

Volume 10, Issue 3, Page 9-18, 2023; Article no.AJAHR.96468 ISSN: 2581-4478

Insecticidal effect of *Jatropha curcas* L. Oil on *Spodoptera frugiperda* (Smith) (Lepidoptera:Noctuidae)

Matotiloa Tchegueni^{a*}, Komi Agboka^a, Atti Tchabi^b, Lankondjoa Kolani^a, Manguilibè Tchao^a and Agbéko K. Tounou^a

 ^a Laboratoire de Recherche sur les Agroressources et Santé Environnementale (LARASE), Ecole Supérieure d'Agronomie (ESA), Université de Lomé, 01 BP 1515, Lomé 01, Togo.
^b Laboratoire du Centre d'Excellence en Protection Durable des Cultures, Institut Supérieur des Métiers de l'Agriculture (ISMA), Université de Kara, BP. 404 Kara-Togo.

Authors' contributions

This work was carried out in collaboration among all authors. Authors MT and KA designed, performed the study, MT and LK performed statistical analysis and wrote the first draft of the manuscript. Author MaT helped to set up trial and managed results discussion. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJAHR/2023/v10i3227

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/96468

Original Research Article

Received: 12/12/2022 Accepted: 17/02/2023 Published: 08/03/2023

ABSTRACT

The study was undertaken to contribute to the sustainable management of *Spodoptera frugiperda* Smith on maize. It aims to evaluate the insecticidal efficacy of *Jatropha curcas* L. oil on *S. frugiperda* larvae. Two concentrations of *J. curcas* oil (10 and 20ml.l⁻¹) were tested by ingestion on the six larval stages of *S. frugiperda* grouped into (L_{1-2} (3-5 days of age); L_{3-4} (6-8 days of age); L_{5-6} (>10 days of age)). The insecticidal efficacy of the oil was determined in the laboratory and the phytosanitary protection tests on maize were carried out in the field. In the laboratory, the concentration of 10 ml.l⁻¹ with/without emulsifier caused a mortality rate of (87-92%) at stage L_{1-2} .

Asian J. Agric. Hortic. Res., vol. 10, no. 3, pp. 9-18, 2023

^{*}Corresponding author: Email: benmatcheg@gmail.com;

(51-58%) at stage L₃₋₄ and (57- 68%) at L₅₋₆ stage after 72 hours of ingestion. Concentration of 20 ml.l⁻¹ caused over 70% mortality whether applied with or without an emulsifier at all stages. Adult emergence was nil for L₁₋₂ stages at 20 ml.l⁻¹ and <10% for the other stages. Plots subjected to jatropha oil treatments (2l.ha⁻¹ and 4l.ha⁻¹ with or without emulsifier) were less infested like the plots treated with Emamectine benzoate (Emacot) compared to control plots untreated. The present results indicated that jatropha oil has insecticidal potential against *S. frugiperda*.

Keywords: Jatropha curcas oil; bio-insecticide; efficacy; management; Spodoptera frugiperda.

1. INTRODUCTION

Maize (*Zea mays* L.) is an important staple crop in West Africa [1]. The most produced cereal, maize, is used in human food, animal feed, and industrial uses. More than 70% of maize production is reserved for human consumption [2] in west Africa.

In Togo, maize is the main grain crop produced mainly for human and animal consumption. Yields obtained across Togo average 1.39 t/ha [3] against a potential yield of 5 t/ha (Ikenne) [4]. Maize cultivation experiences various factors that limit its yields such as the decline in soil fertility, poor cultivation practices, diseases, environmental stresses, and insect pests [5]. Pests, especially insects, incontestably play an important role in the loss of maize yield. On maize, lepidopteran stem borers and ear miners are the most damaging insects [6]. They are native pests and are responsible for 10 to 100% vield loss [7]. An exotic species, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), also appeared in Africa in 2016 [8]. A pest of economic importance, S. frugiperda attacks maize and various crops causing substantial damage [9]. These larvae feed on young tender leaves and sometimes on the ears in formation. which can cause more than a 10% loss of yield [10]. Faced with these scourges, chemical insecticides have been used to limit the spread of the pest [11]. However, although these chemical products have been effective [12], most of them constitute poisons for users, and the environment, and are inaccessible to producers due to its high cost [13].

