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Abstract

This paper describes a study using Average Monthly Exchange RakER) of Naira (Nigeriarlal

currency) to six other currencies of the World to evaluatecampare the performance of univariate and
multivariate based time series models. The data fron2 20014 was used for modeling and forecasting
the actual values of the AMER for 2014 of the six cwien The Mean Absolute Percentage Efror
(MAPE) forecast accuracy measure was also used imndietag if Univariate Times Series Model or
Multivariate Time Series Models is best for forecagtine future AMER value of a given currency. The
result of data showed that the Univariate time serisdétter for Dollar, Pounds Sterling, Yen, WAUA
and CFA, while only Euro fits well for the Multivariatiene series.

Keywords: Autoregressive integrated moving average; vector aggressive and mean absolute percentage
error.
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1 Introduction

Time series modeling is a dynamic research area whiclthrasted attentions of researchers’ community
over last few decades. The main aim of time seriedefing is to carefully collect and rigorously study the
past observations of a time series to develop an appropriadel which describes the inherent structure of
the series and also the determination of the temporal ordantang some variables through Granger
causality tests. This model is then used to generateefutalues for the series, i.e. to make forecasts. Time
series forecasting thus can be termed as the actditfing the future by understanding the past [1]. Due to
the indispensable importance of time series forecastingumerous practical fields such as business,
economics, finance, science and engineering, etc. ([2,3-BPepicare should be taken to fit an adequate
model to the underlying time series. It is obvious thauecessful time series forecasting depends on an
appropriate model fitting. A lot of efforts have been ddme researchers over many years for the
development of efficient models to improve the forecastioguracy. As a result, various important time
series forecasting models have been evolved in literdage [6-11,1,12-17,4]). Furthermore, in many
forecasting problems, it may be the case that thermare than just one variable to consider. Attempting to
model each variable individually may at times work. But iohssituations, it is often the case that these
variables are sometimes cross-correlated, and thattste can be effectively taken advantage of in
forecasting. It has been argued that the nature of thegpnadllows fairly strong restrictions to be imposed
in a univariate model. These restrictions are not norneaifgrced with the traditional ARIMA framework.
For a multivariate set-up, the number of parameterset@stimated increases rapidly as more series are
included and a vector ARMA model the issues concerned wititifidéility becomes quite complicated
[10]. Hence it is even more important to formulate medehich take account of the nature of the problem.
Nowadays, more and more investors are interested in ingestithe foreign exchange market. However,
the international financial market is changing over time tuexchange rate volatility. It causes an
inevitable risk in the investment since we don't even kifdive exchange rate would increase or decrease
tomorrow. Thus, how to avoid or reduce this risk requires deinto forecast the result accurately by
eliminating the fitting errors involved with classiadta forecasting. Indistinguishable linked-predictive let-
downs suggest the inadequacy of a model. Thereforep@ f@recasting model should result in the fewest
fitting errors while maximizing accuracy.

In this study, we compared two types of time-seriegddsrecasting models: univariate and multivariate to
see which of these models best fits the exchange rédeudang MAPE. The remainder of the paper is
structured as follows: Section 2 provides a unified framkvi@r univariate and multivariate time series

models. In Section 3 we describe our procedure for findiagrobust way the transformation parameters. In

Section 4 we apply the suggested procedure to real g#nessSection 5 contains comparison from the two
models and concluding remarks.

1.1 Univariatetime series (ARMA M odel)

The proces{Yt,t =0,+1 % 2,...} is said to be an ARMAY q) process if {Yt} is stationary and if for
everyt, Box and Jenkingl3],

Yo m @Y~ Y, =8 08—~ 06, )
Where{e[}~ N (0, 0’2) The Equation (1) can be written symbolically in a manapact form
¢(B)Y, =6(B)e,, t=0£1%2,..., ()

Where ¢ and & are thep™ andq" degree polynomials.



