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ABSTRACT 
 

Previously, in the calculation of the internal energy of the ideal gas in statistical mechanics, it has 
been supposed that the volume is a constant, which does not depend on any arguments. However, 
the volume depends on pressure and temperature and its partial derivative is not equal to zero. In 
this paper, the dependence of the volume on pressure and temperature is taken into account, and 
the internal energy is calculated exactly. It differs from the traditional internal energy by the product 
of the pressure and volume. This explains three paradoxes in thermodynamics. It follows that the 
isochoric heat capacity equals the isobaric one. It is shown that the derivation of the Mayer’s 
relation which connects the isochoric and isobaric heat capacities, is wrong. 
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1. INTRODUCTION  
 
The canonical partition function of a classical         
and discrete system in statistical mechanics is 
[1−4]:  
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Here, k is the Boltzmann constant, T is 
temperature and Ui is the energy of the system in 
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the respective microstate. The internal energy of 
a system can be obtained through the partition 
function: 
 

2 ln
.

iU

Z
U kT

T

∂ =  ∂ 
                      (2) 

 
It is important to note that the derivative in the 
above equation must be taken at constant 
energies, but not at a constant volume. In [2,3] it 
was taken at a constant volume. This is a 
mistake, one can check that by simple 
calculation. The internal energy of the ideal gas 
was obtained from equation 2 for a continuous 
case: 
 

3

2
U NkT=                        (3) 

 
where N is the number of atoms.  
 
However, the partition function of the ideal gas 
depends on the volume. In the previous 
calculation of the internal energy of the ideal gas, 
the derivative of the volume with respect to 
temperature was supposed to be zero, which is 
wrong. In the present paper, the exact calculation 
of the internal energy of the ideal gas has been 
performed taking this derivative into account. 
 

2. THEORY 
 
For a continuous system of N particles, the 
partition function is [1,5]:  
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where h is the Planck constant, and Γ is the 
phase space. The average energy of such a 
system is: 
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This expression is equivalent to equation 2. It is 
important to note that both for discrete and 
continuous systems the only value being kept 
constant in the partial derivative in equation 2 is 
the energy U.  
  
Let us perform a simplified derivation of the 
partition function for a monatomic ideal gas [1] 
(we omit h3N for simplicity). The energy, U(Γ), 
equals the sum of the kinetic energies of the 
atoms: 
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Here, pi is the momentum of the i-th atom, and m 
is its mass. Introducing equation 6 into equation 
4, one obtains a 6N-dimensional integral: 
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This integral equals:  
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Here, dp1 and dr1 are the elements of the momentum space and position space respectively of the 
first particle.  
 
Introducing equation 8 into equation 2, one obtains: 
 

23
.

2 U

kT N V
U NkT

V T

∂ = +  ∂ 
                                                                     (9) 

 
In the previous calculations, it was supposed that V is a constant which does not depend on any 
arguments and the derivative in the right hand part of equation 9 equals zero. As is mentioned above, 
it is physically wrong to assume that the volume is a constant, which does not depend on any 
arguments. Even when the volume is constant, it depends on temperature and pressure, and the 
derivative V T∂ ∂  is, in general, not zero. Let us take the partial derivative in equation 9 at a constant 
energy using the equation of state: 
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.PV NkT=                       (10) 
 
One can show that, in this case, equation 9 turns 
to: 
 

3
.

2
U NkT PV= +                                   (11) 

 
If this result is correct, then the internal energy of 
the ideal gas (and may be that of all physical 
systems) has an intrinsic integral term PV. So, 
the internal energy of the ideal gas (or of a 
physical system) must be written like this: 

            
*U U PV H= + =                        (12) 

 
where U is the traditional internal energy, and H 
is enthalpy. 
 
One can immediately explain the following 
contradiction in thermodynamics. For the heating 
of a substance by compression without the heat 
losses, the first law of thermodynamics is: 
 

d d .P V U= −                                           (13) 
 
From this equation, the following derivatives 
follow: 
 

P
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                                         (14) 

 
and 
 

.
S

U
P

V

∂  = − ∂                                          

(15) 

 
However, P and S cannot be constant 
simultaneously, and a contradiction occurs. It can 
be resolved using the result obtained. The first 
law of thermodynamics for the heating of a 
system by compression must look like: 
 

d d d .P V U V P= − −                                (16) 
 
From this, equation 14 follows, but equation 15 is 
not true. 
 