Thus, it is important to find alternatives in terms of crop protection. The use of botanicals with pesticidal effects presents itself as a possibility in the fight against insect pests [14]. These botanical pesticides, commonly called biopesticides, have a real advantage due to their low persistence, their low toxicity for humans, and their mode of action on pests [15]. Botanical pesticides have been effective against maize insects in Africa [2]. Bruce et al. [16] demonstrated the effectiveness of neem products against the stem borers Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agboka et al. [2] demonstrated that neem oil has deterrent effects on the egg-laving of Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae). Among these plants with proven properties. biocidal Jatropha curcas L. (Euphorbiaceae) has significant insecticidal qualities. Indeed, the work carried out by Solsoloy [17] proved the insecticidal potential of the oil of J. curcas. Also, the insecticidal effect of J. curcas oil has been demonstrated on M. nigrivenella [2], millet borers [18], stored foodstuffs ([17,19, 20]) and insect pests of cowpea in the field [21].

Through this work, the effectiveness of the toxic molecules contained in *J. curcas* oil has been tested on pests of stored foodstuffs (heevils) and those of crops in the vegetative phase (stem and pod borers, etc.). This study focuses on the toxic effect of *J. curcas* oil on crop pests in the vegetative phase and aims to determine the biocidal efficacy of the oil on the fall armyworm (FAW) *S. frugiperda*.

2. MATERIALS AND METHODS

2.1 Material

Six stages larvae of *S. frugiperda* grouped into $(L_{1-2} (3-5 \text{ days of age}); L_{3-4} (6-8 \text{ days of age}); L_{5-6} (>10 \text{ days of age})$ were used for laboratory bioassays. The bio-insecticide *J. curcas* provided by International Institute of Tropical Agriculture (IITA) and synthetic insecticide, Emamectine benzoate (Emacot 50 GW) was used for testing.

2.2 Methods

2.2.1 Breeding of S. frugiperda

Larvae were collected from maize plants at the Lomé Agronomic Experimentation Station and brought back to the laboratory for rearing. They were fed on fresh, tender maize leaves until the pupa stage. These pupae were then transferred to the adult breeding cage until the emergence of the latter. Upon emergence, cotton soaked in honey and the foot of young corn plants were introduced into these breeding cages for resting support for adults and egg-laying for females. The breeding cage is a rectangular cage made of aluminum (80 cm high and 50 cm wide) with an opening on one side. The opening is closed by a canvas in the form of a sleeve through which the manipulations are made. The upper side is made of fine mesh canvas to allow ventilation. In order to obtain age-matched larvae for testing, the egg masses laid were collected from the cages and incubated in the boxes. After hatching, the larvae of the same day of hatching (larvae of the same age) were fed on fresh and tender maize leaves and kept in culture for the tests. These sheets were renewed every 24 hours. Based on estimates of larval development time by Pitre and [22], larvae were grouped into L_{1-2} stages; L_{3-4} ; and L_{5-6} with 3 to 5, respectively; 6 to 8 and 10 to 14 days of age.

2.2.2 Preparation of aqueous emulsion of *J. curcas* oil

Two concentrations of aqueous emulsions (10 and 20ml.I^{-1}) with and without emulsifier are prepared. Thus, the quantity of oil indicated is introduced into a beaker containing a 1% (g.I⁻¹) soapy solution as an emulsifier for solutions with an emulsifier. For solutions without an emulsifier, the oil is just mixed with water. In both cases, the mixture is stirred manually using a glass rod in order to obtain a suitable emulsion.

2.2.3 Laboratory test

The assessment was made by ingestion under ambient conditions between 28°C and 30°C. For each treatment, a sample of 10 larvae of the different stages was used and repeated four times each. Maize leaves cut into 5 cm in diameter were immersed in the various preparations for 2 minutes. These leaves were then removed and dried in the open air for 5 minutes before being used for the larvae in breeding boxes provided for the tests. The larvae were previously left to starve for 6 hours before the introduction of treated leaves. The use of fasting larvae ensures that in contact with the treated leaves, they will feed.

2.2.4 Larval monitoring

The treated leaf was removed from the box after 24 hours and the larva was fed

normally with the untreated leaves until it transformed into pupa and from the pupa into adult insects. Mortality data was collected 24 and 48 hours after application. Observations were continued until adults emerged. A larva is considered dead when no part of its body moves when lightly touched with a brush. Observations continued on surviving larvae until the formation of pupae and the emergence of adults. The number of dead larvae and emerged adults per treatment made it possible to assess the mortality rate and the adult emergence rate.

