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Abstract

In the present paper, a traveling wave solution has bstablished using the modified extended tanh
method for space-time fractional nonlinear partial défgial equations. We used this method to find
exact solutions for different types of the space-time aefi nonlinear partial differential equations sych
as space-time fractional regularized long wave equatidWR) and space-time fractional modified
regularized long wave equation (MRLW) which are the importalitos equations. Both equations gre

reduced to ordinary differential equations by using of fracti@emplex transform and properties [of
modified Riemann-Liouville derivative.

Keywords: Fractional RLW and fractional MRLW equations; the difredl extended tanh
method.
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1 Introduction

To generalize the classical differential equationthwiteger orders, fractional differential equationsehav

been represented where the fractional differential equatiave been played an important role in different
research areas. Specially in mechanics, signal progessigineering, stochastic, biology, plasma physics,
electricity, electrochemistry, dynamical system, contheory, systems identification, economics, and
finance.

The numerical solutions of nonlinear systems and nonliegaations are important in applied science. In
the literature different equations have been solved usingrefitfenethods for example, Hirota-Satsuma

coupled KDV equation by Raslan et al. [1], Hirota equabgnRaslan et al. [2], generalized long wave

equation system by El- Danaf et al. [3,4], coupled-BBfgtam has been solved by Raslan et al. [5-7], and
Coupled Burgers' equations has been studied by Ali etjanfBby Raslan et al. [9].

Finding exact and approximate solutions to fractional differeatiaations is an important task. Powerful
and reliable methods have been proposed to obtain the exaocvrsolatifractional differential equations,
such as first integral method [10-15], ansatz method1Pl6-exp-function method [20-24], functional

variable method [25-28], Kudryashov method [29,30], €x@(£)) — expansion method[ 31,32] , and
extended(G' / G) -expansion method [ 33,34 ].

Soliton theory is an important areas of research @aonaynamics, optics, plasma physics, fluid dynamics,
semiconductors and engineering. In these areas, studyingysol#ges attracts researcher's attention. In the
recent years, several studies have been introduced irelthef space time fractional differential equations
such as, K. Hosseini et al. [35,36], M. Eslami [37], and kpln et al. [38].

This paper is organized as follows: In Section 2, the netliRiemann— Liouville derivative is described. In

section 3, we illustrate how fractional differential edurasé are converted into integer-order differential

equations. In Section 4, we apply the proposed modifiesh@atetanh method to get the exact solutions for
the space— time fractional RLW and MRLW equations. Comagsare presented in Section 5.

2 Jumarie's Modified Riemann-Liouville Derivative and its
Properties

The Jumarie's modified Riemann-Liouville derivatiof order @ the continuous functionf : R - R
is defined as follows [39].

L 9 -t (t)- £ (O, O<a<t m
)

n<a<n+l n=1l

where r(x)isthe Gamma function which is defined as
X
r(x)=[e'tdt
0

Some useful properties of the Jumarie's modified Rienhdowville derivative are listed below.
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Property 1.
D)C(’Xr :MXI’—G. (2)
r(l+r-a)
Property 2.
Dy (a f (x)+bg(x)) = aD{ f (x)+bD g(x), 3)
where @ and b are constants.
Property 3.
df
D? f|&)==—=DZ7(&),
7 £(¢) iz (¢) @

where = g(X).

For other properties, see [40].

3 The Properties of the Methodology

To show the basic idea of our method, consider the following memnlifractional differential equation
F (u, Du, DZ2u, DZ%u, D202y, DtalDf(’Zu,...), O<ay,a, <L (5)

Applying the fractional complex transformation

= 1) L

ri+a,) ri+ao

where K and C are nonzero constants awg is arbitrary constant, converts (5) into anegsar
order nonlinear ordinadifferential equations as follows:

H(F', f" f",..)=0, (®)

where the derivatives are with respec€tolt is assumed that the solutions of (6) is presented fimste
series, say

