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Abstract 
 

In the present paper, a traveling wave solution has been established using the modified extended tanh 
method for space-time fractional nonlinear partial differential equations. We used this method to find 
exact solutions for different types of the space-time fractional nonlinear partial differential equations such 
as space-time fractional regularized long wave equation (RLWE) and space-time fractional modified 
regularized long wave equation (MRLW) which are the important soliton equations. Both equations are 
reduced to ordinary differential equations by using of fractional complex transform and properties of 
modified Riemann-Liouville derivative. 
 

 
Keywords: Fractional RLW and fractional MRLW equations; the modified extended tanh                     

method. 
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1 Introduction 
 
To generalize the classical differential equations with integer orders, fractional differential equations have 
been represented where the fractional differential equations have been played an important role in different 
research areas. Specially in mechanics, signal processing, engineering, stochastic, biology, plasma physics, 
electricity, electrochemistry, dynamical system, control theory, systems identification, economics, and 
finance. 
 
The numerical solutions of nonlinear systems and nonlinear equations are important in applied science. In 
the literature different equations have been solved using different methods for example, Hirota-Satsuma 
coupled KDV equation by Raslan et al. [1], Hirota equation by Raslan et al. [2], generalized long wave 
equation system  by El- Danaf et al. [3,4], coupled-BBM system has been solved by Raslan et al. [5-7], and 
Coupled Burgers' equations has been studied by Ali et al. [8] and by Raslan et al. [9]. 
 
Finding exact and approximate solutions to fractional differential equations is an important task. Powerful 
and reliable methods have been proposed to obtain the exact solutions of fractional differential equations, 
such as first integral method [10-15], ansatz method [16-19], exp-function method [20-24], functional 

variable method [25-28], Kudryashov method [29,30], exp −− ))(( ξφ expansion method[ 31,32] , and 

extended )/( GG′ -expansion method [ 33,34 ]. 
 
Soliton theory is an important areas of research in ocean dynamics, optics, plasma physics, fluid dynamics, 
semiconductors and engineering. In these areas, studying solitary waves attracts researcher's attention. In the 
recent years, several studies have been introduced in the field of space time fractional differential equations 
such as, K. Hosseini et al. [35,36], M. Eslami [37], and M. Kaplan et al. [38]. 
 
This paper is organized as follows: In Section 2, the modified Riemann– Liouville derivative is described. In 
section 3, we illustrate how fractional differential equations are converted into integer-order differential 
equations.  In Section 4, we apply the proposed modified extended tanh method to get the exact solutions for 
the space– time fractional RLW and MRLW equations. Conclusions are presented in Section 5.  
 

2 Jumarie's Modified Riemann-Liouville Derivative and its 
Properties 

 
The Jumarie's   modified Riemann-Liouville derivative of order α the continuous function RRf →:  
is defined as follows [39]. 
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where ( )xΓ is the Gamma function which  is defined as 

 

( ) ∫
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x
xt dttex

0

1 .     

 
Some useful properties of the Jumarie's modified Riemann-Liouville derivative are listed below. 
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Property 1.  
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Property 2. 
 

( ) ( )( ) ( ) ( )xgbDxfDaxgbxfaD xxx
ααα +=+ ,                                                                     (3) 

 
where a and b are constants. 
 
Property 3. 
 

( ) ( )ξ
ξ

ξ αα
xx D

d

df
fD = ,                                                                                                                  (4) 

 

where ( )xg=ξ . 

 
For other properties, see [40]. 
 

3 The Properties of the Methodology  
 
To show the basic idea of our method, consider the following nonlinear fractional differential equation 
 

( ) .1,0,,,,,,, 21
22 212121 << αααααααα

KuDDuDuDuDuDuF xtxxttxt                            (5)  

                                         
Applying the fractional complex transformation 
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where  k  and  c  are  nonzero  constants and 0x is arbitrary constant,  converts  (5) into  an  integer  

order  nonlinear  ordinary differential equations as follows: 
 

,0),,,( =′′′′′′ KfffH                                                                                                                  (6) 
 

where the derivatives are with respect toξ . It is assumed that the solutions of (6) is presented as a finite 
series, say  
 

( ) ( ) ( )( ),
1

0 ∑
=

−++=
N

n

n
n

n
n baaf ξφξφξ                                                                                   (7) 

 

where nn ba , , Nn ,,2,1 KK= are constants that can be computed  and( )ξφ n
satisfies the Riccati 

equation 
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2φφ +=′ b                                                                                                                                       (8) 
 

where  b is a constant, Eq. (8) admits several types of solutions:  
 

(i)  If 0<b , then 
 

( )ξφ bb −−−= tanh , or ( )ξφ bb −−−= coth  

 
(ii)  If 0>b , then 
 

( )ξφ bb tan= , or ( )ξφ bb cot−=  
 
(iii)  If 0=b , then  
 

.
1

ξ
φ −=  

 

The value of N  is usually determined by balancing the linear and nonlinear terms of highest 
orders in (5). Substituting Eq. (7) and its necessary derivatives, for example 
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into (5) gives 
 

( )( ) ,0=ξφP                                                                                                                                    (9) 
 

where ( )( )ξφP  is a polynomial in ( )ξφ . By equating the coefficient of each power of ( )ξφ  in (9) to 

zero, a system of algebraic equations will be obtained whose solution yields the exact solutions of (5). 
 