Azubuike and Kosemoni; BJMCS, 21(4): 1-17, 201#¢ckrno.BIJMCS.30733

@B)=1-¢yB----—¢,BP 3)
And

6(B)=1+6Z+---+6,Z" 4)
B andz are the backward shift operators defined by

B'Y, =Y, j=0,x1%2,.... 5)

j!
Z'g =¢_|, j=0%1%2,.... (6)

The polynomials¢ and 6 will be referred to as the autoregressive and moviverage polynomials
respectively of the difference Equation (3).

If ¢(B) =1 then
Y, =6(B)e (7)
The process is said to be a moving-average procesdarfcpfor MA(Q)). Similarly, If (B) =1 then

¢(B)Y, =& ®)
The process is said to be an autoregressive procesdesp (or AR(p)).

A series which becomes stationary after first diffiefeg is said to be integrated of order one, denifted
If AYt is described by a stationary ARM#(q) model, we say thaYt is described by an autoregressive
integrated moving average (ARIMA) model of orget,g, or mathematically ARIMAg,1,0) is written as

9 (B)1-B)'Y, =6(B)e
Let
X, =Y"? ©)
W =(1-B)* X, =0X, (10)
Then, (10) admits an ARMAp( q) Model if ;
W =a,+aW_ +taW_ ,+aW_+.+a, W_, +& -0,.,8., 0,6,
T0p4& 3 T T A piguGig

(11)

§ =—atW—aW,, —aW_,—aW s —..ma W _,+0,,6§.,+0,:8, (12)

+ ap+4et—3 Tt ap+q+1et—q
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Sa)=> & (13)
t=1

where Y, is the original seriesX; is the transformed serie<33'i d=12,...,p+Lp+2,..,p+tqQq +1>
are the sequence of the parameters of ARMAY process,§ is the white noise proces§, ~ N (0, 02)

and S(a) is the model residual sum of squares.

1.2 Multivariatetime series

Multivariate time series is an extension of the Univariat® series. Multivariate time series in practice a
best considered as components of some vector valued enme{é(t} having not only serial dependence

within each componer{tYit} and {Yh}, i Z j . Much of the theory of univariate time series extends in a

natural way to the multivariate case. In multivariéiee series, attention is confined to vector autoregressiv
(or VAR) models. The univariate autoregressive movingape models can be readily extended to the
multivariate case, in which the stochastic process thagtrgées the time series of a vector of variables is
modeled. The most common approach is to consider a vectoregmgssive (VAR) model. A VAR
describes the dynamic evolution of a number of variabtea their common history [3]. If we consider two

variables,Y, and,,, a first order VAR(1) would be given by
Ylt =Ut ¢11Yl(t—1) + ¢12Y2(t—1) tZ (14)
th =K, + ¢21Y1(t—1) + ¢22Y2(t—1) + Z, (15)

Where Z; and Z, are two white noise processes (independent of the yisfoY;, andY,,) that may be

correlated. Hence, # 0O it means that the history c}l’lt helps explainingYZt. Equations (17 and 18) can
be written as:

Y (), (8 %), (% -
Y2t /'12 ¢21 ¢22 ZZt

Or with appropriate definitions, as
Y =U+0OY, +7 (17)
vi / 5 /
where Y, = (Yn ’YZI) and Z = (211 , 221) .

This can be extended to a general vector autoregressivel mwiodeder p (VAR(p)), hence for ak-
dimensional vecto??t given by

Y;:Iu-l-elv.t—l-l-"'-l-epvl—p-l-zl) (18)
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where eacif)i is aK X K matrix andZ[ is ak-dimensional vector of white noise terms with covariance

matrix 2. . As in the univariate case, we can use the lag opdmtimfine a matrix lag polynomial
oL)=1,-0,L-..-0,L" (19)
Where | « is thek-dimensional identity matrix, hence VAR can be written as
O(L)Y, =u+2, (20)
The matrix lag polynomial is & X K matrix where each element correspondg-tio order polynomial.
2 Materials and Methods

The data used in this research is the daily exchange rtite Niigerian currency naira to other currencies for
the period of January, 2002 — December 2014 which was obtoradthe Central Bank of Nigeria. The
Average Monthly Exchange Rate (AMER) was computed foredixcsed currencies namely, Dollar, Pounds
Sterling, Euro, Yen, West Africa Unit of Account (WAUAnhé& Commuaute Financiere Africaine (CFA).
The AMER became necessary in order to obtain a memé&al measure of the daily exchange rates due to
calendar problem often encountered in time serieysisallhus, the AMER was computed for the period of
January 2002 — December 2014.