2.2.5 Field evaluation of *J. curcas* oil against FAW

Maize variety "Ikenne " was planted at the SEAL field station on a plot size of 3.2 m×2 m, with spacing of 80 cm between rows and 20 cm between plants. The maize plot was fertilized with NPK15-15-15, fifteen (15) days after sowing at the rate of 200 kg/ha and urea 45 days after sowing at the rate of 100 kg/ha.

Treatment application : Specific treatments were applied using a hand-held sprayer at two-week intervals starting 15 days after planting until the appearance of male inflorescences. To avoid the risk of contamination, different sprayers were used for each formulation. 2 and 4 l/ha of jatropha oil were used with or without an emulsifier for the treatments. The control plots were not sprayed. Emacot, a chemical insecticide was applied at the rate of 1g/l. Randomized Complete Block Design (RCBD) with four replications was used for the experiment. Phytosanitary treatments were made by foliar application, mainly targeting the cornea of the plant.

Before the first application of the product, the number of egg masses, larvae per plant and infested plants were collected. After each application, the same data were collected until the emergence of male inflorescences. At each collection, destructive samples were taken to assess leaf scores using the method described by Davis et al. [23]. Therefore, each infested leaf is assigned a percentage of screening by the pest relative to the total leaf area of the leaf. The numerical scale of Davis [23], was used to assess leaf damage ranging from 1 (no leaf damage) to 9 (severe leaf damage) which corresponds to the screening percentages.

2.3 Statistical Analysis

The mortality data were corrected by the of Abbot [24]. Shapiro-Wilk's and formula Levene's tests were used, respectively to test the normality and homogeneity of the data before any analysis. Data that does not follow a normal law or that is not homogeneous are subjected to statistical transformations to make them normal or homogeneous. Thus, percentage data such as adult mortality and emergence rate are transformed into Arsin $\sqrt{(\text{percent x}/100)}$ and those on the number of larvae are transformed by the logarithm (log (X+1). normal or homogeneous are subjected to the analysis of variance and the means separated with Tukey's multiple comparisons test at the 5% level. Data that are not normal or homogeneous are analyzed using the nonparametric Kruskal-Wallis. The ranks are discriminated by the "all pairwise" method All these analyzes were carried out by the SPSS 26.0 software.

3. RESULTS

3.1 Evaluation of the Effectiveness of *J. curcas* Oil in the Laboratory on *S. frugiperda*

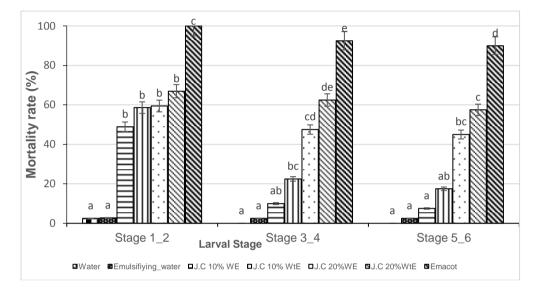
3.1.1 J. curcas oil on S. frugiperda larvae mortality

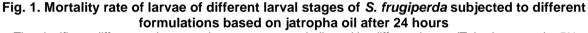
The different doses of jatropha oil produced lethal effects on the larvae of S. frugiperda. Based on the results of the analysis of variance, the mortalities vary according to the larval stages and the doses. After 24 hours of indestion. mortality is almost complete for treatment with the synthetic chemical insecticide (Emacot) at all larval stages (Fig. 1). On the other hand, treatments based on jatropha oil caused variable mortality for the different larval stages. For the early stages (stage L₁₋₂), mortality varied from 49 to 67%. Statistical analysis reveals a significant difference in mortality between the different treatments (F= 53.69; P < 0.001). Mortality is < 50% when the product is prepared with an emulsifier at a dose of 10 ml. I^{-1} and > 60% when the preparation is made without an emulsifier at a dose of 20 ml. l^{-1} .

The two jatropha oil preparations were more toxic to the first two instar larvae. On the L_{3-4} and L_{5-6} stage larvae of *S. frugiperda*, jatropha oil caused low mortality (8-23%) by ingestion with 10 ml.l⁻¹ regardless of the preparation. The dose of 20 ml.l⁻¹ with emulsifier had a lower lethal

effect (48-45%), the same as the same dose without emulsifier (63-58%) on stages $L_{\rm 3-4}$ (F= 40.49 ; P <0.001) and stages $L_{\rm 5-6}$ (F= 26.66; P <0.001).

