
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: aaalhatem@gmail.com, aaalhatim@yahoo.com; 
 
 
 

Chemical Science International Journal 
 
23(4): 1-11, 2018; Article no.CSIJ.42946 
ISSN: 2456-706X 
(Past name: American Chemical Science Journal, Past ISSN: 2249-0205) 

 
 

 

Tautomeric Equilibria of Substituted 2-Pyridone/2-
Hydroxypyridine in the Gas and Aqueous Phases  

 
Aamer A. Alhatem1* 

 
1
Department of Chemistry, College of Education for Girls, University of Mosul, Mosul, Iraq. 

 
Author’s contribution 

 
The sole author designed, analyzed, interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/CSJI/2018/42946 

Editor(s): 
(1) Pradip K. Bhowmik, Professor, Department of Chemistry, University of Nevada Las Vegas,  

USA.  
Reviewers: 

(1) Nobuaki Tanaka, Shinshu University, Japan. 
(2) Toluwase H. Fatoki, Federal University of Technology Akure, Nigeria. 

(3) Max Majireck, Hamilton College, USA. 
Complete Peer review History: http://www.sciencedomain.org/review-history/25882 

 
 
 

Received 28
th

 May 2018 
Accepted 2nd August 2018 

Published 14
th

 August 2018 

 
 

ABSTRACT 
 
Heats of formation, entropies and Gibbs free energies for the twenty structures of substituted 2-
pyridone and 2-hydroxypyridine were studied using semiempirical Austin Model (AM1) and 
Parametric Method 3 (PM3) calculations at the self-consistent field level, both in the gas and liquid 
phases, with full geometry optimization. It was revealed from the study that 2-hydroxypyridine is 
predominant in gas phase, while 2-pyridone in the liquid phase which agrees with the experimental 
and theoretical predictions. All substituents such as F, Cl, OH, CH3, NH2, NO2, CHO, CN, CF3 
stabilize the 2-pyridone in the gas and liquid phases except F, Cl and NH2 in PM3 calculations in the 
gas phase. The substituents stabilization is more effective in liquid phase. This was also confirmed 
by thermodynamic calculations and isodesmic reactions. 
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1. INTRODUCTION 
 

The tautomerism of 2-pyridone/2-hydroxypyridine 
plays a significant role in many areas of 
chemistry and biochemistry, viz., the 

rationalization of structures, properties, and 
reactivities in heterocyclic chemistry [1,2]; 
concepts and probes of aromaticity [3]; measures 
of intrinsic stabilities verse solvent effect [4,5]; 
mechanisms of enzymatic catalysis and receptor 
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interactions [6]; and possibly even mutations 
during DNA replication [2,7]. Early investigations 
of tautomerism of 2-pyridone were performed by 
Baker and Baely [8]. Since then, most                
studies have dealt with the equilibrium in liquid 
media [1,9]. X-ray crystallography has           
shown that pyridone is also favored in the solid 
[10-12]. 
 

The dominance of pyridone tautomer in solution 
neat liquid and solid has been shown to be the 
results of strong solvent effects, ion binding and 
self associations [1,4,5,10-16]. In contrast, IR 
and UV measurements have established that the 
tautomers are nearly equal in energy when 
unassociated in the vapor [4,17,18]. IR 
spectroscopy in inert gas matrices [19], and 
microwave spectroscopy [20] have led to 
conclusion that the free energy differences 
between hydroxy form and oxy form is 0.478-
0.717 kcal/mol in favour of the hydroxy form.  A 
similar gas-phase tautomerizations have been 
investigated for a number of lactam/lactim              
pairs by using IR [21], UV [22], photoelectron 
[23,24], ion cyclotron resonance [25-27] and 
mass spectroscopy [28,29]. All these gas–             
phase equilibria showed marked differences                   
from solution data [1,2,9,13-17,30]. 
 
Numerous theoretical studies have                 
attempted previously to reproduce the 
tautomerization energy for pyridone/ 
hydroxypyridine and similar heterocyclic systems 
[31-38].                                                              
 
In solution state, the energy difference between 
two tautomers seems to be very small and 
depending on the polarity of the solvent, polar 
solvents favour the 2-pyridone whereas in non-
polar solvents, both tautomers can co-exist [39, 
40]. The experimental tautomerism free energy 
changes for 2-pyridone in the gas phase and 
acetonitrile was  -0.81 and 2.96 kcal/mol 
respectively [40]. 
 
