entertainment or leisure.

Principal Component Analysis was introduced as an algebraic manipulation to face recognition
problem by [4]. This made it easy to calculate directly the eigenfaces. The limitations of this
techniques was that, fewer than 100 values were required to accurately code suitably aligned and
normalised face images. [5 ], demonstrated that while using eigenface technique, the residual error
could be used to detect faces in cluttered natural imagery and to determine the precise location
and scale of faces in the image.

[5 ], further demonstrated that this method of facial detection coupled with localizing faces with
the eigenface recognition method could lead to achieving a reliable real-time recognition of faces
in minimally constrained environment [6]. Their approach created significant interest in advancing
the developments of automated face recognition technologies, although it was somehow restricted
by environmental factors.

Currently, all face recognition techniques adopt two approaches. One is local face recognition system
which uses facial features (nose, mouth, eyes) of a face. That is to consider the fiducial points in the
face to associate the face with a person. The local-feature method computes the descriptor from
parts of the face and gathers information into one descriptor such as in Local Feature Analysis (LFA),
Garbor Features, Elastic Bunch Graph Matching (EBGM) and Local Binary Pattern Feature [7].
The second approach is global face recognition system which uses the whole face to identify a person
by constructing a subspace using dimensionality reduction methods such as Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA),
Random Projection (RP), or Non-negative Matrix Factorization (NMF).

An important goal in image recognition is the ability to rate face recognition algorithms on the merit
of efficiency and consistency in recognizing face images under variable environmental constraints.
Previous methods of evaluation focussed only on a face recognition algorithm’s rate, runtime,
sensitivity and descriptive statistics as the basic means of rating face recognition algorithms’
performance [8].

Current attention of researchers is drawn to finding a comparatively efficient and consistent algorithm
in recognizing face images under variable environmental constraints. [9], proposed an improved
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approach of PCA based on facial expression recognition algorithm using Fast Fourier Transform
(FFT) during the preprocessing stage. They combined the amplitude spectrum of one image with
phase spectrum of another image as a mixed image.

[8], proposed multivariate statistical methods to evaluate the performance of face recognition
techniques under variable environmental constraints. The performance of Principal Component
Analysis and Singular Value Decomposition (PCA/ SVD) and Principal Component Analysis and
Singular Value Decomposition using whitening for image preprocessing (Whitened PCA/SVD) were
assessed. Their evaluation criteria adjudged PCA/SVD as comparatively consistent and efficient
than the Whitened PCA/SVD.

This paper seeks to statistically assess, Principal Component Analysis and Singular Value Decomposition
(PCA/SVD) and Principal Component Analysis and Singular Value Decomposition with Fast
Fourier transform for preprocessing (FFT-PCA/SVD) face recognition algorithms under variable
facial expression.

2 Materials and Methods

The paper focuses on running PCA/SVD (Algorithm 1) and FFT-PCA/SVD (Algorithm 2) recognition
algorithms on a created face database and evaluates the recognition performance of the algorithms
as well as comparing their results on the face database.

Face image samples from local Ghanaian Facial Expressions (GFE), Cohn Kanade database (CK)
and Japanese Female Facial Expression database (JAFFE) are used as inputs.

The input face images, are resized into uniform dimension and the data types changed into double
precision for preprocessing. The whole recognition process comprises a preprocessing stage, feature
extraction stage and classification stage [6]. The adopted preprocessing procedures are mainly,
mean centering and Fast Fourier Transform. This is to help reduce the noise level and make the
estimation process simpler and better conditioned [8].

The PCA/SVD (Algorithm 1) and FFT-PCA/SVD (Algorithm 2) algorithms are used to train the
image database. In the extraction unit, unique face image features are extracted and stored for
recognition. The obtained facial features are passed to the classifier unit for classification of a given
face query with the knowledge created for the available database.

For the implementation of the facial recognition, a real time GFE, CK and JAFFE database is
used. All three databases were combined in the study. This helped to evaluate the face recognition
algorithms on large and different databases. The new created GFE accounted for the originality of
the study database.

For the implementation of the proposed recognition design, the database samples are trained for the
knowledge creation and classification. In the course of the training phase, when a new facial image
is added to the system, the features are calculated according to a particular recognition algorithm’s
procedure and aligned for the dataset information. The test face weight and the known weight
in the database are compared by finding the norm of the difference between the test and known
weights. A maximum and minimum difference signifies poor and close match respectively. Fig. 1
is a flow diagram of the study algorithms.
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Fig. 1. Flow diagram of PCA/SVD & FFT-PCA/SVD

2.1 Preprocessing of Face Images.

Before extracting features from face images using PCA/SVD algorithm, it is useful to do some
preprocessing. As mentioned earlier, this is to help reduce the noise level and make the estimation
process simpler and better conditioned. In this paper, preprocessing was basically, Mean Centering
and Fast Fourier Transform. Fig. 2. shows six images selected from Japanese Female Face
Expression database (JAFFE).

Fig. 2. Six images from JAFFE

Define the image matrix, Mj as

Mj = (mjik) ; i, k = 1, 2, . . . , p; j = 1, 2, . . . , n,
= (mj1,mj2, . . . ,mjp), where mjk = (mj1k,mj2k, . . . ,mjpk)

T .
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Xj = (mT
j1,m

T
j2, . . . ,m

T
jp)

T , (2.1)
where,
p = the order of the image matrix.
n = the number of images to be trained.
Now from equation (2.1), suppose Xj is a column vector of dimension N given by

Xj = (Xji)N×1, (2.2)

where Xji replaces the mjik position-wise. The preprocessing steps are based on the sample
X = (X1,X2, . . . ,Xn), whose elements are the vectorised form of the individual images in the
study.