After 48 hours of ingestion, the dose of 10 ml.l⁻¹ with emulsifier caused a mortality < 40% on L_{3-4} (36%) and L_{5-6} (28%) stage larvae while on L_{1-2} stage larvae it caused 77% mortality (Fig. 2). More than 80% mortality was recorded at all stages with the dose of 20 ml.I⁻¹ without emulsifier. Statistical analysis reveals а significant difference between the oil-based products and the controls at all stages. Furthermore, at stage L1-2, the oil-based preparations without emulsifier 10 ml.l⁻¹ and 20ml.I⁻¹ had practically identical toxic effects. The statistical analysis also shows that the dose of 20ml.l⁻¹ without emulsifier has more effect on the larvae of stages L_{1-2} (98%) than L_{3-4} stages (87%) and L_{5-6} stages (84%).


In sum, jatropha oil showed different toxicities on S. frugiperda larvae. All larval stages showed a mortality of 8 to 59% after 24 hours of ingestion for preparations with an emulsifier and 18 to 67% for those without emulsifier. After 48 hours of ingestion, mortality increased from 28 to 87% with an emulsifier and from 44 to 98% for preparations without emulsifier. Furthermore, mortality increased with the concentration of J. curcas oil. After 48 hours of ingestion, stages L₁₋₂ (on average 76% mortality due to preparations with emulsifier and 92% due to those without emulsifier) were more impacted by the various oil-based treatments followed by stages L₅₋₆ (on average 58% mortality due to preparations with emulsifier and 70% due to those without emulsifier). Indeed, preparations with an emulsifier caused between 74 and 77% mortality while those without emulsifier caused a mortality of 85 to 98% at these stages. The L₃₋₄ stages, which are the most voracious, recorded on average 53 and 66% mortality respectively to preparations with emulsifier and those without emulsifier.


3.1.2 J. curcas oil on S. frugiperda adult emergence

Little or no emergence of *S. frugiperda* adults is observed under conditions where the larvae are exposed to leaves treated with J. curcas oil (Fig. 3). Jatropha oil with emulsifier at a dose of 10ml.I^{-1} allowed the emergence of 25% of adults for L₃₋₄ stage larvae; L₅₋₆ and 2.5% for those at stage L₁₋₂. Preparations without low dose

emulsifier resulted in 7.5; 15 and 2.5% emergence of adults respectively for stages L_{1-2} ; L_{3-4} and L_{5-6} . The high dose without emulsifier impeded the emergence of adults at practically all stages, whereas that with the emulsifier only impeded the emergence of adults at the L_{1-2} stages. In general, emergence was zero with the application of Emacot for all stages. On the other

hand, with jatropha oil, the emergence of adults was very low or even non-existent (<10%) at the L₁₋₂ stage (df=6; χ 2 =23.26; P<0.001), varying from 2.5 to 25% at stage L₃₋₄ (df=6; χ 2 =22.94; P<0.001). At stage L₅₋₆, certain concentrations hindered the emergence of adults (df=6; χ 2 =22.96; P<0.001).

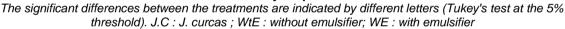
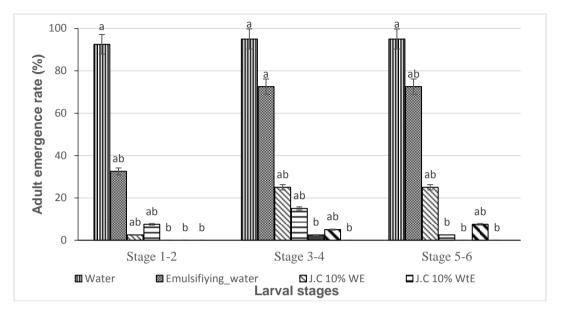
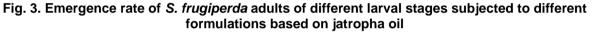




Fig. 2. Mortality rate of larvae of different larval stages of *S. frugiperda* subjected to different formulations based on jatropha oil after 48 hours

The significant differences between the treatments are indicated by different letters (Tukey's test at the 5% threshold). J.C : J. curcas ; WtE : without emulsifier; WE : with emulsifier

The significant differences between the treatments are indicated by different letters (Tukey's test at the 5% threshold). J.C : J. curcas ; WtE : without emulsifier; WE : with emulsifier

3.2 Field Evaluation of the Effectiveness of *J. curcas* Oil in the Station on *S. frugiperda*

3.2.1 Effect of treatments on the evolution of the population of *S. frugiperda*

Population development of *S. frugiperda* larvae under the effect of different treatments is presented in Table 1. Fewer larvae were observed on the plots treated with Emacot and *J. curcas* oil compared to the plots without treatment (F= 6; P<0.001) but no significant difference is observed between concentrations of the oil.

