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Abstract 
 

Graph factorization plays a major role in graph theory and it shares common ideas in important problems 
such as edge coloring and Hamiltonian cycles. A factor � of a graph � is a spanning subgraph of � which 
is not totally disconnected. An �- factor is an �- regular spanning subgraph of � and � is �-factorable if 
there are edge-disjoint � -factors ��,��,… ,��  such that  � = �� ∪ �� ∪ … ∪ �� . We shall refer 
{��,��,… ,��} as an �-factorization of a graph �. In this research we consider 2-factorization of complete 
graph. A graph with � vertices is called a complete graph if every pair of distinct vertices is joined by an 
edge and it is denoted by ��. We look into the possibility of factorizing �� with added limitations coming 
in relation to the rows of generalized Hadamard matrix over a cyclic group. Over a cyclic group �� of 

prime order �, a square matrix � (�,�) of order � all of whose elements are the ���  root of unity is called 
a generalized Hadamard matrix if �� ∗ = ���, where � ∗ is the conjugate transpose of matrix �  and �� is 
the identity matrix of order �. In the present work, generalized Hadamard matrices ��(3,3�) over a 
cyclic group �� have been considered. We prove that the factorization is possible for ���  in the case of 
the limitation 1, namely, If an edge {�,�} belongs to the factor �� , then the ��� and ���  entries of the 

corresponding generalized Hadamard matrix should be different in the  ���  row. In Particular, 
(���)

�
 

number of rows in the generalized Hadamard matrices is used to form 2-factorization of complete graphs. 
We discuss some illustrative examples that might be used for studying the factorization of complete 
graphs. 
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1 Introduction 
 
There is an enormous body of work on factors and 
other areas of study in graph theory [1]. For example, factorization signif
graph coloring (edge coloring). Moreover, the
connected factor in which the degree of each vertex is exactly two [
 
Some of the fundamental definitions, notations and terminology which will be used in our work are given as 
follows. A graph � is said to be disconnected if there exists two vertices in
those vertices as endpoints. A factor 
disconnected. The union of edge disjoint factors which forms
� − factor is an � − regular spanning subgraph of 
� −factors ��,��,… ,��  such that � =
a graph  � [3]. The graph which admits 
a factor F has all of its degrees equal to 2, it is called a 
 
In this research we consider 2 −factorization of complete graphs [5]. If every pair of distinct vertices are 
joined by an edge, we say that the graph 
�, the graph � is denoted by �� [3].  
 
If a graph is 2 − factorable, then it has to be 
that this necessary condition is also sufficient: any 
complete graph with odd number of vertices is 
complete graph with � vertices [5]. In Fig. 1, the number of vertices is
���

�
= 2. 

 

 

We look into the possibility of factorizing 
generalized Hadamard matrix over a cyclic group. Over a cyclic group 

� (�,�) of order � all of whose elements are the 
�� ∗ = ��� , where � ∗  is the conjugate transpose of matrix 
�.[7,8] �� (2,�) matrices are referred to as classic Hadamard matrices. It is known that 
can exist for � = 1,2 or 4�, where � is a positive integer.
 
For primes � > 2, it has been conjectured that 
work, generalized Hadamard matrices 
generalized Hadamard matrices were constructed in [9]
that, the elements of ��(3,3�) are roots from the 
 
The one the techniques we used in [9] was Kronecker product. Here also we define the term Kronecker 

product also known as the tensor product as it is very useful in this context. If 
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There is an enormous body of work on factors and factorizations and this topic has much in common with 
other areas of study in graph theory [1]. For example, factorization significantly overlaps the concept of 

. Moreover, the Hamilton cycle problem can be viewed as the searc
connected factor in which the degree of each vertex is exactly two [2]. 