Mean Centering: This is a simple preprocessing step, executed by subtracting the mean, m̄j =
E(Xj) of the data (Xj , j = 1, 2, . . . , n), from the data.

m̄j =
1

N

∑N
i=1 Xji, (2.3)

=
1

N

∑p
i=1

∑p
k=1 mjik, (j = 1, 2, 3 . . . , n)

where N = (p× p), length ( = rows of image × columns of image) of the image data, Xj .
Define X̄j as a constant vector of order (p× p) with all elements same as m̄j , (j = 1, 2, . . . , n) [[8]].

The centered mean is denoted by, W = (w1,w2,w3, . . . ,wn), where

wj = Xj − X̄j . (2.4)

Applying (2.4) to the images in Fig. 1, generate the mean centered images as shown in Fig. 3.

Fig. 3. Six mean centered images from JAFFE

Fast Fourier Transform: The Fast Fourier Transform (FFT) is used as a noise reduction
mechanism during image preprocessing. The FFT is a computationally efficient algorithm used to
compute the Discrete Fourier Transform (DFT) and its inverse (IDFT). The FFT algorithm reduces
the computational burden to O(NlogN) arithmetic operations [10]. The FFT is a computationally
efficient method of generating a Fourier transform. It is computationally faster than DFT and
gets its speed by decreasing the number of calculations needed to analyze an image data. FFT is
therefore preferred to DFT when working with large data.

The first stage in the execution of FFT during image preprocessing is to compute the Discrete
Fourier Transform. The DFT of a of column vector, mjk is represented Mathematically as

m∗
jsk = DFT{mjk} =

∑p−1
r=0 mjke

−i(2πsr/p), (2.5)
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where, s = 0, 1, . . . , p− 1, j = 1, 2, . . . , n and i =
√
−1.

where, mjk is the kth column of the image matrix, Mj . For an image matrix of order 4, p = 4 and
s = 0, 1, 2, 3. The DFT becomes;

m∗
j0k = mj0ke

−0·iπ/2 +mj1ke
−0·iπ/2 +mj2ke

−0·iπ/2 +mj3ke
−0·iπ/2,

m∗
j1k = mj0ke

−0·iπ/2 +mj1ke
−1·iπ/2 +mj2ke

−2·iπ/2 +mj3ke
−3·iπ/2,

m∗
j2k = mj0ke

−0·iπ/2 +mj1ke
−2·iπ/2 +mj2ke

−4·iπ/2 +mj3ke
−6·iπ/2,

m∗
j3k = mj0ke

−0·iπ/2 +mj1ke
−3·iπ/2 +mj2ke

−6·iπ/2 +mj3ke
−9·iπ/2.

Therefore,


m∗

j0k

m∗
j1k

m∗
j2k

m∗
j3k

 =


e−0·iπ/2 e−0·iπ/2 e−0·iπ/2 e−0·iπ/2

e−0·iπ/2 e−1·iπ/2 e−2·iπ/2 e−3·iπ/2

e−0·iπ/2 e−2·iπ/2 e−4·iπ/2 e−6·iπ/2

e−0·iπ/2 e−3·iπ/2 e−6·iπ/2 e−9·iπ/2




mj0k

mj1k

mj2k

mj3k

 ,

and 
m∗

j0k

m∗
j1k

m∗
j2k

m∗
j3k

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




mj0k

mj1k

mj2k

mj3k

 .

The next stage is to compute the Inverse Discrete Fourier Transform( IDFT). The Inverse Discrete
Fourier Transform (IDFT) is given by

mjk = IDFT{m∗
jk} =

1

p

∑p−1
r=0 m

∗
jke

i(2πsr/p), (2.6)

s = 0, 1, . . . , p− 1, j = 1, 2, . . . , n and i =
√
−1.

For p = 4, the IDFT is given by;


mj0k

mj1k

mj2k

mj3k

 =
1

4


e0·iπ/2 e0·iπ/2 e0·iπ/2 e0·iπ/2

e0·iπ/2 e1·iπ/2 e2·iπ/2 e3·iπ/2

e0·iπ/2 e2·iπ/2 e4·iπ/2 e6·iπ/2

e0·iπ/2 e3·iπ/2 e6·iπ/2 e9·iπ/2




m∗
j0k

m∗
j1k

m∗
j2k

m∗
j3k

 ,

and 
mj0k

mj1k

mj2k

mj3k

 =
1

4


1 1 1 1
1 i 1 −i
1 1 −1 1
1 −i 1 i




m∗
j0k

m∗
j1k

m∗
j2k

m∗
j3k

 .

The real components of the transformed images are extracted for the feature extraction stage
whereas the imaginary components are discarded as noise. Fig. 4 shows the FFT preprocessed
images of the six images shown in Fig. 2.
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Fig. 4. Six FFT preprocessed images from JAFFE

2.2 Singular Value Decomposition (SVD)

The SVD is related to the familiar theory of diagonalizing a symmetric matrix. If A is a symmetric
real n × n matrix, then there is an orthogonal matrix V and a diagonal matrix D such that
A = VDVT . The columns of V are seen here as the eigenvectors for A and they form an
orthonormal basis for Rn. The diagonal entries of D are the corresponding eigenvalues of A.