4 Application 
 
Using the modified extended tanh method, the exact solutions of the space-time fractional RLW and 
MRLW equations are constructed. 
 
4.1 The space-time fractional RLW equation 
 
Consider the following problem: Find a function ),( txu  satisfying the space-time fractional RLWE in the 

form,  
 

( ) ( ) ( ) ( ) ,0,,,, 32 =−++ txuDtxuDtxuDtxuD xxtxxt
αααα µε                                                    (10) 

 
where µε ,  are real parameters 
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applying the fractional complex transformation 
 

( ) ( ) ( ) ( ) .
11

,, 0xt
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From (11) we get, 
 

,),(),(),(),( 2322
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We converts (10) into an integer order nonlinear ordinary differential equation as the following 
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′

+′− fckfkfck µε                                                                                     (12) 

 

integrating (12) once with respect toξ , yields 
 

( ) ,022 =′′++− fckfkfck µε                                                                                          (13) 
 
where the integrating constant is considered to be zero. 
 
4.1.1 Exact solutions of the space-time fractional RLW equation using the modified extended tanh 

method 
         

Balancing f ′′
 and 

2f  in (13) results NN 22 =+ , and so 2=N . This offers a truncated series as the 

following form 
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by substituting (14) into (13) and equating the coefficient of each power of ( )ξφ  to zero. We derive a 
system of algebraic equations as follows 
 

( )
( )

( )
( )

( )

.06

,022

,06

,022

,082

,0222

,082

,0222

,02222

2
222

2

1
22

21

2
22

2

1
2

12

2
2

202
2

1

1
2

21101

2
2

202
2

1

1
2

12101

2
2

2
22

22110
2

0

=+

=+

=+

=+

=++−+

=+++−

=++−+

=+++−

=++++−+

bbkcbk

bbkcbbk

akcak

akcaak

bbkcbakbckbk

bbkcbakbakbck

bakcaakackak

abkcbakaakack

bkcabkcbakbakackak

µε

µε

µε

µε

µεε

µεε

µεε

µεε

µµεεε

 

 
solving the above system yields. 
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Case 1. 
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hence, the solution is formed as: 
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thus, the solution is formed as: 
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therefore, the solution is formed as: 
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 hence, the solution is formed as: 
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hence, the solution is formed as: 
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thus, the solution is formed as: 
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Note. The solutions that we obtained in this paper, are new and are not shown in other method or in the 
previous literature.  
 

Now, we plot these solutions at different time levels and different values of 1,1.0=α , respectively and we 
can show the motion of solitary waves at Fig. 1. 
 
4.2 The space-time fractional MRLW equation 
 
Now, for the space-time fractional MRLWE consider the following problem: Find the functions ),( txu
satisfying the space-time fractional MRLWE in the form,  
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( ) ( ) ( ) ( ) ,0,,,, 33 =−++ txuDtxuDtxuDtxuD xxtxxt
αααα µε                                               (15) 

 
applying the fractional complex transformation (11) converts (15) into an integer order nonlinear 
ordinary differential equation as the following 
 

( ) ( ) .023 =′′′+
′

+′− fckfkfck µε                                                                                     (16) 

 

integrating (16) once with respect toξ , yields 

 

( ) .023 =′′++− fckfkfck µε                                                                                           (17) 

 
Where the integrating constant is considered to be zero. 
          

 
 

 
 

Fig. 1.  Exact solutions for the space-time fractional RLWE with ,1,1.0 == εc  ,1000 ≤≤ t  

800,1,1,400 ≤≤=== xkx µ , at different time levels and 1,1.0=α , respectively 

                    
4.2.1 Exact solutions of the Space-time fractional MRLW equations using the modified extended tanh 

method 
 

Balancing f ′′ and
3f in (17) results NN 32 =+ , and so 1=N . This offers a truncated series as the 

following form 
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( ) ( ) ( )ξφξφξ 1
110

−++= baaf                                                                                                 (18) 

 

By substituting (18) into (17) and equating the coefficient of each power of ( )ξφ to zero. We derive a 

system of algebraic equations as follows: 
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solving the above system, yields. 
 
Case 1. 
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thus, the solution is formed as: 
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hence,  the solution is formed as: 
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( ) ( ) ( ) ( )
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Case 3. 
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thus, the solution is formed as: 
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hence, the solution is formed as: 
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=
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Comparing our results with Melike et al results [41], then it can be seen that our results are quite different. 
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Now, we can plot these solutions at different time levels and different values of 1,1.0=α , respectively and 

we can show the motion of solitary waves at Fig. 2. 
 

 
 

 
 

Fig. 2. Exact solutions for the space-time fractional MRLWE with ,6,1.0 == εc ,1000 ≤≤ t  

800,1,1,400 ≤≤=== xkx µ , at different time levels and 1,1.0=α , respectively 

 

5 Conclusion 
 
The space-time fractional RLW and MRLW equations with modified Riemann-Liouville derivatives 
proposed by Jumarie were successfully solved in the present paper. To reach this goal, by introducing a 
fractional complex transformation, original equations were converted into the integer order ordinary 
differential equations. Then, the effect of the modified extended tanh method was utilized to construct the 
exact solutions of the resulted equations. The method used, is an efficient and promising technique to handle 
a wide range of nonlinear fractional differential equations. 
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