3.2.2 Effect of oil on infestation, leaf damage of *S. frugiperda* and maize grain yield

The infestation of the different plots by *S*. *frugiperda* was variable. It is more pronounced on the plots without treatment with 48% of infested plants (Fig. 4a). This is less than 20% on plots that have received Emacot for treatment (15%). Regarding treatments with *J. curcas* oil, preparations made without emulsifier (respectively 35 and 30% at doses of 10 and 20 ml.l-1) recorded a different infestation rate from that whose preparations are made with an emulsifier (respectively 22 and 24% at doses of 10 and 20 ml.l-1). In general, the statistical

analysis reveals a significant difference (df = 5; F = 3.43; P = 0.024). Between the different doses and the different formulations of the oil, no difference is observed. The severity of S. frugiperda on maize plants varied between plots with product application and those without product application. The results obtained show that the damage in general is low for all the treatments ($2 \le \text{score} \le 3$) according to the Davis scale. Statistical analysis indicates no significant difference between the J. curcas oil treatments and those of Emacot for the level of foliar damage. On the other hand, the difference in damage levels is significant between the control plots subjected to insecticide and the applications ($\chi 2 = 40.56$; P < 0.001; Df= 5).

Oil treatment influenced maize kernel production compared to controls (Fig. 4b). The yield obtained under treatments where the product is applied with an emulsifier (yield \leq 3 t.ha-1) is practically identical to that of Emacot. Analysis of statistical performance of different treatments was significant (F = 10.11; df = 5; P < 0.001). Effective in controlling the pest, jatropha oil without emulsifier was not efficient in obtaining yields. Thus, low yields were obtained under oil treatments without emulsifier (<2.5 t/ha). The yields obtained under Emacot and *J. curcas* oil with emulsifier were statistically identical at the 5% threshold.

Treatement	Number of larvae per plant (mean ± SE)	
J.C 10% WE	0,37±0,04bc	
<i>J.C</i> 10% WtE	0,40±0,05b	
J.C 20%WE	0,38±0,04b	
<i>J.C</i> 20%WtE	0,32±0,05bc	
Emacot	0,24±0,06c	
Control	0,58±0,03a	
Df	5;88	
F	6,00	
P	<0,001	

Table 1. Effect of J. curcas oil on S. frugiperda larva population fluctuation

Values in a column followed by different lowercase letters are statistically different at the 5% level (Tukey test). J.C : J. curcas ; WtE : without emulsifier; WE : with emulsifier.

The density of S. frugiperda varies significantly with the date of collection (F = 10.85; P < 0.001). On the plots treated with J. curcas oil, the density is almost static at each collection.

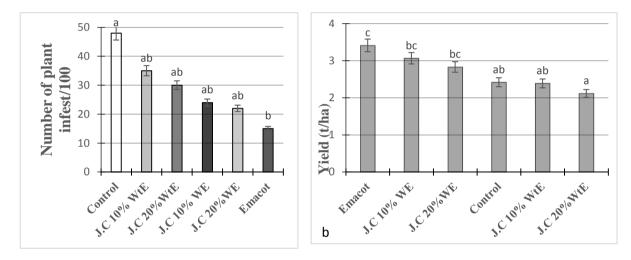


Fig. 4. S. frugiperda infestation rate (a) and Yield of grain maize (b) according to the different formulations based on jatropha oil. The significant differences between the treatments are indicated by different letters (Tukey's test at the 5% threshold) J.C: J. curcas; WtE: without emulsifier; WE: with emulsifier

In short, it should be noted that in the station, the oil of J. curcas had almost identical effects to that of emamectin benzoate (Emacot) but leaf burns were observed on the plots having received the oil, especially those of 4 I. ha⁻¹.