In the case of SVD for m × n matrix A, the transformation takes Rn to a different space Rm.
The columns of V and U provides the basis for A. When these are used to represent vectors
in the domain and range of transformation, the transformation simply dilates and contracts some
components according to the magnitude of the singular values and possibly discard values and
appends zeros as needed to account for a change in dimension.

2.3 Principal Component Analysis (PCA)

PCA elucidates the covariance structure of a set of variables. In particular it allows us to identify
the principal directions in which the data varies. PCA seeks to find a set of basis images which are
uncorrelated, that is, they cannot be linearly predicted from each other and also yield projection
directions that maximize the total scatter across all classes or across all face images.

According to [11], PCA can be seen as partially implementing Barlow’s ideas: Dependencies that
show up in the joint distribution of pixels are separated out into marginal distribution of PCA
coefficients. In particular it allows us to identify the principal directions in which the data varies.
An effective way to suppress redundant information and provide only one or two composite data
from most of the information from the initial data is called Principal Component Analysis.

2.4 Feature Extraction

According [6], we seek a set of n orthonormal vectors, ej , which best describes the distribution of
the data. The tth vector et is chosen such that;

λt =
1

n

∑n
j=1(e

T
j wj)

2, (2.7)

is a maximum subject to the orthonormality constraints,

eT
l et = δlt =

{
1 if, l = t.
0 elsewhere
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The vectors et and scalars λt are the eigenvectors and eigenvalues respectively, of the covariance
matrix,

C =
1

n
WWT , (2.8)

where the matrix W = (w1,w2, ...,wn).

Next is to run a singular value decomposition (SVD) of the matrix, C = UΣVT to ascertain its
eigenvalues and their corresponding eigenvectors.

This splits the covariance matrix C into two orthogonal matrices U and V and a diagonal matrix
Σ.

ej =
∑n

j=1 wjdj , (2.9)

where dj is the jth column vector of U.

The Principal components of the trained image set are determined by computing;

νj = eT
j (xj − m̄), (2.10)

and ΩT = [ν1, ν2, . . . , νn].

Following the steps in the feature extraction stage, a new face from the test image database is
transformed into its eigenface components. First, the input image is compared with the mean
image (trained images mean) in memory and their difference is multiplied with each eigenvector
from ej . Each value represents a weight and is saved on a vector Ω.

νj = eT
j (xr − m̄), and ΩT

r = [ν1, ν2, . . . , νn].

The recognition distances (euclidean distance) are computed as;

ξ = ∥Ω−Ωr∥. (2.11)

ϵm = min[ξ] is chosen as the distance at which a test image is recognized in the trained image
database.

2.5 Data Acquisition

A real time face image database was created for the purpose of benchmarking the face recognition
system. The image database is divided into two subsets, for separate training and testing purposes.

Two hundred and ninety four frontal facial images from 42 randomly selected individuals were
acquired from Cohn Kanade, Japanese Female Facial Expressions database (JAFFE) at labeled
faces in the wild and some local Ghanaian students facial database.

Of Two hundred and ninety four images, one hundred and eighty two facial expressions along the
seven universally accepted principal emotions (Neutral, Angry, Happy, Fear, Disgust, Sad, Surprise)
from 26 individuals were collected from the Cohn-Kanade AU-Coded Facial Expression database
[12].

Forty two images from 6 randomly selected individuals were also from the local Ghanaian database.
In the creation of the database, the observation room was equipped with a chair for the subject
and one canon camera. Only image data from the frontal camera were captured. Subjects were
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instructed by an experimenter to perform a series of 7 facial displays that included single action
units. Subjects began and ended each display from a neutral face. Before performing each display,
an experimenter described and modelled the desired display. Six of the displays were based on
descriptions of prototypic basic emotions (i.e., Happy, Surprise, Anger, Fear, Disgust, and Sadness)
[8].

Image sequences from neutral to target display were digitized into 256 by 256 or with 8-bit precision
for grayscale values. Seventy frontal face images (10 individuals) were also collected from Japanese
Female Facial Expressions database (JAFFE) along the principal emotional constraints. Fig. 5
shows a sample of the study database.

Fig. 5. Sample of Study Database
Source: [8]

Forty two of the face images representing the neutral poses of 42 individuals are captured into the
train image database. These images are to be trained on the two recognition algorithms and their
knowledge kept in memory for recognition.

Two hundred and Fifty two images representing the variable (Angry, Disgust, Fear, Happy, Sad
and Surprise) poses of 42 individuals are captured into the test image database. These images are
called the test images and used for testing the recognition algorithms.

3 Results and Discussion

This section contains detailed results of the multivariate statistical evaluation methods proposed by
[8], on dataset churned from running the study algorithms on the available database. The section
also interprets the outcome of the statistical analysis.
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3.1 Assessing Multivariate Normality

From the study database, 6-variates are collected per each algorithm from the euclidean distance
between the universally accepted principal emotions (Angry, Disgust, Fear, Happy, Sad and Surprise)
and their neutral pose.

For each algorithm, we have Xjk dataset, k = 1, 2, . . . , p and j = 1, 2, . . . , n, where k is the number
of constraints and j is the number of individuals in the research database.

Define the squared distance as;

d2
ij =

(
Xjk − X̄k

)
Σ−1

(
Xjk − X̄k

)T
, (3.1) where, X̄k =

1

n

∑n
j=1 Xjk and

i = 1, 2, . . . , n.

Define d2j = d2
ij , for i = j. That is d2j is the diagonal entry of the jth individual from matrix d2

ij .