2.1 Data tr ansfor mation

In most time series data, transformation is requiredrder to stabilize the variance of the data in other
words the series do not depend on the mean of the data. Traasfor is a preliminary analysis often
associated with non-stationary time series data, hiieceeason for transformation could be that the amount
of variability in a time series is not constant acrasetor to study what is left in a data set after hgvi
removed the trends (see [18,14,19]). A simple but oftenteféeway to stabilize the variance across time is

1 1 1
to apply the common transformatioEk)gY, \/7, V’YZ’ W,W} to the time series. In this study we

would apply the power transformation to time seriesa dais is necessary in order to have a uniform
transformation for all the variables under consideratiorapiplying the power transformation, we split the

observed time serie{sYt ,t=1,2,...,n} chronologically intolMfairly equal different groups and compute
their mean \7i,i =1 2,...,m} and standard deviatior{‘ﬁj, =1 2,...,m} for the groups. We then
regress the natural logarithms of the group standard devia{tfopsj =1 2,...,m} against the natural
logarithms of the group meal{?i, i=1 2,...,m} and then determine the sIogB,, of the relationship.
[20]:

log, G, =a + Blog, Y, +¢& (21)

The power transformation is given as

log. Y, B=1
X, = 22
t { Yt(l—ﬂ) ,8?51 (22)
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3 Data Analysis and Applications

Based on (2), the required transformation for each ofahi@bles were obtained, resulting from estimates of
the fitted line slopesf's). It was observed that all the variables required transfasmat their data except

for CFA. Table 1 illustrates the transformation requiifier each of the variables.

Table 1. Transformation required for the variables

Variable (Currency) ,8 -Value Transformation

Dollar -9.253 X, = Ytlo.zss

Pounds -4.583 X, = Yt5.583

Euro -0.7024 X, = Y11.7024

Yen 0.707: X, = Ylo.2927

WAUA -1.813 X, = Yt2.813

CFA 0.1336 No transformation is required.

Having obtained the transformed series for each of the aiables and ARIMA models fitted to the
variables, the AIC selection criteria was used to seldith models gives a better fit based on a list of
candidate models computed for each of variables. Table eharies the fitted models for these variables

Table 2. Summary of fitted models

Variable (Currency) Fitted model M odel equation
Dollar ARIMA(1,1,1) Y, =-0.4589Y,_, - 0.7143¢_, + ¢
Pounds Random walk Y =Y_,+te
Euro ARIMA(0,1,1) Y, =-02974_ +¢
Yen ARIMA(1,1,0) Y, =0.3586Y_ +¢
WAUA ARIMA(0,1,1 7 = _
(0.11) Y =-0.365%_ +e
CFA ARIMA(1,1,0) Y, =-0.2389_, +e

The time series plots of theMER for the six variables (currencies) are illustrated igsFil-6 while the
SACF and SPACF of the residual plots of the fitted mod®l§ife of the variables are illustrated in Figs. 7-
16.
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Fig. 1. Timeseries plot of the AMER for Fig. 2. Timeseriesplot of the AMER for
Dollar Pounds Sterling
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Fig. 5. Time seriesplot of the AMER for Fig. 6. Timeseriesplot of the AMER for
WAUA CFA

SACF and SPACEF of the residual plots of the fitted meét® five of the variables are shown below
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Fig. 7. Autocorrelation plot of residuals of Fig. 8. Partial autocorrelation plot of residuals
ARIMA(1,2) model for Dollar of ARIMA(1,1) modéd for Dollar
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Fig. 9. Autocorrelation plot of residuals of Fig. 10. Partial autocorrelation plot of
MA(1) model for Euro residuals of MA(1) model for Euro
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Fig. 15. Autocorrelation plot of residuals of Fig. 16. Partial autocorrelation plot of
AR(1) model for CFA residualsof AR(1) model for CFA

In the case of the Pounds Sterling, a preliminary aisabfsthe time series using the SACF and SPACF
shows that the series looks like a white noise procegs. Ei7-18 depicts the SACF and SPACF of the
Pounds Sterling series.