Electronegative substituents at the C-6 position 
have been shown [41] to have a considerable 
effect on the pyridone/hydroxypyridine 
equilibrium, both in the gas phase and in a 
variety of solvents. The studies of Beak et al. 
[4,42] have revealed such experimental data on 
several chloro derivatives of 2-hydroxypyridine 
and 2-mercaptopyridine. Experimentally, the 
equilibrium between 6-chloro-2-pyridone and 6-
chloro-2-hydroxypyridine in the gas phase, water 
and carbon tetrachloride reported that, both in 

the gas phase and in carbon tetrachloride, the 
hydroxy-form is dominant while in an                 
aqueous environment, the 2-pyridone is 
preferred [43-46].                                                                 

 
The main objective of this paper is to give more 
theoretical insight to the problem of the 
tautomerism of 2-pyridone/2-hydroxypyridine  
(Scheme 1) by studying the effect of   
substituents  X (X= F, OH, NH2, CH3, CN, NO2 
and CF3) at C-6 position  in the gas phase (ε =1) 
and liquid phase (ε =78.4) by                             
using semiempirical methods AM1 [47] and               
PM3 [48]. 
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Scheme 1 

 
2. MATERIALS AND METHODS 
 
Materials are substituted 2-pyrydone.2-
hydroxypyridine. Substituents are F, Cl, OH, 
CH3, NH2, NO2 and CHO. Theoretical 
calculations were performed by using well         
known AM1 (47) and PM3 (48) for             
calculations.  

 
3. RESULTS AND DISCUSSION 
 
The present work was first performed by AM1 
method and then by PM3 method. 
  

3.1 AM1 Method 
 
Calculations were first performed in the gas 
phase and then in liquid phase. 

 
3.1.1 AM1 calculations in the gas phase (ε =1) 

 
The calculated molecular structures of 20 
compounds are given in Fig. 1.  

 
The calculations were first performed on a parent 
compounds (2-pyridone and 2-hydroxypyridine 
without substitution), and then on a substituted 
parent compounds. 
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Fig. 1. Molecular structures of the substituted 2-Pyridone and 2-Hydroxypyridine 
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Scheme 2 
 

a) Parent Compounds (2-pyridone and 2-
hydoxypyridine) 

 

2- hydroxypyridine: Exists in two forms: 
 

The forms 1B and 2B (Scheme 2) differ in the 
orientation of OH group relative to the nitrogen 
atom. The calculated heat of formation of 2B               
(-11.854 kcal/mol) is more negative in compared 
to 1B (-7.977 kcal/mol), suggesting that 2B is 
preferred. This agrees with theoretical 
calculations done by other researchers [32,34, 
49]. 
 

Tautomerism:  
 

Thermodynamic calculations of Gibbs free 
energies of 2-pyridone and 2-hydroxypyridine are 
presented in Table 1. 

H
N O N O

H  

2-pyridone (A)         2-hydroxypyridine (B) 
 

Scheme 3 
 

The Gibbs free energy of the tautomerization 
(∆G) (Scheme 3) at 298.15 K were predicated by 
adding the heat of formation ∆Hf and entropic          
(-T∆S) terms. The calculated Gibbs free              
energy for tautomerization ∆G is - 0.540 
kcal/mol, which is in favour of the product            
(2-hydroxypyridine). This result agrees with                    
the experimental values recorded by other 
workers [19,20]. It also agrees with the 
theoretical calculations [33,34,40]. This                      
∆G has been taken as reference for              
determining the relative stability of X-              
substituted 2-pyridone and 2-             
hydroxypyridine. 
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b) Effect of substituents: 
 

Effect of F:  
 
The thermodynamic calculation of compound 3 
(Fig. 1) showed that ∆G = - 0.240 kcal/mol (Table 
1) was more positive than that of the parent (∆G 
= - 0.540 kcal/mol) suggested that F substituent 
slightly stabilizes the 2-pyridone. 