Fig. 6 and Fig. 7 show plots of

{
qc,k

(
j − 1

2

)
n

, d2j

}
for Algorithm 1 and Algorithm 2 respectively.

qc,k

((
j − 1

2

)
n

)
is the 100

(
j − 1

n

)
n

quantile of chi-square distribution with k degrees of freedom.

The correlation, r, values 0.91359 and 0.91631 for Algorithm 1 and Algorithm 2 respectively are
close to 1. These satisfy the assumption of a unit slope of the chi-square plot. Also Discrete Fourier
Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) are linear transformations and
as such preserve normality.

Multivariate normality exist and hence can be assumed in subsequent statistical tests that will be
performed on the datasets.

Fig. 6. Chi-square plot for Algorithm1
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Fig. 7. Chi-square plot for Algorithm 2

3.2 Results from Repeated Measures Design

The repeated measures design is performed on the euclidean distances recorded after recognition.
These datasets (Algorithm specific) are shown in appendix 1.0. The purpose of the test is to
determine whether for each of the recognition algorithm under study, there exist a significant
difference between the average distances of the various poses from their neutral pose.

Using the 6-variate dataset from PCA/SVD (Algorithm 1), we have;

n = 42,
(
CX̄

)
=


1003.917
−98.952
278.283
−96.397

−1167.166

 ,

and

(
CΣCT

)−1

=


1.28e−007 1.12e−007 6.21e−008 −3.69e−009 6.48e−009

1.12e−007 4.99e−007 4.15e−007 1.33e−007 1.40e−008

6.21e−008 4.15e−007 7.85e−007 5.68e−007 2.40e−007

−3.69e−009 1.33e−007 5.68e−007 7.40e−007 4.36e−007

6.48e−009 1.40e−008 2.40e−007 4.36e−007 5.44e−007

 .

Hence, the T 2- Statistic is;

T 2 = n
(
CX̄

)T (
CΣCT

)−1
CX̄, (3.2)

= 35.095.
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Now,
(n− 1) (p− 1)

(n− p+ 1)
= 5.540541,

and Fp−1,n−p+1 (0.05) = 2.4697,

where Fp−1,n−p+1 is the F -distribution with (p− 1, n− p+1) degree of freedom with p and n being
the total number of constraints and individuals respectively.

Hence,
(n− 1) (p− 1)

(n− p+ 1)
Fp−1,n−p+1 (0.05) = 13.6832.

Reject H0 if ; T 2 = n
(
CX̄

)T (
CΣCT

)−1
CX̄ >

(n− 1) (p− 1)

(n− p+ 1)
Fp−1,n−p+1 (α) .

35.095 > 13.683194. There is therefore enough evidence at 5% level of significance to reject H0 and
conclude on H1 : Cµ ̸= 0. This means there exist significant difference in the average distances of
the various constraints from their neutral pose when Algorithm 1 is used for recognition.

Similarly, using the 6-variate dataset from Algorithm 2, we obtain

n = 42,
(
CX̄

)
=


331.919
30.585

−15.824
76.751

−520.819

 ,

and

(
CΣCT

)−1

=


1.97e−006 1.68e−006 1.60e−006 8.88e−007 5.83e−009

1.68e−006 3.66e−006 3.08e−006 1.76e−006 5.46e−007

1.60e−006 3.08e−006 5.47e−006 4.25e−006 1.65e−006

8.88e−007 1.76e−006 4.25e−006 4.75e−006 2.04e−006

5.83e−009 5.46e−007 1.65e−006 2.04e−006 2.66e−006

 .

Hence, the T 2- Statistic from (3.2) is;

T 2 = 36.695.

Now,
(n− 1) (p− 1)

(n− p+ 1)
= 5.540541, Fp−1,n−p+1 (0.05) = 2.4697.

Hence,
(n− 1) (p− 1)

(n− p+ 1)
Fp−1,n−p+1 (0.05) = 13.6832.

36.695 > 13.6832. There is therefore enough evidence at 5% level of significance to reject H0 and
conclude on H1 : Cµ ̸= 0. This means there exist significant difference in the average distances of
the various constraints from their neutral pose when Algorithm 2 is used for recognition.

The 95% simultaneous confidence intervals for the estimates of the mean differences are shown in
Table 1.
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Table 1. Simultaneous Confidence Intervals - Algorithm 1.

Constraints Mean Difference Lower Upper

Angry vs Disgust X̄1 − X̄2 = 1003.9170 −810.2300 2818.0636
Angry vs Fear X̄1 − X̄3 = 904.9650 −949.4138 2759.3435
Angry vs Happy X̄1 − X̄4 = 1183.2480 −537.6334 2904.1299
Angry vs Sad X̄1 − X̄5 = 1086.8520 −879.9624 3053.6657
Angry vs Surprise X̄1 − X̄6 = −80.3140 −1874.7483 1714.1202
Disgust vs Fear X̄2 − X̄3 = −98.9520 −1489.3901 1291.4861
Disgust vs Happy X̄2 − X̄4 = 179.3300 −925.4309 1284.0937
Disgust vs Sad X̄2 − X̄5 = 82.9350 −1201.0698 1366.9394
Disgust vs Surprise X̄2 − X̄6 = −1084.2000 −2317.2119 148.7501
Fear vs Happy X̄3 − X̄4 = 278.2834 −1290.6203 1847.1871
Fear vs Sad X̄3 − X̄5 = 181.8868 −855.2611 1219.0347
Fear vs Surprise X̄3 − X̄6 = −985.2789 −2024.8504 54.2926
Happy vs Sad X̄4 − X̄5 = −96.3970 −1633.8636 1441.0704
*Happy vs Surprise X̄4 − X̄6 = −1263.6000 −2469.2859 −57.8386
*Sad vs Surprise X̄5 − X̄6 = −1167.2000 −2298.1676 −36.1638

∗ : significant difference exist between constraints at 5% significance level.