3. DISCUSSION AND CONCLUSIONS 
 
If the derivations performed in this paper are 
correct, then the first law of thermodynamics for 
heat exchange has the following form: 

*
δ d d d d dQ U H U P V V P= = = + +     (17) 

 
where δQ is the heat introduced into the system. 
For a constant volume, equation 17 turns to:  
 

*d d d dT S U U V P= = +                      (18) 
 
where dS is the change in entropy. Previously, it 
has been supposed that the last term in this 
equation is absent. For a constant pressure, 
equation 17 turns to: 
 

*d d d d .T S U U P V= = +                      (19) 
 
Previously, it has been supposed that this 
equation is valid also for varying pressure [4,6]. 
Let us prove that equation 19 is valid only for a 
constant pressure. Let us assume that the 
pressure is not constant in it. One can notice that 
δQ = TdS = dHP in equation 19 is a full 
differential, where dHP is the enthalpy change at 
a constant pressure. Therefore, the derivatives 

( )1
UV

∂
∂  and ( )

V

P
U

∂
∂  must be equal. 

However, for the ideal gas, they equal 0 and 
2

3V , respectively. In reality, these derivatives 

must also be taken at a constant pressure, thus 
both are equal to zero. 
 
From equations 18 and 19 it follows that the 
isochoric heat capacity, CV, equals the isobaric 
heat capacity, CP. In [7], the heat capacities             
of argon and nitrogen were measured 
experimentally, and it was found that CV = CP. 
Let us cite A. Guy [7]: "In a standard experiment 
in physical chemistry, students determine CP/CV 
= 1.4 for a diatomic gas such as nitrogen, but 
nowhere in the scientific literature is there a 
report on the direct experimental determination of 
both CP and CV for any gas." 
 
There is a relation between the isobaric heat 
capacity and the isochoric heat capacity (Mayer’s 
relation) [6]: 
 

2

P V

T
C C

α
ρβ

− = ,                                  (20) 

 
where α is the coefficient of thermal expansion, ρ 
is density, and β is the isothermal 
compressibility. One can show that the derivation 
of Mayer’s relation is not correct. Let us consider 
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the key part of this derivation and expand S as a 
function of T and V: 
 

d ( , ) d d
V T

S S
S T V T V

T V
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whence 
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and 
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One can see that this consideration is equivalent 
to the following one. Let us take the following 
expansion: 
 

, ,

d ( , , const) d d
V P T P

S S
S T V P T V

T V

∂ ∂   = = +   ∂ ∂   
 (24) 

 
and divide it by dT. The derivatives on the            
right hand side are equal to zero, and at a 
constant P the arguments V and T are not 
independent. 
 
It is necessary to note that, from equation 19, the 
following derivative was obtained and given in 
the tables of thermodynamic derivatives, for 
example [8]: 

 
1

.
V
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U T

∂  = ∂ 
                      (25) 

 
Nevertheless, from equation 17, it follows that 
the partial derivative in equation 25 is taken also 

at a constant pressure, ( )
,V P

S
U

∂
∂ , and should 

equal zero. From equation 18, it follows that 
equation 25 for heat exchange should be written 
like this: 
 

1 1
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The derivative of the pressure in equation 26 is 
given in [8]. For the ideal gas this equation turns 
to: 
 

5
.

3V

S

U T

∂  = ∂ 
                      (27) 

The results of the present paper can explain a 
paradox in the ideal gas [9−12]. Two variables 
are necessary to determine the properties of a 
gas, such as its internal energy. In the kinetic 
theory, the internal energy of the ideal gas is 
given by equation 3. The paradox is that this 
energy depends only on one variable, T, but 
must depend on two. From equations 3 and 10 it 
follows that:  
 

3
( , ) .

2
U P V PV=                       (28) 

 
Here, the energy depends on two variables. 
 
This paradox is valid also for real gases 
because, in a wide range of temperatures and 
pressures, they only minimally deflect from the 
ideal gas. For example, the molar volumes of 
argon, helium, hydrogen, nitrogen, oxygen and 
methane deviate at about 0.1 percent of 22.414 
litres at standard temperature and pressure and 
deviate even less for higher temperatures and 
lower pressures. For argon, the difference 
between the theoretical and experimental heat 
capacity is less than 0.1 percent [9−11,13]. For 
real gases, there will be a weak dependence of 
thermodynamic properties on volume in equation 
3 and a strong dependence on volume in 
equation 10. 
 
It is interesting to note that the obtained result 
explains the enthalpy paradox found in 
[10,11,14]. Thermodynamic potentials internal 
energy, U, and enthalpy, U + PV, are 
qualitatively different, but, for the ideal gas, they 
are identical thermodynamically and differ only in 
the multiplying factor in that U equals 1.5PV, and 
H equals 2.5PV. If everything were correct in 
traditional thermodynamics, then U would not be 
thermodynamically identical to H even for the 
ideal gas. 
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