& vy iy By N e v Fbe & N S Py wdnw

- o » Yy g g = i )

.. | I

I'l”"-lf'lTT" ,I..rlllrl,_n___

Far i doebese o 0 egi

w - W - M " " 8 - -

e [

Fig. 17. Autocorrelation plot of the differenced Fig. 18. Partial autocorrelation plot of the
seriesfor Pound Sterling differenced seriesfor Pound Sterling

3.1 Multivariate analysis

This section we consider fitting a multivariate time senexlel to the Average Monthly Exchange Rates
(AMER) of the six variables. A Vector AutoregressivModel of order twelve VAR(12) is applied using

Grel software to select the most appropripterder of the VAR model using the HIC, BIC and AIC

criterion.

3.2 Selection of the VAR order p

The choice of an appropriate ordefor the estimates of the VAR model was determined uiegAIC,
BIC and HQC criterion using the Gretl software. Table Sires the log-likelihood ratio for lags 1 to 12 and
its corresponding AIC, BIC and HQC values. The asteriskswbéndicate the best (that is, minimized)
values of the respective information criteria, Akaikiecion (AIC), Schwarz Bayesian criterion (BIC) and
Hannan-Quinn criterion (HQC).
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Table 3. VAR system, maximum lag order 12

Lags Loglik p(LR) AlC BIC HQC

1 5458.2454: 83.337052 84.254307* 83.70978:

2 5394.72088 0.00000 82.920013* 84.623487 83.612227*
3 5360.51133 0.00089 82.947141 85.436834 83.95883¢

4 5342.23723 0.44320 83.215716 86.491627 84.546896
5 5318.08289 0.08247 83.395195 87.457325 85.045859
6 5292.14166 0.04207 83.547601 88.395950 85.5177417

7 5263.37049 0.01275 83.657129 89.291696 85.946758
8 5230.99159 0.00229 83.711994 90.132780 86.321107

9 5201.90821 0.01108 83.816791 91.023796 86.745387
10 5157.46184 0.00000 83.688816 91.682039 86.936895
11 5105.59107 0.00000 83.448350 92.227792 87.015912
12 5058.80664 0.00000 83.284949 92.850610 87.171995

Based on the result of Table 3, a VAR model of ompe? is the most appropriate model to use. We

therefore proceed by fitting Vector Autoregressive nhoflerder two VAR(2) to the six variables.

3.3 Vector autoregressive model for Dollar

The estimates of the VAR(2) of the AMER for Dollaeahown in Table 4.

Table4. VAR(2) parameter estimates of the AMER for dollar

Variable Co-efficient Std error t-ratio Remarks
Constant 1205.65 657.092 -1.8348 Not Significant
Y1 0.99415:i 0.1127¢ 8.817« Significan

Y 1o -0.0529731 0.113358 -0.4673 Not Significant
Y o1 -1.371108e-012 6.28668e-12 -0.2181 Not Significant
Yoo 3.37565e-012 6.30687e-012 -0.5352 Not Significant
Ysi1 0.103098 0.0700886 1.4710 Not Significant
Ysio -0.10309:! 0.070695! -1.538( Not Significan

Y 411 3236.27 1318.4 2.4547 Significant

Y 42 -2036.48 1447.33 -1.4071 Not Significant
Ysia -0.272922 0.194013 -1.4067 Not Significant
Ysio 0.241743 0.18688 1.2936 Not Significant
Yer1 1458.8° 959.56¢ 1.520: Not Significan
Yeto -664.545 958.08 -0.6936 Not Significant

From Table 4 it shows that only one variable Yep) (&6ntributes to the value of Dollar. It also reveals that
the value of Dollar at any given time using the VAR (Zjésermined by the value of Dollars at titag and

Yen att-1.