4. DISCUSSION

The results of the biological tests in the laboratory show that the various products tested had significant effects on the larvae of *S. frugiperda*. Emacot used at 1g.l⁻¹ had more effect on the larvae and caused almost 100% mortality of the larvae at all stages after 48 hours of exposure. These high mortalities are explained by the insecticidal power and the mode of action of chemical insecticides on the larvae. Indeed, Emacot, a synthetic trans-laminar contact and systemic insecticide, induces an increase in cell

apoptosis, DNA breaks leading to the rapid death of larvae [25]. Furthermore, Sisay et al. [12] in Ethiopia proved the toxicity of synthetic chemical insecticides on *S. frugiperda* larvae in the laboratory. In their study, out of nine chemical insecticides tested, five caused more than 90% mortality after 72 hours of application. In pest control in the Americas, the use of chemical insecticides has been an important option [26]. Thus, Belay et. al. [27] reported >60% mortality of *S. frugiperda* larvae after 16 h of application of Radiant (Spinetoram), Orthene (Acephate), and Larvin (Thiodicarb).

The mortality rate related to *J. curcas* oil after 24 hours of ingestion was $\leq 50\%$ at 10 ml.l⁻¹ and > 50% at 20 ml.l⁻¹ on all larval stages. These mortalities show that the product poisoned the larvae. The results of this study confirm those of

other authors who used the extracts of J. curcas seeds for biological tests on insect pests. Indeed, [28] demonstrated in Mexico the insecticidal potential of J. curcas grain extracts on L_3 stage larvae of S. frugiperda. Ratnadass et al. [18] demonstrated that shredded J. curcas grains caused the death of the first stages of development of S. calamistis caterpillars. Abdoul et al. [21] demonstrated in the laboratory the effectiveness of J. curcas oil on the black bean aphid Aphis fabae Scop (Homoptera: Aphididae) after 24 hours of ingestion. These high mortality rates show the toxic nature of J. curcas oil. Indeed, the toxic nature of this oil is due to the presence of phorbol esters [29]. Phorbol esters are secondary metabolites of the family of diterpenes of the tigliane group [28] which act on biological membranes [14]. These insert into cell membranes and activate protein kinase (PKC) [30] leading to cell apoptosis [14]. At stages L_{3-6} , the mortality rate after 72 hours of ingestion is \geq 50% at the dose of 10 ml. I^{-1} and almost complete at the dose of 20 ml. I^{-1} . This proves that, 24 hours after ingestion, the effects of the product persist. These results are similar to those of Abdoul et al. [21] on A. fabae who showed that the mortality of these aphids increased up to 72 hours before stabilizing. According to these authors, mortality due to this oil increases with time. In addition, studies by Bourogâa [31] demonstrated the toxic effect of jatropha oil on Hemiptera. According to the author, this toxic effect can be explained by the presence of a high quantity of curcin (toxalbumin) in the seeds of J. curcas.

J. curcas oil with emulsifier affected the emergence of adults without being able to prevent it when the larvae were over 5 days old. Conversely, the oil of *J. curcas* without emulsifier hindered the emergence of adults which it inhibits almost for all stages. This may in part mean that *J. curcas* oil takes a while to be at its most effective. These results corroborate those obtained by Abdoul et al. [21] who found that the biocidal effect of *J. curcas* oil increases during the hours following application to reach a maximum level after 96 hours.

Just as in the laboratory, jatropha oil made it possible to reduce the evolution of the population of *S. frugiperda* larvae compared to the control plot without product application. It also made it possible to reduce the infestation and the level of damage practically in the same way as the chemical insecticide Emacot but without being able to improve the yield of grain maize. This

reduction can also be explained by the toxic nature of the oil conferred mainly by the esters of phorbols. According to Devappa et al. [32] phorbol esters of the most toxic compounds in jatropha oil but which degrade very quickly and this degradation can be limited by adding an antioxidant. In this study, no antioxidant was added, so this reduction in the pest population would not be due solely to the effect of *J. curcas* oil but to other factors. However, similar reductions in the population of *M. nigrivella* in maize crops was observed in Benin treated with this oil [2]. Abdoul Habou [33] also showed that the same oil reduced the population of major cowpea pests in Niger and therefore, reduced the attacks of these pests. In Mali, crushed seeds of J. curcas resulted in a reduction in sorghum panicle bug damage [18]. Also, the 20 ml.I-1 concentration of oil corresponding to 4 I.ha-1 had effects almost identical to those of Emacot. Similar results were shown by Karka et al. [34] in Chad on cowpea.