These simultaneous confidence intervals show specific constraints that are significantly different in
their average distances from their neutral poses. All constraints that contain 0 in their confidence
interval are said to be equal and do not have significant differences from their neutral pose at 5%
significance level.

It can be seen from Table 1 that, for Algorithm 1, the Happy vs Surprise (µ4 − µ6) and Sad vs
Surprise (µ5 − µ6) have confidence intervals, [−2469.2859,−57.8386] and [−2298.1676,−36.1638]
respectively. Since these intervals do not contain 0, the respective constraints ( Happy vs Surprise
and Sad vs Surprise) have significant difference in their average distance from their neutral poses
when Algorithm 1 is used as the recognition algorithm.

The 95% simultaneous confidence intervals for the estimates of the mean difference under Algorithm
2 is shown in Table 2 below.

Table 2. Simultaneous Confidence Intervals - Algorithm 2.

Constraints Mean Difference Lower Upper

Angry vs Disgust X̄1 − X̄2 = 275.4800 −204.2067 868.0441
Angry vs Fear X̄1 − X̄3 = 472.2400 −194.1200 919.1281
Angry vs Happy X̄1 − X̄4 = 190.0800 −173.5398 866.8997
Angry vs Sad X̄1 − X̄5 = 387.4100 −53.8653 900.7276
Angry vs Surprise X̄1 − X̄6 = 167.9500 −659.0025 464.2267
Disgust vs Fear X̄2 − X̄3 = 196.7600 −457.9496 519.1203
Disgust vs Happy X̄2 − X̄4 = −85.4000 −506.0024 535.5248
Disgust vs Sad X̄2 − X̄5 = 111.9300 −387.6305 570.6553
Disgust vs Surprise X̄2 − X̄6 = −107.5300 −907.4330 48.8198
Fear vs Happy X̄3 − X̄4 = −282.1600 −617.7883 586.1401
Fear vs Sad X̄3 − X̄5 = −84.8300 −329.8673 451.7214
*Fear vs Surprise X̄3 − X̄6 = −304.2900 −875.7119 −44.0719
Happy vs Sad X̄4 − X̄5 = 197.3300 −480.1164 633.6187
Happy vs Surprise X̄4 − X̄6 = −22.1300 −1005.2381 117.1024
*Sad vs Surprise X̄5 − X̄6 = −219.4600 −957.8452 −83.7927

∗ : significant difference exist between constraints at 5% significance level.
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It can be seen from Table 2 that, for Algorithm 2, the Fear vs Surprise (µ3 − µ6) and Sad vs
Surprise (µ5 − µ6) have confidence intervals, [−957.8452,−83.7927] and [−875.7119,−44.0719]
respectively. Since these intervals do not contain 0, the respective constraints (Fear vs Surprise
and Sad vs Surprise) have significant difference in their average distance from their neutral poses
when Algorithm 2 is used as the recognition algorithm.

3.3 Paired Comparison

The multivariate case is motivated for PCA/SVD (Algorithm 1) and FFT-PCA/SVD (Algorithm
2), 6 constraints and 42 experimental units. The paired differences random variables become;

Dj1 = Xj11 −Xj12,
Dj1 = Xj21 −Xj22,

...
... (3.3)

Dj1 = Xj61 −Xj62.

Let DT
j = [Dj1, Dj2, . . . , Dj6] and assume for j = 1, 2, . . . , 42.

D̄ =
1

42

∑42
j=1 Dj =


2209.4
1801.4
1201.4
1426.8
1495.5
1141.0

 and Σd =
1

42− 1

∑42
j=1

(
Dj − D̄

) (
Dj − D̄

)T
.

Σd =


6.15e+006 1.30e+006 5.93e+005 1.46e+006 8.62e+004 7.34e+005

1.30e+006 2.15e+006 3.11e+004 1.32e+006 5.27e+005 4.87e+005

5.93e+005 3.11e+004 1.22e+006 −1.24e+004 3.62e+005 8.47e+004

1.46e+006 1.32e+006 −1.24e+004 2.54e+006 1.86e+005 5.90e+005

8.62e+004 5.27e+005 3.62e+005 1.86e+005 1.64e+006 3.61e+005

7.34e+005 4.87e+005 8.47e+004 5.90e+005 3.61e+005 1.93e+006

 ,

and

Σ−1
d =


2.14e−007 −8.85e−008 −1.18e−007 −7.21e−008 6.10e−008 −4.33e−008

−8.85e−008 7.83e−007 8.78e−008 −3.35e−007 −2.24e−007 −2.35e−008

−1.18e−007 8.78e−008 9.45e−007 4.10e−008 −2.39e−007 1.33e−008

−7.21e−008 −3.35e−007 4.10e−008 6.28e−007 5.16e−008 −9.16e−008

6.10e−008 −2.24e−007 −2.39e−007 5.16e−008 7.52e−007 −1.13e−007

−4.33e−008 −2.35e−008 1.33e−008 −9.16e−008 −1.13e−007 5.89e−007

 .

A 5%- level test has hypotheses,

H0 : µ = 0 (zero mean difference between algorithm 1 and algorithm 2)
H1 : µ ̸= 0

The T 2 statistic is computed as;

T 2 = nd̄TΣ−1
d d̄, (3.4)

= 138.20,
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and [
(n− 1) p

(n− p)

]
Fp,n−p (α) =

[
(42− 1) 6

(42− 6)

]
F6,42−6 (0.05) = 16.152,

where Fp,n−p is the F− distribution with (p, n− p) degree of freedom.