The model equation isYA1t =0994%, , +323627Y,_, +¢&

3.4 Vector autoregressive model for pounds sterling

The estimates of the VAR(2) of the AMER for PoundsriBtg are shown in Table 5.
From Table 5 it shows that only one variable Eurg) @ontributes to the value of Pounds Sterling. It also

reveals that the value of Pounds Sterling at any given tgimg the VAR (2) is determined by the value of
Pounds Sterling at timel and Euro at timets1 andt-2.

10
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Table 5. VAR(2) parameter estimates of the AMER for pounds sterling

Variable Co-efficient Std error t-ratio Remarks

Constar 9.57721e+01 1.29535e+01 0.073¢ Not Significan
Y11 -2.35039e+09 2.22268e+09 -1.0575 Not Significant
N 2.31799e+0 2.23466e+0 1.037: Not Significan
Y1 0.941758 0.123932 7.5900 Significant

Yoo -0.0269465 0.12433 -0.2167 Not Significant
Ysi1 3.68249e+0 1.38168e+0 2.665: Significan

Yao -3.75579e+09 1.39366e+09 -2.6949 Significant

Y a1 2.08224e+01 2.59901e+01 0.801: Not Significan

Y a0 -1.85546e+013 2.85317e+013 -0.6530 Not Significant
Ysia -3.28038e+09 3.82465e+09 -0.8577 Not Significant
Ysio 4.20743e+09 3.68404e+09 1.1421 Not Significant
Y1 -3.49117e+013 1.89163e+013 -1.8456 Not Significant
Y2 1.87796e+0 1.8887e+01 0.994: Not Significan

The model equation iy;t = 0.9418,,_, +3.6824%+09Y,,_, —3.7557%+09Y;_, + &

3.5 Vector autoregressive model for Euro

The estimates of the VAR(2) of the AMER for Euro shewn in Table 6.

Table 6. VAR(2) parameter estimatesof the AMER for Euro

Variable Co-efficient Std error t-ratio Remarks
Constant -2137.62 1852.68 -1.1538 Not Significant
Y11 0.15754. 0.31789! 0.495¢ Not Significan
Yo -0.0123727 0.3196613 -0.0387 Not Significant
Y o1 -6.29127e-012 1.77254e-011 -0.3549 Not Significant
Y o2 2.58059-01Z 1.77823-011 0.145! Not Significan
Ysi1 1.59251 0.197616 8.0586 Significant

Y3 -0.55269° 0.19932i -2.772¢ Significan

Y 411 5932.98 3717.24 1.5961 Not Significant
Y 42 -3137.53 4080.76 -0.7689 Not Significant
Y51 -1.2399¢ 0.54702: -2.266" Significan

Ysio 0.847933 0.52691 1.6093 Not Significant
Yer1 -871.73: 2705.5 -0.322: Not Significan
Yei2 677.328 2701.32 0.2507 Not Significant

From Table 6 it shows that only one variable WAUA)(¢ontributes to the value of Euro. It also reveals

that the value of Euro at any given time using the VARig2)etermined by the value of Euro at tintels

andt-2 as well as the value WAUA &il.

The model equation isY, =1.5925%, , - 0.55269%,, , —1.2399%, , +e

3.6 Vector autoregressive model for Yen

The estimates of the VAR(2) of the AMER for Yen anewn in Table 7.