5. CONCLUSION

It appears from the study that whatever be the method of preparation, the oil of *J. curcas* has toxic effects on the fall armyworm. The insecticidal effect of *J. curcas* oil is comparable to the reference insecticide (Emacot) on L_{1-2} stage larvae under laboratory conditions. In the station, the oil of *J. curcas* had almost identical effects to that of Emacot but burns on leaves were observed on the plots having received the oil, especially those of 4 l.ha⁻¹. Jatropha oil could be a good bio-insecticide in FAW management.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Agboka K, Schulthess F, Tamo M, Hell K, Stefan V. The importance of *Mussidia nigrivenella* Ragonot (Lepidoptera: Pyralidae) as a post-harvest pest in different storage structures in Benin. Journal of Stored Products Research. 2010;46:81–86.
- Agboka K, Agbodzavu K.M, Tamò M, Vidal S. Effects of plant extracts and oil emulsions on the maize cob borer *Mussidia nigrivenella* (Lepidoptera: Pyralidae) in laboratory and field experiments. International Journal of Tropical Insect Science 2009;29:185–194.

- 3. Direction des statistiques agricoles, de l'informatique et de la documentation (DSID). Données statistiques sur les superficies, les rendements et les productions du maïs depuis la campagne agricole 1990-1991 à celle de 2015-2016. 2016 ;161.
- Ministère de l'Agriculture de la Production Animale et Haleutique (MAPAH). Ministère de l'Agriculture et de la Production Animale et Halietique. Catalogue officiel des espèces et variétés végétales du Togo. 2017;7.
- Sétamou M. Ecology and management of *Mussidia* nigrivenella Ragonot (Lepidoptera; Pyralidae) a cob borer of maize in West Africa. Thesis. Hannover University. Germany. 1999;131.
- Polaszek A. African cereal stem borers;economic importance, taxonomy, natural enemies and control. CAB International inassociation with the ACP-EU Technical Centre for Agricultural and Rural Co-operation (CTA). 1998;530.
- Schulthess F, Bosque-Pérez NA, Chabi-Olaye A, Gounou S, Ndemah R, Goergen G. Exchanging natural enemies species of lepidopterous cereal stemborers between African regions. Insect Science and its Application. 1997;17:97–108.
- Goergen G, Kumar PL, Sankung SB, 8. Togola A, Tamò M. First report of outbreaks of the fall armyworm (JE Spodoptera frugiperda Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE. 2016;11(10):e0165632. DOI: 10.1371/journal.pone.0165632
- Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR. A climate-adapted push-pull system effectively controls Fall Armyworm, *Spodoptera frugiperda* (JE Smith), in maize in East Africa. Crop Protect. 2018;105:10–15.
- 10. Food and Agriculture Organization of the United Nations (FAO). Integrated management of the fall armyworm on maize: A guide for farmer field schools in Africa. 2018;118.
- Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U, Van den Berg J. Agro-ecological options for fall armyworm (*Spodoptera frugiperda* JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management. 2019;243:318–330.

- 12. Sisay B, Tefera T, Wakgari M, Ayalew G, Mendesil E. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, *Spodoptera frugiperda*, in Maize. Insects. 2019; 10:45.
- Midega CAO, Nyang'au IM, Pittchar J, Birkett MA, Pickett JA, Borges M, Khan ZR. Farmers' perceptions of cotton pests and their management in western Kenya. Crop Protection. 2012;42:193–201.
- Abdoul Habou Z. Entomofaune associée à Jatropha curcas L. au Niger et évaluation de l'activité insecticide de son huile (thèse de doctorat). Université de Liège-Gembloux Agro-Bio Tech. 2013;126.
- Glitho IA, Ketoh KG, Nuto PY, Amevoin SK, Huignard I. Approches non toxiques et non polluantes pour le contrôle des populations d'insectes nuisibles en Afrique du Centre et de l'Ouest. pp 207-217. In Regnault-Roger, C, Philogène, B.JR. et Vincent, C (éds). Biopesticide d'origine Végétale 2ème édition. Lavoisier, TEC & DOC, Paris. 2008;550.
- Bruce YA, Gounou S, Chabi-Olaye A, SmithH, Schulthess F. The effect neem 16. (Azadirachta indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis Hampson (Lepidoptera: Noctuidae) Eldana and saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology. 2004;6(3):1-10.
- Solsoloy AD, Solsoloy TS. Pesticidal efficacy of formulated product *J. curcas* oil on pests of selected field crops *In*: Gubitz GM, Mithelbach M, Trabi M. Symposium on biofuel and industrial products from *Jatropha curcas* and other tropical oil seed plants, Managua, Nicaragua; 1997.
- Ratnadass A, Cissé B, Diarra A, Mengual L, Taneja SL, Thiéro CAT. Perspectives de gestion bio intensive des foreurs des tiges de sorgho en Afrique de l'Ouest, Sci. 1997;17(2):227-233.
- Adebowale KO, Adedire CO. Chemical composition and insecticidal properties of the underutilized *Jatropha curcas* seed oil. African Journal of Biotechnology. 2006;5(10):901-906.
- Boateng BA, Kusi F. Toxicity of Jatropha seed oil to *Callosobrochus maculatus* (Coleoptera: Bruchidae) and its parasitoid *Dinarmus basalis* (Hymenoptera: Pteromalidae). Journal of Applied Science Research. 2008;4(8):945-951