N
[()=a0+ X a0 #7(6) +0,67(), Q
n=1
where a,,,b,, Nn=12...... ,N are constants that can be computed 44?164() satisfies the Riccati
equation
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¢ =b+¢f (®)

where bis a constant, Eq. (8) admits several types of solutions:

@i If b<O,then
Q= -J-b tani‘(\/—_bf ) orp= -J-b COth(\/—_bf )
(i) If b>0,then

o=btanlybé), or = b cotlybé)
i)y If b=0,then

p="7
-

The value ofN is usually determined by balancing the linear andlinear terms of highest
orders in (5). Substituting Eq. (7) and its necessierivatives, foexample

f'= %(annd“l(b+ ¢72)—bn ngo_”_l(b+ ¢72))

= ann(n—1)¢n‘2(b+¢2)2+2nan ¢n(b+¢2)+bnn(n+ )¢—n—2(b+¢2)2_ |

"= n=1 2bnn(p‘”(b+qa2)

into (5) gives

P(e£))=0, ©

where P(d{)) is a polynomial ind{). By equating the coefficient of each power d{) in (9) to
zero, a system of algebraic equations will be olgtdiwhose solution yields the exact solutions df (5

4 Application

Usingthe modified extended tanh methdtie exact solutions of the space-time fractidRBW and
MRLW equations areonstructed

4.1 The space-time fractional RLW equation

Consider the following problem: Find a functier{(X,t) satisfying thespace-time fraction@RLWE in the
form,

Dfu(x,t)+ DU(x,t)+&Dfu?(x,t) - #D¥u(x,t)=0, (10)

Xxxt

where &, l4 are real parameters
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applying the fractional complex transformation

_ __k a_ C a _
u(x,t)= f(&), £= i a)x r(1+a)t Xo- 1j1

From (11) we get,

DAu=—ct'(§), DIu=kf'(§), DZu=k?f"(f), DIu=-ck’t"({),...,
We converts (10) into an integer order nonlineatirary differential equation as the following

(k—c)f'+£k(f2)' +pck? " =0, (12)
integrating (12) once with respectdoyields

(k—c)f +ek f2+puck?f" =0, (13)

where the integrating constant is considered todve.

4.1.1 Exact solutions of the space-time fractional RLWequation using the modified extended tanh
method

Balancing f " and f 2 in (13) resultsN + 2 = 2N, and soN = 2. This offers a truncated series as the
following form

£(§)=a0+a ¢l¢)+a, () + by ¢ (&) + b, 97 (£), 14

by substituting (14) into (13) and equating theffioent of each power ofAf) to zero. We derive a
system of algebraic equations as follows

gk ag® +(k—c)ay + 2ek aby +2ek a,b, +2uck?b?a, +2uck?b, =0,
(k —c)ay, +2¢ek aga; +2ek ayby +2uck?bay, =0,

gk a® +(k —c)a, + 2ck aga, +8uck?ba, =0,

(k —c)b, + 2ek agh, + 2k a;b, +2uck?bb, = 0,

gk by? +(k —c)b, +2ck agh, +8uck2bb, =0,

2k apay + 2,uck2a1= 0,

£k a,® +6uck?a, =0,

2ek byb, +2uck?h?b, = 0,

£k b,” +64ck?h?b, = 0.

solving the above system yields
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Case 1.
1+i_§
c-k)-24/(c-k)? 6ck 2k
a1:b1:b2:0, a0:( )2k€( ) y a2:_ glj, b:—4|(fk/1 .
hence, the solution is formed as:
_(c-k)-2y(c-k)} 6cku,. ,
u,(x,t)= o _—btan (\EE)
_(c-k)-2y(c-k)* 6cku, .,
u,(x,t)= o "~ beot (\/55)
1+C72_E
__ kK e__C a_ VK Ok
<(_r(1+a)x r(1+cr)t %o D acky
Case 2.
Lo
L _(c—k)+2 (c—k)2 __6ckyu _ k2 k
a,=b =by, =0, ap= ke , Ay = p , b= acky

thus, the solution is formed as:

_ )2
ug(x,t)= (e k)+22k£(c k) +6C:'ubtanh2(\/—7b{),

0y ()= (c-K)+2y(c-k)? . 60k,ub cothz(Jbe),

2ke &
2
k 1+C7_%
a C a k
= — t — =1 -
J ri+a)” rl+a) O 4ck p
Case 3.
2(c-k)-+/(c-k)? 3lc? - 2ck + k?
a;=b =0, a = (e=k)=le=k) ’bzz_( 3 )
4ke 128k cue
2
1+C7_§
_6cku k2 Kk
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therefore, the solution is formed as:

_2c-k)=y(c-k)* 6cku, . _3(02—2ck+k2) )
Us )= ke e oo (/oe) 1283cueb cor’{oe)

e (x1)= 2(c-k)-/(c-k)* _ 6C:'ubcot2(\/5g‘)—3(cz _2ck+k2) tanz(\/Bf),

4ke 1283cueb
2
k 1+C2_2kC
c k
= x7 = t? —=xg,b=—"————.
¢ r(i+a) ri+a) %0 16ck u
Case 4.
2 =b, =0 a0_2(c—k)+ (c-k)? o _3(02—20k+k2)
1 ’ Ak e 2 1283cue
2
1+i_§
a _ _6cky kZ2 k
2 e 16ck u

hence, the solution is formed as:

2
Uy (xt)= 2c=k)+y(c-k) +6C:'ubtanhz(ﬁfﬁwcothz(ﬁ{),

4ke 1283cueb

_ —Kk)2 2 _ 2
ot 2R 60k ), 3720k o

dke 128&3cueb
@
2
é= k xa - © t9 —xg,b=— k® kK
ri+a) ri+a) 16ck u

Case 5.

(c-k)+2y(k -c)? o __3(c2 —2ck+k2),

’ 2 =

a]_:bl:azzo’ ay =

2k e 8k3cue
1,1
¢z k? k

ak u

hence, the solution is formed as:
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(k) 2l et ~zekric) o g

u, (x.t)=
7(x) 2ke 8k3cueb
(c-K)+2J(k-cf 32 -2ck+k?)
Ug\x,t)= + tanh?(v/- bé),
o () 2ke 8k3cueb ( f)
1 1 2c
k c AP
— a _ a _ __
e Ttara)t 0P aka
Case 6.
—k)- Y 2 _ 2
alzb_l_:aZ:O, :(C k) 2 (k C) ’ b2:_3(C §Ck+k )’
2ke 8k’cue
1,1 2
p=Vc® K Kk
4k i

thus, the solution is formed as:

(c—k)-2y(k-c) _3(02 _ZCk+k2)cot2(\/Ef),

u-ixt)=
o(xt) ke 8k3cueb
(c-K)-2/(k-c) 3c2-2ck+k?)
ug(x,t)= - tan(Voé ),
sxt) 2k e 8k3cueb ( {)
1,1 2
2 2
E= K Xa—Lta—Xo,b_ cc k k.

r(i+a) ri+a) Ak p

Note. The solutions that we obtained in this paper, are nemasnnot shown in other method or in the
previous literature.

Now, we plot these solutions at different time levels différent values off = 0.1, 1, respectively and we
can show the motion of solitary waves at Fig. 1.

4.2 The space-time fractional MRLW equation

Now, for thespace-time fractionallRLWE consider the following problem: Find the function§x,t)
satisfying thespace-time fraction®IRLWE in the form,
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Du(x,t)+Du(x,t)+eD%u3(x,t)- #D3%u(x,t) =0,

applying the fractional complex transformatighl) converts (15) into an integer order non
ordinary differential equation as the following

(k—c)f'+£k(f3) +pck® £ =0.
integrating (16) once with respectdoyields

(k-c)f +ek f3+puck?f"=0.