 
The stabilization effectwas also supported by 
isodesmic reactions [50-56]. A negative value for 
the reaction indicates a less stable, and a 
positive value indicates a more stable product. 
 
 It was observed that ∆Hrxn value of the 
isodesmic reaction of compound 3 (Table 2) is 
positive (0.044 kcal /mol) and that of 4 is 
negative (-0.253 kcal/mol) which suggests that F 
slightly stabilizes the compound 3. This is in 
agreement with the present thermodynamic 
calculation, which predicts a small shift in 
equilibrium to the 2-pyridone compared to parent. 
 
Table 1. Calculated Gibbs free energies (kcal 

mol
-1

) of the substituted 2- pyridine/ 2 –
hydoxypyridine in the gas phase (ε =1) and 

liquid phase (ε =78.4) using AM1 

 

H
N N O

H

X

H

F

Cl

OH

CH3

NH2

NO2

CHO

CN

CF3

A B

G ( = 1) G (

-0.540

-0.240

-0.390

0.300

0.264

-0.080

0.130

1.000

-0.300

0.130

X XO



7.140

7.628

7.315

8.090

7.534

8.433

8.610

8.302

8.075

18.127

7.140

7.628

7.315

8.090

7.534

8.433

8.610

8.302

8.075

18.127



 

  
Effect of Cl:       
 

Thermodynamic calculation of compound 5 (Fig. 
1) shows that ∆G = - 0.390 kcal/mol (Table 1) is 

slightly greater in compared to parent 
compounds (∆G = - 0.540 kcal/mol), which 
suggests that Cl slightly stabilizes the 2-pyridone. 
This is confirmed by the isodesmic reaction of 
compound 5 (Table 2) where ∆Hrxn is negative            
(-0.276 kcal/mol) and that of  6 is also negative           
(- 0.348 kcal/mol), whereas 5 is more positive 
than 6 . This suggests that Cl slightly stabilizes 
the compound 5. This agrees with the             
present thermodynamic calculation (∆G = - 0.390 
kcal/mol) which predicts a small shift in 
equilibrium to the 2- pyridone compared to          
the parent compounds (∆G = - 0.540 kcal/mol). 
But ∆G is still negative, suggested that 6-           
chloro-2-hydroxypyridine is dominant.                     
This agrees with the experimental predictions 
[43- 46]. 
 
Effect of OH: 
 

Thermodynamic calculation of compound 7 (Fig. 
1) shows that ∆G = 0.300 kcal /mol (Table 1) is 
greater in compared to parent (∆G = - 0.540 
kcal/mol) suggested that OH stabilizes the 2-
pyridone. This is confirmed by the isodesmic 
reactions of compound 7 (Table 2) where ∆Hrxn is 
1.138 kcal/mol more positive than that for 8 
(∆Hrxn = 0.243 kcal/mol), which suggests that OH 
stabilizes compound 7. This agrees with the 
present thermodynamic calculation (∆G = 0.300 
kcal/mol) which predicts a small shift in 
equilibrium to the 2-pyridone in compared to the 
parent compounds (∆G = - 0.540 kcal/mol).    
 
Effect of CH3: 

 
Thermodynamic calculation of compound 9 (Fig. 
1) shows that ∆G = 0.264 kcal/mol (Table 1) is 
greater in compared tothe parent (∆G = - 0.540 
kcal/mol), which suggests that CH3 slightly 
stabilizes the 2- pyridone. 
 
This confirmed by the isodesmic reaction of 
compound 9 (Table 2) where ∆Hrxn is positive 
(∆Hrxn = 0.166 kcal/mol) and that of 10 is 
negative (∆Hrxn = - 0.239 kcal/mol), which 
suggests that CH3 stabilizes compound 9. 
 

Effect of NH2 :   
 

Thermodynamic calculation of compound 11 
(Fig. 1) shows that ∆G = - 0.080 kcal/mol (Table 
1) is greater in compared to the parent (∆G = - 
0.54 kcal/mol) which suggests that NH2 stabilizes 
the 2- pyridone. 
 