Some of the fundamental definitions, notations and terminology which will be used in our work are given as 
is said to be disconnected if there exists two vertices in � such that no path in 

those vertices as endpoints. A factor �  of a graph �  is a spanning subgraph of �  which is not totally 
disconnected. The union of edge disjoint factors which forms � is called a factorization of a graph

regular spanning subgraph of �  and �  is � − factorable if there are edge
= �� ∪ �� ∪ … ∪ �� . {��,��,… ,��} is referred as an � −factorization

The graph which admits � −factorization is called an � −factorable graph [4]. For example, if 
has all of its degrees equal to 2, it is called a 2 −factor and it leads to 2 −factorization.

factorization of complete graphs [5]. If every pair of distinct vertices are 
joined by an edge, we say that the graph � = (�(�),�(�)) is a complete graph and if, in addition,

 

factorable, then it has to be 2� − regular for some integer �. In [6], Julius Petersen
that this necessary condition is also sufficient: any 2� − regular graph is 2− factorable. Thus, given a 
complete graph with odd number of vertices is 2 −factorable and number of factors � is (�

vertices [5]. In Fig. 1, the number of vertices is 5, and thus number of 

 

Fig. 1. � − factorization of �� 
 

We look into the possibility of factorizing ��  with added limitations coming in relation to the rows of 
generalized Hadamard matrix over a cyclic group. Over a cyclic group �� of prime order �, a square matrix 

all of whose elements are the ���  root of unity is called a generalized Hadamard matrix if 
is the conjugate transpose of matrix �  and ��  is the identity matrix of order 

matrices are referred to as classic Hadamard matrices. It is known that ��(
is a positive integer. 

, it has been conjectured that �� (�,��) exists for all positive integers �. In the present 
work, generalized Hadamard matrices ��(3,3�) over a cyclic group ��  have been considered these 
generalized Hadamard matrices were constructed in [9] since � = 3 is the smallest odd prime value. Note 

are roots from the �� = 1. 

The one the techniques we used in [9] was Kronecker product. Here also we define the term Kronecker 

product also known as the tensor product as it is very useful in this context. If � = ����� is an 
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product; totally 

factorizations and this topic has much in common with 
icantly overlaps the concept of 

can be viewed as the search for a 

Some of the fundamental definitions, notations and terminology which will be used in our work are given as 
such that no path in � has 

which is not totally 
is called a factorization of a graph �. An 

factorable if there are edge-disjoint 
factorization of 

factorable graph [4]. For example, if 
factorization. 

factorization of complete graphs [5]. If every pair of distinct vertices are 
and if, in addition, |�(�)| =

[6], Julius Petersen showed 
factorable. Thus, given a 

(� − 1) 2⁄  for a 
, and thus number of 2− factors is 

with added limitations coming in relation to the rows of 
, a square matrix 

root of unity is called a generalized Hadamard matrix if 
is the identity matrix of order 

(2,�) matrices 

. In the present 
have been considered these 

is the smallest odd prime value. Note 

The one the techniques we used in [9] was Kronecker product. Here also we define the term Kronecker 

� is an � × � matrix 
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for �= 1,2,… ,�  and �= 1,2,… ,�  and �  is any � × �  matrix then the Kronecker product of � and � , 
denoted by � ⊗  �, is the �� × �� matrix formed by multiplying each ��� element by the entire matrix �. 
That is, [10] 

 

�⊗ � = �

���� ����
���� ����

… ����
… ����

⋮ ⋮
���� ����

⋱ ⋮
… ����

� 

 
Each generalized Hadamard matrix can be reduced by elementary operations (row and column commutation, 
their multiplication by a fixed root of unity) to a normalized generalized Hadamard matrix whose first row 
and first column consist of 1 [7,8,9,10]. 

 
We introduce the formal definition with the most familiar type of tournament, a complete Round Robin as it 
is useful for later constructions. A round robin tournament with an even number of teams, �, is a tournament 
of � −  1 rounds where each team plays the other � −  1 teams. A round is a collection of games where 
each team is matched with exactly one other team. This is often considered a fair tournament, and can be 
represented by a complete graph on � vertices. The vertices on the graph represent the teams, each labelled 
by its strength, and edges between vertices indicate the teams play each other in the tournament [11]. 