11
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Table 7. VAR(2) parameter estimates of the AMER for Yen

Variable Co-€fficient Std error t-ratio Remarks
Constant -0.0215931 0.0506119 -0.4266 Not Significant
Y1 4.24777e-06 8.68443e-06 0.4891 Not Significant
Y -5.89148-06 8.73127-06 -0.674¢ Not Significan

Y o1 0 0 0.0159 Not Significant
Yoo 0 0 -1.0994 Not Significant
Y 3.99801e-06 5.39851e-06 0.7406 Not Significant
Y -1.38554e-06 5.44529e-06 -0.2544 Not Significant
Y 411 1.3651¢ 0.10154! 13.443; Significan

Y a2 -0.33492 0.111479 -3.0043 Significant

o -3.086326-05 1.49437-05 -2.063: Significan

Ysio 2.72085e-05 1.43943e-05 1.8902 Not Significant
Y61 0.0935117 0.0739096 1.2652 Not Significant
Yoz -0.11460° 0.073795: -1.553( Not Significan

From Table 7 it shows that only one variable WAUA)(¥ontributes to the value of Yen. It also reveals that
the value of Yen at any given time using the VAR (2)dtednined by the value of Yen at tirhé andt-2
as well as the value WAUA at tintel.

-0.3349%,

4t-2

The model equation is, =1.3651%,

4t-1

-30832@-05Y, , +e
3.7 Vector autoregressive model for WAUA

The estimates of the VAR(2) of the AMER for WAUA aigown in Table 9.

Table 8. VAR(2) parameter estimates of the AMER For WAUA

Variable Co-efficient Std error t-ratio Remarks
Constant -1597.03 711.832 -2.2436 Significant
Y11 0.197692 0.122142 1.6185 Not Significant
Y 12 -0.138393 0.122801 -1.1270 Not Significant
Yor1 -1.66543e-012 6.8104e-012 -0.2445 Not Significant
Yoo -1.68479e-012 6.83227e-012 -0.2466 Not Significant
Y a1 0.386876 0.0759274 5.0953 Significant

Yo -0.325448 0.0765853 -4.2495 Significant

Y a1 5368.09 1428.23 3.7586 Significant

Y a2 -3476.62 1567.9 -2.2174 Significant

Ysiq 0.120208 0.210175 0.5719 Not Significant
Ysto 0.613945 0.202448 3.0326 Significant

Y61 586.987 1039.5 0.5647 Not Significant
Y62 -826.596 1037.89 -0.7964 Not Significant

From Table 8 it shows that the constant term, variablgg&fo) and Y, (Yen), contributes to the value of
WAUA. It also reveals that the value of WAUA at anyei time using the VAR (2) is determined by the
value of WAUA at timet-2 and values of Euro and Yentat andt-2. It also confirms the reason for the
presence of WAUA in the earlier models fog(Euro) and Y (Yen). The model equation is

Y, = —2.2436+ 0.3869Y,,_, — 0.3254Y, , +5368.00Y,_, —347662Y, , + 0.6139Y, , +&
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3.8 Vector autoregressive model for CFA

The estimates of the VAR(2) of the AMER for CFA ah®wn in Table 9.

Table 9. VAR(2) parameter estimatesof the AMER For CFA

Variable Co-efficient Std error t-ratio Remarks
Constant -0.0961157 0.0711225 -1.3514 Not Significant
Y11 -5.80468-06 1.22038-05 -0.475¢ Not Significan
Y12 1.05132e-05 1.22696e-05 0.8569 Not Significant
Yo 0 0 1.4227 Not Significant
Yoo 0 0 -1.1331 Not Significan
Ysi1 2.07073e-05 7.58627e-06 2.7296 Significant
Y3 -1.37394-05 7.652¢06 -1.795¢ Not Significan

Y a1 0.183023 0.142701 1.2826 Not Significant
Y 42 -0.0542741 0.156656 -0.3465 Not Significant
Ysia -3.91948e-05 2.0999e-05 -1.8665 Not Significant
Ysio 1.99803e-05 2.02275e-05 0.9878 Not Significant
Y1 0.47283! 0.10386: 4,552¢ Significan

Yero 0.365834 0.103701 3.5278 Significant

From Table 9 it shows that only one variablg(Fruro) contributes to the value of CFA. It also reveals that
the value of CFA at any given time using the VAR (2)atedmined by the value of CFA at timy& andt-2
as well as the value of Euro tirhé.

