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Abstract 
 

Fifth order over-damp nonlinear differential systems can be used to describe many engineering problems 
and physical phenomena occur in the nature. In this article, the Krylov-Bogoliubov-Mitropolskii (KBM) 
method has been extended to investigate the solution of a certain fifth order over-damp nonlinear systems 
and desired result has been found. The implementation of the presented method is illustrated by an 
example. The first order analytical approximate solutions obtained by the method for different initial 
conditions show a good agreement with those obtains by numerical method. 
 

 

Keywords: Non-linearity; over-damp; perturbation; eigenvalues; Runge-Kutta method. 
 
AMS subject Classification: 34E05, 34E10. 
 

1 Introduction 
 
Many engineering problems and physical phenomena arise in the nature lead to over-damp nonlinear 
differential equations. There exist several approaches for analytical approximate solutions, such as, the 
Lindstedt-Poincare method [1], WKB method [2], Multi-time-scale method [3], the Krylov-Bogoliubov-
Mitropolskii [4,5] method etc. The well-situated and widely used technique to obtain analytic approximate 
solutions to the nonlinear equations is the perturbation methods. Among the above methods KBM method is 
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the mostly convenient and is the extensively used technique to obtain analytical approximate solution of 
nonlinear systems with small nonlinearity. In fact, Krylov and Bogoliubov [5] developed the perturbation 
method for obtaining periodic solutions was amplified and justified by Bogoliubov and Mitropolskii [4] and 
later Popov [6] and Meldelson [7] extended the method for damped nonlinear oscillations. A unified KBM 
method to solve second order nonlinear systems which covers under-damped, over-damped and periodic 
system with constant coefficients was presented by Murty [8]. Sattar [9] studied a third order over damped 
nonlinear system and Bojadziev [10] examined the damped oscillations modeled by a three dimensional 
nonlinear system. Shamsul and Sattar [11] presented a method for critically damped and Islam and Akbar 
[12] for more critically damped third order nonlinear systems. Akbar et al. [13] presented a method to solve 
fourth order over damped nonlinear systems which is easier, simple and less laborious than Murty et al. [14]. 
Later, Akbar et al. [15] pull out the method presented in [13] to damped oscillatory systems. Islam et al. [16] 
investigated the solutions of fourth order more critically damped nonlinear systems where Akbar [17] 
examined a different type solution for the same. Rahman et al. [18] obtained fourth order nonlinear 
oscillatory systems in which two of the eigenvalues are real and negative and the other two are complex 
conjugate. Akbar and Siddique [19] amplified the KBM method to obtain solutions of fifth order weakly 
nonlinear oscillatory systems. Also Optimal Homotopy Asymptotic Method [20-22] are developed for 
solving nonlinear evolutions equations. 
 

The aim of this article is to obtain the analytical approximate solutions of fifth order over-damped nonlinear 
systems extending the KBM method. Figures are provided to compare validation and usefulness of the 
solutions obtained by the presented method for different initial conditions with the corresponding numerical 
solutions obtained by the fourth order Runge- Kutta method. 
 

2 The Method 
 
Let us consider a fifth order nonlinear over-damped system 
 

                 

(1) 

 

where  is a small parameter, is the nonlinear function,  are the characteristic 

parameters of the system defined by , , , 

and    where  are the eigenvalues of the 

unperturbed equation of (1). 
 

When , the unperturbed equation has the solution 
 

                   

(2) 

 

where  are arbitrary constants. 

 

When , we seek a solution in accordance with Shamsul [23] of the form 
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where each , satisfies the equations 

 

                               (4) 
 

Confining our attention to the first few terms 
 
in the series expansions of equations (3) and (4), 

we calculate the functions and  such that , appearing in equation (3) and 

(4), satisfy the differential equation (1) with an accuracy of . Though the solution can be obtained up 
to the accuracy of any order of approximation, owing to the rapidly growing algebraic complexity for the 
derivation of the formulae, the solution in general confine to lower order [8]. In order to determine these 

unknown functions, it is assumed that the function exclude fundamental terms which are included in the 

series expansion (3) at order . 
 

Differentiating five times with respect to  and substituting and their derivatives in eq. (1), 

using the relation in eq. (4) and equating the coefficients of , we obtain 
 

            

(5) 

 

where and  

 

The function can be expanded in a Taylor series (see Murty and Deekshatulu [24] for details) as: 

 

 

 

To obtain the solution of Eq. (1), it is assumed that 
 
exclude the fundamental terms. Therefore, Eq. (5) 

can be separated into six equations for unknown functions 
 
and (see [23] for details). 

 

Substituting the functional value and equating the coefficients of , we obtain 
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            (9) 

 

          (10) 

 

and 
 

                           (11) 

 

where  avoid the terms for  . 
 

Solving Eqs. (6) to (11), we obtain the unknown functions   and . 
 

It is possible to transform solution Eq. (3) to the exact formal KBM [14,15,19,23] solution by substituting 

,  ,   and . Herein are amplitudes and , 
 

are phase variables. 
 

3 Example 
 
As an example of the above procedure, we consider the Duffing type equation  
 

                                                                                              (12)  
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Thus the equations (6) to (11) takes the form 
 

              (14)  
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Now inserting  in the Eq. (4) and using    
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Equations in (20) are nonlinear and have no exact solutions. We can solve (20) by considering 
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5 Conclusions 
 
In this article a procedure is formulated to find the first order analytical approximate solution of fifth order 
over damped nonlinear differential systems with small nonlinearities based on the KBM [4,5] method. The 
correlation has been calculated between the results acquired by the perturbation solution and the fourth order 
Runge-Kutta method of the same problem. The results obtained for different initial conditions, show a good 
coincidence with corresponding numerical results and they are strongly correlated. 
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