Where the integrating constant is considered todpe.

a=01 a=l1

(15)

linear

(16)

17

T 120
6.x10713 |

100 [
51073

sof »
4x10713 L t=0

= gol — =50
3.x10713 | 1 ——t=100

0|

2.x10713 ¢

1.x10713 W

2.x10713
1510713
1.x10-13

2op 00008 :

Fig. 1. Exact solutions for the space-time fractionaRLWE with ¢ = 0.1,&£=1, 0<t<10Q
X, =40,k =1, £ =1,0< x< 80, at different time levels and = 0.1, 1, respectively

4.2.1 Exact solutions of the Space-time fractional MRLWequations using the modified extended tanh

method

Balancingf " and f 3in (17) resultdN +2=3N, and sd\ =1. This offers a truncated series as the

following form
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f(&)=a,+a dél b o(¢) 18)

By substituting (18) into (17) and equating theflioent of each power ozp(f)to zero. We derive a
system of algebraic equations as follows

ek a, +(k-c)a, +6ck a,ab =0,

(k—c)a, +3ck a,’a, +3ck a,’b, +2uck?ba, =0,
3¢k a,°a, =0,

ek a’+2uck?a, =0,

(k—c)b, +3ck a,’b, +3¢ck b’a, +2uck?bb, =0,
3¢k b’a, =0,
ek b’ +2uck?b®p, =0,

solving the above system, yields

Case 1.

cVaeku L ilemk) (oK)
Je o aaek ey sekPu

ap =0 a =

thus, the solution is formed as:

Ul,z(xvt):1i\E\f\(;%ng\/;‘/Et"’m(‘mg)i -k COt(‘mf)’

NN U NN
Ugg(x.t)= im\mwt(\/&t)? i(i’_ k) tan(\m{),
Je 2o k2 2 Jub
_ k a _ c a _ _(C_k)
<t'r(1+a)x ra+a) Xo’b_8ck2y'
Case 2.
o o NEERE W o)
T \/E ’ Zﬁ\/zk%\/gﬁ 4Ck2,u

hence, the solution is formed as:

10
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Usg(x,t)=2 Wj{k‘m J-btan mfﬁ i(c-k) coth(ﬁ{),

2V2Ck 2 (2 N=b
Uzg(x.t)== I\F\f\r‘/» K J=b coth(r {) {c=k) tanr(ﬁ{),
e 2J2c k2 € [id=b
¢ r(1lia) - r(1ia)ta _Xo’bz_zlezzkx)/
Case 3.
8o =a,=0 b =7 i(c-k) b= (k)

\/E\/Ek%\/?\/ﬁ, 2ck?

thus, the solution is formed as:

Uy ()= f“ /\/_\/_\/_ cot(vbe),
) e E ki)
¢= r(1ta)xa_r(1ia) %:b= 2(§k2k;)1
Case 4.
hence, the soluton is formed as:
basa(t)= :%ﬁ tan(vbe)
ess(x0)= i@ JBcot{vBe)
¢= r(1|i a) X7 - r(1i a)ta ~%o.b :;k_ZIL'

Comparing our results with Melike et al results [41], thezan be seen that our results are quite different.

11
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Now, we can plot these solutions at different time Ieead different values of = 0.1, 1, respectively and
we can show the motion of solitary waves at Fig. 2.

a=0.1 a=1

2.x10713 ¢

4t t=0
Lix107 8¢

3t ——t=100

Lx1073 |

]
[}
[}
[}
[}
[}
[}
:
= —t=30 ]
1
[}
]
il
"
i
il
]

S04t

%1074
6 %10-14
4 x10-14

Fig. 2. Exact solutions for the space-time fractional MRLVE withc = 0.1, =6, 0<t<10Q
Xg =40,k =1, 1 =1,0< x < 80, at different time levels andx = 0., 1, respectively

5 Conclusion

The space-time fractional RLW and MRLW equations withdified Riemann-Liouville derivatives
proposed by Jumarie were successfully solved in the presgetr. To reach this goal, by introducing a
fractional complex transformation, original equations weoaverted into the integer order ordinary
differential equations. Then, the effect of the modifiecerded tanh method was utilized to construct the
exact solutions of the resulted equations. The method usad eificient and promising technique to handle
a wide range of nonlinear fractional differential equation
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