138.20 > 16.152. This means H0 is not tenable, and we therefore have enough evidences at 5%
significances level to reject H0. It can concluded that, there exist significant difference in the average
recognition distances of algorithm 1 and algorithm 2 with respect to the study constraints (pose-
wise).

The Bonferroni 95% simultaneous confidence intervals for the individual mean differences are;

Table 3. Bonferroni Simultaneous Confidence Intervals
(Algorithm 1 & 2)

Constraints Average differences Lower Upper

*Angry poses d̄1 = 2209.4 1148.6406 3270.2178
*Disgust poses d̄2 = 1801.4 1174.1298 2428.7090
*Fear poses d̄3 = 1201.4 729.0442 1673.8369
*Happy poses d̄4 = 1426.8 745.4911 2108.2032
*Sad poses d̄5 = 1495.5 948.0762 2042.8308
*Surprise poses d̄6 = 1141.0 546.5988 1735.4019

∗ : significant difference exist between Algorithms at 5% significance level.

From Table 3, it can seen that all the confidence intervals do not contain 0. This means for
Algorithm 1 and Algorithm 2, there exist significant difference in their poses (Angry, Disgust, Fear,
Happy, Sad and Surprise) recognition. It can therefore be inferred that, at 5% level of significance,
algorithm 1 and algorithm 2 have significantly different average recognition distances for all poses.

3.4 Box’s M Test of Equality of Covariance

For the study populations, the null hypothesis, H0 and alternative hypothesis, H1 are;

H0 : Σ1 = Σ2 = Σ
H1 : Σi ̸= Σj for i ̸= j (at least two unequal covariance matrices).

where Σl is the covariance matrix for the lth population, l = 1, 2. Here our populations are
the measures from the recognition algorithms and Σ is the presumed common covariance matrix
for the populations. The multivariate normality test confirmed that, the collected samples under
study are from multivariate normal populations. The Box’s test is based on the χ2 approximation
to the sampling distribution of M . Now, Sl, l = 1, 2 are given as;

S1 =


1.10e+007 2.67e+006 8.71e+005 3.87e+006 7.66e+005 1.71e+006

2.67e+006 4.47e+006 −6.72e+004 3.30e+006 9.24e+005 1.07e+006

8.71e+005 −6.72e+004 1.33e+006 −1.82e+005 2.34e+005 1.70e+005

3.87e+006 3.30e+006 −1.82e+005 5.86e+006 5.23e+005 1.86e+006

7.66e+006 9.24e+005 2.34e+005 5.23e+005 2.44e+006 4.20e+005

1.71e+006 1.07e+006 1.70e+005 1.86e+006 4.20e+005 2.33e+006
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and

S2 =


9.36e+005 3.23e+005 6.90e+004 6.07e+005 2.68e+005 2.28e+005

3.23e+005 5.93e+005 6.13e+003 4.34e+005 9.29e+004 1.90e+005

6.90e+004 6.13e+003 1.53e+005 7.43e+004 −9.00e+003 5.46e+004

6.07e+005 4.34e+005 7.43e+004 1.11e+006 2.27e+005 3.14e+005

2.68e+005 9.29e+004 −9.00e+003 2.27e+005 2.98e+005 9.96e+004

2.28e+005 1.89e+005 5.46e+004 3.14e+005 9.96e+004 4.87e+005

 .

The pooled sample covariance ; Spooled =
1∑g

l=1 (nl − 1)
−
∑g

l=1 (nl − 1)Sl.

Now,

Spooled =


−4.88e+008 −1.23e+008 −3.86e+007 −1.84e+008 −4.24e+007 −7.93e+007

−1.23e+008 −2.08e+008 2.50e+006 −1.53e+008 −4.17e+007 −5.14e+007

−3.86e+007 2.50e+006 −6.08e+007 4.40e+006 −9.23e+006 −9.21e+006

−1.84e+008 −1.53e+008 4.40e+006 −2.86e+008 −3.07e+007 −8.93e+007

−4.24e+007 −4.17e+007 −9.22e+006 −3.07e+007 −1.12e+008 −2.13e+007

−7.93e+007 −5.14e+007 −9.21e+006 −8.93e+007 −2.13e+007 −1.15e+008

 .

From the above, |S1| = 5.6378e+038, |S2| = 3.0936e+033, |Spooled| = 6.3196e+048 and

M =
∑g

l=1 (nl − 1) ln|Spooled| −
∑g

l=1 (nl − 1) ln|Sl|. (3.5)

= 2394.1

Box’s test for equality of covariance is motivated as;

U =

[
g∑

l=1

1

(nl − 1)
− 1∑g

l=1 (nl − 1)

][
2p2 + 3p− 1

6(p+ 1)(g − 1)

]
,

= 0.077626,

where p = 6 is the number of constraints and g = 2 is the number of groups (Algorithms).

Now,
K = (1− U)M = (1− 0.077626)2394.1,

= 2208.5,

has an approximate χ2 distribution with V =
g

2
p(p+ 1)− 1

2
p(p+ 1) =

1

2
p(p+ 1)(g − 1) degree of

freedom.

Reject H0 at 0.05% (significance level) if, K > χ2
1
2
p(p+1)(g−1)

(0.05),

χ2
1
2
p(p+1)(g−1)(0.05) = χ2

21(0.05),

= 32.6706.