- Abdoul Habou Z. Haougui A. Mergeai G. 21. Haubruge E, Adam T, Verheggen FJ. Insecticidal effect of Jatropha curcas oil on aphid Aphis fabae (Homoptera: the Aphididae) and on the main insect pests (Vigna associated with cowpeas unquiculata) Niger. Tropicultura. in 2011;29(4):225-229.
- 22. Hogg D, Pitre HN, Anderson RE. Assessment of early-season phenology of the fall armyworm (Lepidoptera: Noctuidae) in Mississippi (*Spodoptera frugiperda*). Environmental entomology. 1982;11: 705-710.
- 23. Davis FM, Williams WP, Wiseman BR. Methods used to screen maize and to determine mechanisms of resistance to the southwestern corn borer and fall armyworm. 1989;101-108.
- 24. Abbot WS. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265-267.
- 25. Wu X, Zhang L, Yang C, Zong M, Huang Q, Tao L. Detection on emamectin benzoate-induced apoptosis and DNA damage in *Spodoptera frugiperda* Sf-9 cell line. Pesticide Biochemistry and Physiology. 2016;126:6–12.
- Andrews KL. Latin american research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida. Entomologist. 1988; 71:630–653.
- Belay DK, Huckaba RM, Foster JE. Susceptibility of the Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to Different Insecticides. Florida. Entomologist. 2012;95;476–478.
- 28. Devappa RK, Angulo-Escalante Miguel A, Makkar HPS, Becker K. Potential of using

phorbol esters as an insecticide against *Spodoptera frugiperda*. Industrial Crops and Products. 2012;38:50–53.

- Makkar HPS, Becker K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenances of *Jatropha curcas*. J. Agric. Food Chem. 1997;45:3152–3157.
- Blumberg PM, Nakadate T, Warren B, Dell Aquila M, Sako T, Pasti G, Sharkey NAB. Phorbol esters as probes of the modulatory site on protein kinase C. An Overview, Botanical Journal of Linean Society. 1987;94(1-2):283-292.
- Bourogâa F. Insecticidal properties of the physic nut tree *Jatropha curcas* L. (Euphorbiaceae) and potential use in pest management, thesis dissertation in Göttingen, Germany. 2018;124.
- 32. Devappa KR, Bingham J-P, Khanal SK. High performance liquid chromatography method for rapid quantification of phorbol esters in Jatropha curcas seed. Industrial Crops and Products. 2013;49:211–219.
- Abdoul Habou Z, Adam T, Mergeai G, Haubruge E, Verheggen FJ. Effet du mode de conservation de l'huile de *Jatropha curcas* L. sur son efficacité dans la lutte contre les principaux insectes ravageurs du niébé (*Vigna unguiculata* (L.) Walp.) au Niger, Tropicultura. 2014;32(4):191-196.
- 34. Karka KH, Doloum G, Passannet AS, Pabamé S, Tchuenteu N, Tchobsala L, Megueni C, Njintang YN. Biocidal effects of jatropha curcas oil on the main insect pests associated with cowpea (vigna unguiculata) crops in soudanian savannah of chad. International Journal of Development Research. 2021;11(10): 50806-50811.

© 2023 Tchegueni et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/96468