The model equation isYA6t =207k-05Y, , +047283%&_, + 0.36583%,_, +e

3.9 Plots of the Univariate forecast and the multivariate forecast with the actual
values of the AMER for 2014

The plots of the univariate and multivariate forecasthef2014 AMER of the six currencies are illustrated
in Figs. 19-24.

Time Series Plot of Forecasts and Actual Values

170 Variable

—@®— ACTUAL VALUE

—®— UNIVARIATE FORECAST
MULTIVARIATE FORECAST

Naira

150

— T T T T
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 19. Plot of the AMER univariate and multivariate forecast for Dollar with the actual valuesfor
2014
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Time Series Plot of Forecasts and Actual Values

265 Variable

—@— ACTUAL VALUE

—®— UNIVARIATE FORECAST
MULTIVARIATE FORECAST

260

2554
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250

2454

T — T T
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 20. Plot of the AMER univariate and multivariate forecast for Pounds Sterling with the actual
valuesfor 2014

Time Series Plot of Forecasts and Actual Values
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Fig. 21. Plot of the AMER univariate and multivariate forecast for Euro with the actual valuesfor
2014

Time Series Plot of Forecasts and Actual Values
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Fig. 22. Plot of the AMER univariate and multivariate forecast for Yen with the actual valuesfor 2014
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Time Series Plot of Forecasts and Actual Values
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Fig. 23. Plot of the AMER univariate and multivariate forecast for WAUA with the actual values for
2014

Time Series Plot of Forecasts and Actual Values
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—@— ACTUAL VALUE

—®— UNIVARIATE FORECAST
MULTIVARIATE FORECAST

Naira

0.28 4

Fig. 24. Plot of the AMER univariate and multivariate forecast for CFA with the actual valuesfor
2014

The plots of the univariate forecast and multivariateedast with the actual values of AMER of 2014
showed general a downward slope of the multivariate foreehaisth suggests that most of the variables
contributes negatively to the multivariate forecast val@s the other hand, the univariate forecast plots
move almost in the direction of the actual values excefAKER of Euro.

4 Results and Discussion

4.1 Comparison of the univariate models and multivariate models

This section outlines a comparison of the univariate modettenchultivariate model. Table 10 outlines the
mean absolute percentage error (MAPE) of each of thasables by comparing the univariate method
MAPE and the multivariate method MAPE. The MAPE of thévanate and the multivariate methods are
compared, the method with a lesser MAPE is chosen agprdferable method for the variable been
considered.
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Table 10. Comparison of the univariate and multivariate models using mean absolute per centage
error (MAPE)

Variable Univariate model Multivariate model Remar ks

mape % mape %
Dollar 0.7¢ 3.57 Univariate Model is Preferat
Pounds Sterling 2.05 3.04 Univariate Model is Preferable
Euro 3.20 3.06 Multivariate Model is Preferable
Yen 3.27 10.6¢ Univariate Model is Preferak
WAUA 1.22 5.41 Univariate Model is Preferable
CFA 3.12 5.7¢ Univariate Model is Preferat

4.2 Discussion of results

In line with the aim of this research study, a univariahd multivariate time series models for each of the
six variables were fitted the results based on theirnn@ssolute percentage error (MAPE) shows that
univariate method is preferable for Dollar, Pounds Sterlifemn, WAUA and CFA. On the other hand, only
one of these variables Euro shows that the multivariatbades preferable. Furthermore, the justification
of these results explains the reason why Euro contritsitgsficantly to three other variables namely;
Pounds, WAUA and CFA) which suggests a multivariate mfitdebetter.

5 Conclusion

Based on the results obtained, the univariate time series gibetter model for Dollar, Pounds Sterling,
Yen, West African Unit of Account and CFA. Similarljet forecast plots compared to the actual values for
these variables also illustrates how close these valaasitir the actual values. The Multivariate time series
model is preferable for only Euro, forecast plots alkmstrates how close these values are to the actual
values. The mean absolute percentage error (MAPEus&t as a forecast accuracy measure in drawing the
conclusion as to which of the two methods gives a much clppepxdmate values to the actual values.
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