This confirmed by the isodesmic reaction of 
compound 11 (Table 2) where ∆Hrxn is positive
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Table 2. Evaluation of substituent effects of the substituted 2-pyridone  

2-hydroxypyridine tautomerism via isodesmic reactions (∆Hrxn in kcal/mol), in the gas phase 
 

Isodesmic Reactions F Cl OH CH NH NO CHO CN CF

X

0.044 -0.276 1.138 0.166 0.682 1.528 2.445 0.617 0.975

-0.253 -0.348 0.243 -0.239 0.245 0.817  0.828   0.392  0.444

3 2 2 3

H
N O

+

N

H
N O

+

NN O

H

+

N

N O

H

+

N
X

X

X

X

 

 
(0.682 kcal/mol) and that of 12 is also positive 
(0.245 kcal/mol), but that of 11 is more positive 
than 12, which suggests that NH2 stabilizes the 
compound 11. 
  
Effect of NO2: 
 

Thermodynamic calculation of compound 13 
(Fig. 1) shows that ∆G = 0.130 kcal/mol (Table 1) 
is greater in compared to the parent (∆G = - 
0.540 kcal/mol) which suggests that NO2 
stabilizes the 2- pyridone.  
 
This confirmed by the isodesmic reaction of 
compound 13 (Table 2) where ∆Hrxn (1.528 
kcal/mol) is greater than that of compound 14 
(∆Hrxn = 0. 817 kcal/mol), which suggests that 
NO2 stabilizes the compound 13.  
 

Effect of CHO: 
 

Thermodynamic calculation of compound 15 
(Fig. 1) shows that ∆G = 1.000 kcal/mol (Table 1) 
is greater than the parent (∆G = - 0.540 
kcal/mol), which suggests that CHO stabilizes 
the 2-pyridone.     
 

The stabilization effect is confirmed by the 
isodesmic reaction. It can be seen from  Table 2 
that ∆Hrxn value of the isodesmic reaction of 
compound 15 is 2.445 kcal/mol is greater than 
that of compound 16 (∆Hrxn = 0.828 kcal/mol), 
which suggests that CHO stabilizes the 
compound 15.                                                                                                                                                                                                          
 

Effect of CN: 
 

Thermodynamic calculation of compound 17 
(Fig. 1) shows that ∆G = - 0.300 kcal/mol (Table 

1) is slightly greater than that of the parent (∆G = 
- 0.540 kcal/mol) which suggests that CN slightly 
stabilizes the 2-pyridone. The stabilization effect 
is confirmed by the isodesmic reaction. It can be 
see from Table 2 that ∆Hrxn value of the 
isodesmic reaction of compound 17 is 0.617 
kcal/mol greater in compared to the compound 
18 (∆Hrxn = 0.392 kcal/mol), suggested that CN 
stabilizes the compound 17.   
 
Effect of CF3 :   
 
Thermodynamic calculation of compound 19 
(Fig. 1) shows that ∆G = 0.130 kcal/mol (Table 1) 
is greater than the parent (∆G = - 0.540 kcal/mol) 
which suggests that CF3 stabilizes the 2-
pyridone. 
 
The stabilization effect confirmed by                
isodesmic reaction, it can be seen from                
Table 2 that ∆Hrxn value of the isodesmic reaction 
of compound 19 is 0.975 kcal/mol greater           
than that of compound 20 (0.444 kcal/mol),  
which suggests that CF3 stabilizes the compound 
19.  
 
Therefore, all substituents showed an increase in 
the stability of 2-pyridone. 
 
3.1.2 AM1 calculations in liquid phase (ε = 

78.4) 
 
Calculations were first performed on the parent 
compounds (2-pyridone and 2-hydroxypyridine 
without substitution), and then on the substituted 
parent compounds. 
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a) Parent Compounds (2-pyridone and 2-
hydoxypyridine)           

 
The calculated Gibbs free energies of 2-pyridone 
and 2-hydroxypyridine are shown in Table 1. The 
heat formation of 2-pyridone (A) (∆Hf = - 31.480 
kcal/mol) is more negative in compared to 2-
hydroxypyridine (B) (∆Hf = - 24.204 kcal/mol) 
suggesting that compound (A) is the more stable 
(Scheme 3). This agrees with the previous 
published works [1,4,5,10-16]. 
 