Clearly, 2208.5 > 32.6706, hence H0 is not tenable at 5% level of significance. We can therefore
conclude that, the covariance matrices of the recognition distances associated with the study
algorithms are not the same. That is, H1 : Σi ̸= Σj for i ̸= j is accepted. This means, significant
difference exist in the variations of algorithms’ recognition distances.
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3.5 Profile Analysis

For small sample size, profile analysis depends on the normality assumption. The datasets under
study are multivariate normal, hence this assumption of normality is satisfied.

Profile analysis also works on the premise of equality of covariance matrices [13]. Here, the pooled
covariance is then used as the common covariance for the populations under study. The Box’s M
test revealed that, the covariance matrices of the algorithms under study are unequal.

According [14], the profile analysis is still feasible when the H0 of the Box’s M test is not tenable.
That is, profile analysis can continue when unequal covariance exist. In this case the separate
covariance matrices are used in the computation.

Let µ1
T = [µ11, µ12, . . . , µ1p] and µ2

T = [µ21, µ22, . . . , µ2p] be the mean responses to p treatments
for Algorithm 1 and 2 respectively.

The contrast matrix given as

C =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

 .

Now from the study datasets, we have;(
X̄2 − X̄1

)T
=
[
−2209.4 −1801.4 −1201.4 −1426.8 −1495.5 −1141.0

]
,

S1 =


1.10e+007 2.67e+006 8.71e+005 3.87e+006 7.66e+005 1.71e+006

2.67e+006 4.47e+006 −6.72e+004 3.29e+006 9.24e+005 1.07e+006

8.71e+005 −6.72e+004 1.33e+006 −1.82e+005 2.34e+005 1.70e+005

3.87e+006 3.29e+006 −1.82e+005 5.86e+006 5.23e+005 1.86e+006

7.66e+005 9.24e+005 2.34e+005 5.23e+005 2.44e+006 4.20e+005

1.71e+006 1.07e+006 1.70e+005 1.86e+006 4.20e+005 2.33e+006


and

S2 =


9.36e+005 3.23e+005 6.90e+004 6.07e+005 2.68e+005 2.28e+005

3.23e+005 5.93e+005 6.13e+003 4.34e+005 9.29e+004 1.90e+005

6.90e+004 6.13e+003 1.53e+005 7.43e+004 −9.00e+003 5.46e+004

6.07e+005 4.34e+005 7.43e+004 1.11e+006 2.27e+005 3.14e+005

2.68e+005 9.29e+004 −9.00e+003 2.27e+005 2.98e+005 9.96e+004

2.28e+005 1.89e+005 5.46e+004 3.14e+005 9.96e+004 4.87e+005

 .

The sample sizes are, n1 = n2 = 42. In testing for parallel profiles for two populations,

T 2 = (X̄2 − X̄1)
TCT

[
C

(
S1

n1
+

S2

n2

)
CT

]−1

C(X̄2 − X̄1), (3.6)

= 7.4215

and

c2 =

[
(n1 + n2 − 2)(p− 1)

n1 + n2 − p

]
Fp−1,n2+n2−p(0.05),

=

[
(42 + 42− 2)(6− 1)

42 + 42− 6

]
F5,78(0.05),

= 2.451.
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Clearly, 7.4215 > 2.451 and hence H0 : µ1i − µ1i−1 = µ2i − µ2i−1, i = 1, 2, . . . , 6 (parallel profiles)
is not tenable at 5% significance level. It can therefore be concluded that, the profiles of Algorithm
1 and Algorithm 2 are not parallel. This also means that, the profiles are not coincident and
subsequently not level. Fig. 8 shows a mean plot of the recognition algorithms.

Fig. 8. Mean plot of recognition distances. (Algorithm 1 & Algorithm 2)

3.6 Levene’s Test of Equality of Variances

The goal of this test is to determine if the algorithms under study have equal variances in their
pose-wise recognition distances. The test is quite sensitive to the underlying assumption that, the
samples been tested should come from a normal population.

In this study, two independent normal populations each from the different study algorithms are
collected. For example, angry pose data from Algorithm 1 tested against angry pose data from
Algorithm 2.

Let Xjk1, j = 1, 2, . . . , 42 (individuals) and k = 1, 2, . . . , 6 (poses) be the datasets from algorithm 1
and Xjk2, j = 1, 2, . . . , 42 (individuals) and k = 1, 2, . . . , 6 (poses) be the datasets from algorithm
2.

Now consider two independent normal populations Xjk1 and Xjk2, with unknown variances σ2
k1

and σ2
k2. Also, consider samples of sizes nk1 = 42, from Algorithm 1, nk2 = 42, from Algorithm 2

and their respective sample variances S2
k1 and S2

k2.

To test H0 : σ2
k1 = σ2

k2 , a 95% confidence interval is constructed from,

S2
k1

S2
k2

F1−α
2
,n2k−1,n1k−1 <

σ2
k1

σ2
k2

<
S2
k1

S2
k2

Fα
2
,n2k−1,n1k−1,

and shown in Table 4.
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Table 4. Confidence Intervals for the ratio of variances
(Algorithm 1 & Algorithm 2)

Constraints Ratio of Variances Lower Upper

*Angry poses
S11

S12
= 11.7120 6.2955 21.7888

*Disgust poses
S21

S22
= 7.5465 4.0564 14.0394

*Fear poses
S31

S32
= 8.7200 4.6872 16.2225

*Happy poses
S41

S42
= 5.2894 2.8432 9.8403

*Sad poses
S51

S52
= 8.1794 4.3966 15.2167

*Surprise poses
S61

S62
= 4.7753 2.5668 8.8838

∗ : significant difference exist between Algorithms at 5% significance level.