The calculated Gibbs free energy (∆G) for the 
tautomerization (Scheme 3) is 7.140 kcal/mol, 
suggesting that 2-pyridone was predominant. 
This agrees with theoretical and experimental 
predictions [33,34,40]. This ∆G was taken as a 
reference for determining the relative stability of 
X-substituted 2-pyridone and 2-hydroxypyridine. 
     
b)  Effect of substituents 
 

All substituents showed an increase in the Gibbs 
free energy values (∆G) (Table 1) in compared to 
the parents (∆G = 7.140 kcal/mol), suggested 
that all the substituents stabilize the 2-pyrididone 
thermodynamically. This confirmed by the 
isodesmic reactions in Table 3, where all ∆Hrxn 
values of the 2-pyridone are more positive than 
that of 2-hdroxypyridine. 
 

3.2 PM3 Calculations 
  
PM3 calculations were primarily performed in the 
gas phase and then in the liquid phase. 
 

3.2.1 PM3 calculations in the gas phase (ε =1) 
 
Calculations first performed on the parent 
compounds (2-pyridone and 2-hydroxypyridine 

without substitution), and then on the substituted 
parent compounds. 
 
a) Parent Compounds (2-pyridone and 2-

hydoxypyridine)  
 
The calculated Gibbs free energies of 2-pyridone 
and 2-hydroxypyridine are given in Table 4. The 
heat of formation of 2-hydroxypyridine (B) (∆Hf = 
- 18.150 kcal /mol) is more negative than 2-
pyridone (A) (∆Hf = - 15.658 kcal/mol), which 
suggests that the compound (B) is more stable 
(Scheme 3). i.e. 2-hydroxypyridine is 
predominant in the gas phase. This is in 
agreement with the theoretical and experimental 
predictions [4, 17-20, 33, 34, 40]. The calculated 
Gibbs free energy for the tautomerization (∆G) 
(Scheme 3) is - 2.571 kcal /mol (Table 4), which 
is not closed to the experimental value (- 0.81 
kcal/mol) [40] as calculated by the present AM1.  
Therefore, the present AM1 calculation gives 
better result in regard to the Gibbs free energy in 
the gas phase. This ∆G was taken as a reference 
for determining the relative stability of X-
substituted 2-pyridone and 2- hydroxypyridine. 
 
b) Effect of Substituents  
 
The substituents F, Cl and NH2 showed                         
a decrease in Gibbs energy values ∆G                     
(Table 4) in compared to the parent                        
(∆G = - 2.571 kcal /mol), indicating  that the 
substituents destabilize the 2-pyrdone i.e., in 
favour of the product (2-hydroxypyridine). This is 
confirmed by the isodesmic reactions in Table 5, 
where the values of ∆Hrxn of the substituents (F, 
Cl and NH2) in case of the 2-hydroxypyridine are 
more.  

 
Table 3. Evaluation of substituent effects of the X-substituted 2-pyridone 2-

hydroxypyridine tautomerism via isodesmic reaction ns (∆Hrxn in kcal/mol), in liquid phase 
 

Isodesmic Reaction

H
N O

+

N

H
N O

+

N

F Cl OH CH3 NH2 NO2 CHO CN CF3

0.213 -0.222 0.937 0.093 0.659 2.60 2.162 1.505 1.283

N O

H

+

N

N O

H

+

N

-0.378 -0.460 -0.046 -0.144 0.094 1.180 0.922 0.666 0.609

X

X

X

X

X

____________________________________________________________________ 
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Table 4. Gibbs free energies (kcal/mol) of the 
X- substituted 2-pyridone/2-hydroxypyridine 
in the gas phase (ε =1) and liquid phase (ε 

=78.4) using PM3 
 

H
N O N O

H

X

H

F

Cl

OH

CH3

NH2

NO2

CHO

CN

CF3

A B

 -2.571

  -3.001

 -2.798

 -2.414

 -1.617

-4.049

-1.313

 -1.397 

 -2.313

-2.010

X X

G ( = 1) G (

 7.199

7.750

 8.567

 7.533

  7.898

7.439

8.679

 7.485

   8.136

 8.225

 

 

positive than that of 2-pyridone. It suggests a 
destabilization of 2-pyridone. The rest of the 
substituents ( OH, CH3, NO2, CHO, CN and  CF3) 
showed more positive  ∆Hrxn values for the 2-
pyridone than that of the 2-hydroxypyridine, 
which suggests a  more stabilization of the 2-
pyridone. 
 

Therefore, all substituents stabilize the 2-
pyridone, except F, Cl, and NH2. 
 
3.2.2 PM3 calculations in liquid phase (ε = 

78.4) 
   
Calculations were primarily performed on the 
parent compounds (2-pyridone and 2-
hydroxypyridine without substitution), and then 
on the substituted parent compounds. 
 
a ) Parent Compounds (2-pyridone and 2-

hydoxypyridine) 
  
The calculated Gibbs free energies of 2-pyridone 
and 2-hydroxypyridine are given in Table 4. 

 
The heat of formation of 2-pyridone (A) ∆Hf (- 
36.426 kcal/mol) is more negative than that of 2-
hydroxypyridine (B)(∆Hf = - 28.749 kcal/mol) 
which suggests that compound (A) is the more 
stable (Scheme 3). This agrees with previously 
published works [1, 4, 5, 10-16]. 

 
The calculated Gibbs free energy (∆G) for the 
tautomerization (Scheme 3) is 7.199 kcal/mol, 
suggesting that 2-pyridone is predominant in the 
liquid phase, which agrees with the theoretical 
and experimental predictions [33,34,40]. This ∆G 

agrees also with the present AM1 calculation (∆G 
= 7.140 kcal/mol) in the liquid phase. This ∆G will 
be taken as reference for determining the relative 
stability of X-substituted 2-pyridone and 2-
hydroxypyridine.

H
N O

+

N

H
N O

+

NN O

H

+

N

N O

H

+

N
X

X

X

X

Isodesmic Reactions F Cl OH CH3 NH2 NO2 CHO CN CF3

X

-0.363  -0.369  2.616    0.967   -1.497   2.763   2.096   0.659    1.287

0.103   -0.116  2.469  -0.059   -0.162   1.437   0.809   0.411    0.695

Table 5. Evaluation of substituent effects of the X- substituted 2-Pyridone 2-Hydroxy pyridine

tautomerism via isodesmic reactions (Hrxn in kcal/mol)in the gas phase.
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H
N O

+

N

N O

H

+

N

H
N O

+

N

N

N O

H

+

Isodesmic Reactions F      Cl     OH     CH3   NH2   NO2   CHO  CN  CF3

X

0.596    0.389    0.725     0.189     -0.310     3.535     1.141    1.771  1.737

0.025  -0.447    0.341    -0.033     -1.360     1.470     0.924    0.839  0.836

Table 6.  Evaluation of substituent effects on the X- substituted 2-Pyridone 2-Hydroxypyridine

tautomerism via isodesmic reactions (Hrxn in kcal/mol), in liquid phase.

X X

X
X

 

 
b) Effect of substituents 
 

All substituents showed an increase in the Gibbs 
free energy values (∆G) (Table 4) as compared 
to the parents (∆G = 7.199 kcal/mol), which 
suggested that all substituent stabilize the 2-
pyrididone thermodynamically. This is confirmed 
by the isodesmic reactions in Table 6, where all 
∆Hrxn values of 2-pyridone are more positive        
than that of 2-hdroxypyridine. Therefore, 
thermodynamically, all substituent showed an 
increase in the stability of 2-pyridone. 
 

4. CONCLUSION 
 

It can be concluded that 2-hydroxypyridine is 
dominant in the gas phase, while 2-pyridone in 
the aqueous phase, which agrees with the 
theoretical and experimental predictions. 
Thermodynamically, all substituent showed an 
increase in the stability of 2-pyridone in the gas 
and aqueous phases apart from the substituents 
F, Cl and NH2 in PM3 calculations in the gas 
phase. These results were confirmed by Gibbs 
free energy calculations and isodesmic reactions. 
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