Reject H0 : σ2
k1 = σ2

k2, if 1 does not belong to the confidence interval for
S2
k1

S2
k2

, k = 1, 2, . . . , 6.

Clearly from Table 4, all the constraints (Angry, Disgust, Fear, Happy, Sad and Surprise) have
confidence intervals that do not contain 1. Here, H0 is not tenable. This means, the variances of
the recognition distances for all the poses are not equal.

Now,
S2
k1

S2
k2

, k = 1, 2, . . . , 6 values are given as; 11.7120, 7.5465, 8.7200, 5.2894, 8.1794 and 4.7753

respectively. All these ratios are greater than 1 and hence it can be concluded that, the variations
in Algorithm 1 are greater than that of Algorithm 2 for all constraints recognition distance.
Subsequently, Algorithm 2 is considered as comparatively consistent in the recognition of Angry,
Disgust, Fear, Happy, Sad and Surprise poses.

3.7 Numerical Evaluations

The recognition rate is defined as the ratio of the total number of correct recognition by the algorithm
to the total number of images in the test set for a single experimental run. Recognition performance
has many measurement standards. The average recognition rate, Ravg, of our method is defined as

Ravg =

∑q
i=1 n

i
cls

q × ntot
, (3.7)

where q is the number of experimental runs. The ni
cls is the number of correct recognition in the

ith run and ntot is the total number of faces under test in each run. Consequently, the average error
rate, Eavg, may be defined as 100−Ravg.

The total number of correct recognition
∑q

i=1 n
i
cls, for Algorithm 1 and Algorithm 2 is 223 and 225

respectively.

The total number of experimental runs, q = 42.

The total number of images in a single experimental runs, ntot = 6.
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Hence;

The average recognition rate of Algorithm 1,

Ravg1 =
223

(42)(6)
× 100,

= 88.49%.

The average recognition rate of Algorithm 2,

Ravg2 =
225

(42)(6)
× 100,

= 89.29%.

The average runtime of the Algorithm 1 and Algorithm 2 in the recognition of the 252 test images
are 42 seconds and 75 seconds respectively.

4 Summary

From the above numerical evaluations, the recognition rates of Principal Component Analysis and
Singular Value Decomposition (PCA/SVD) and Principal Component Analysis and Singular Value
Decomposition with Fast Fourier Transform as preprocessing step (FFT-PCA/SVD) are 88.49%
and 89.29% respectively.

The average runtimes of PCA/SVD (Algorithm 1) and FFT-PCA/SVD (Algorithm 2) in the
recognition of the 252 test images are 42 seconds and 75 seconds respectively. The time used by
FFT-PCA/SVD algorithm in preprocessing accounts for the differences in the algorithm’s runtime
(speed).

It can be concluded from the results of the repeated measures design that, significance difference
exist in each of the algorithms in recognizing the face images under the variable expressions.
Specifically, PCA/SVD (Algorithm 1) had significantly higher average recognition distances in the
recognition of Surprise poses as compared to Happy and Sad poses. FFT-PCA/SVD (Algorithm
2) showed significant higher average recognition distance in the recognition of Surprise poses as
compared to Sad and Fear Constraints.

From the results of the paired comparison, PCA/SVD (Algorithm 1) has significantly higher average
recognition distances in the recognition of all the expressions when compared to FFT-PCA/SVD
(Algorithm 2).

The Box’s M test reported a significant difference in covariance matrix of the algorithms. This
confirms unequal variations among the algorithms in their recognition of face images under the
study constraints.

The Profile Analysis revealed that, the algorithms’ profiles are not parallel. It can be inferred from
this results that, the algorithms have different recognition patterns.

The Levene’s test also revealed that, the variations in PCA/SVD (Algorithm 1) are higher than
the variations in FFT-PCA/SVD (Algorithm 2) in the recognition of all the principal emotions
(expressions).

5 Conclusions

From the above statistical evaluation, FFT-PCA/SVD (Algorithm 2) is adjudged comparatively the
most consistent algorithm in the recognition of face images under variable environmental constraints.
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This confirms the computed recognition rates of the algorithms.

FFT-PCA/SVD (Algorithm 2) is therefore the most efficient (highest recognition rate) and consistent
(lowest variation) in the recognition of face images under variable facial expressions. It can also be
inferred from the statistical evaluation results that, Fast Fourier Transform improved PCA/SVD
algorithm when used as a noise removal mechanism during image preprocessing.

Competing Interests

The authors declare that no competing interests exist.

References

[1] Rahman MU. A comparative study on face recognition techniques and neural network; 2013
vol abs/ 1210-1916.

[2] Bartlett MS, Donato G, Ekman P, Hager JC, Sejnowski TJ. Classifying facial actions. IEEE
Trans.Pattern Analysis and Machine Intelligence. 1999;21(10):974-989.

[3] Wagner P. Face recognition with python; 2012.
Available: http:// www.bytefish.de

[4] Kirby M, Sirovich L. Application of the Karhunen-Loéve procedure for the characterization of
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Appendix

This section contains the multivariate data from each of the study algorithms. Here the data been
presented are the absolute deviations from the variates means.

Appendix 1.0a: Multivariate data from PCA/SVD (Algorithm 1)
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Appendix 1.0b: Multivariate data from FFT-PCA/SVD (Algorithm 2)
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