 

2 Materials and Methods 
 
The normalized generalized Hadamard matrices are considered and the notations of the rows are started from 
the second row. Hence, �  will be of the form [12]: 

 

� = �

1 1    … 1
ℎ��
⋮

ℎ��
⋮

…
⋱

ℎ��
⋮

ℎ(���)� ℎ(���)� … ℎ(���)�

� 

 

For given a Hadamard matrix � , we want to find a 2 − factorization ���,��,… ��,… ,�
�
���

�
�
� of ��  such that 

either each factor satisfies the limitations  �� or ��: 

 
��: If an edge {�,�} belongs to the factor �� , then the ��� and ���  entries should be different in the  ���  row: 

 
{�,�}∈ �� ⟹ ℎ�� ≠ ℎ��   

 
��: If an edge {�,�} belongs to the factor �� , then the ���  and ���  entries should be same in the ���  row: 

 
{�,�}∈ �� ⟹ ℎ�� = ℎ��   

 
Note that,  

 
If  {�,�}∈ �� then {�,�}∈ ��  and {�,�}∈ ��  for �,� ≠ �,�.  

 
The above condition should be satisfied in order to obtain the 2 −facorization. Consider the following 
example of Generalized Hadamard matrix of order 3 over �� to illustrate the factorization satisfying the 
limitation (��). 
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� = �
1 1 1
1 � ��

1 �� �
� 

 
For the second row (1,�,��), there are three edges {1,2},{2,3},{1,3} have the potential to be selected. So, 

the 2− factor satisfying the limitation ��  is �{1,2},{2,3},{1,3}�. For row (1,��,�), we can do the same 

analysis and we get �{1,2},{2,3},{1,3}� as 2 − factor. Observe that 2 − factors obtained from second and 
third rows are same. Thus, 2 − factorization of complete graph on 3 vertices obtained from �� (3,3) is 

�� = �{1,2},{2,3},{1,3}�. (Fig. 2) 
 

 
 

Fig. 2. � − factorization of �� obtained from ��(�,�) 
 

For the generalized Hadamard matrices �� (3,3�) over a cyclic group ��, the construction seems more 
complex than the simple example. For the general case, we consider the problem of finding the 
2 −factorizations as follows:  
 

Let �{�,�}
�   is defined for every row � and pair of columns {�,�} satisfying limitation �� by: 

 

 �{�,�}
� = �

  1             �� ℎ�� ≠ ℎ��
0             ��ℎ������

�                     (1) 

 

and for each � = 1,2,… ,
(���)

�
 and �,�= 1,2,… ,� such that �≠ � 

 

∑ �{�,�}
� = 2�

���                        (2) 

 
and for each edge {�,�} in the graph  
 

∑ �{�,�}
� =

(���)

�
��� 1                        (3) 

 
Theorem 1: Let � > 1 be an integer and � = 3� . Then there exist 2 − factorization of ��  fulfilling the 
limitations ��. 
 
Proof.  
 
The following proof is made by using Mathematical Induction. When � = 1 for generalized Hadamard 
matrix of order 3; �� . It has been already shown that there is one and only one possible choice for a 

factorization satisfying ��. That is {��}= �{1,2},{2,3},{1,3}�. 
 
Inductive hypothesis states that there exist such factorizations for ���  satisfying the limitations.  
 
Then we have  
 

 �{�,�}
� = �

  1             �� ℎ�� ≠ ℎ��
0             ��ℎ������

�                     (4) 
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and for each � = 1,2,… ,
(�� ��)

�
 and �,�= 1,2,… ,� such that �≠ � 

 

∑ �{�,�}
� = 2��

���                        (5) 

 
and for each edge {�,�} in the graph  
 

∑ �{�,�}
� =

(�� ��)

�
��� 1                                  (6) 

 
Now, using the kronecker product  
 

���� = �

�� �� ��

�� ��� ����

�� ���� ���

� 

 

In the 3����� row, only different things are  �{�� ��,�� ��}
� ,�{�� ��,�� ��},

� �{�� ��,�� ��}
� . This 

implies ∑ �{�,�}
� = 2�� ��

��� . 

 

If {�,�}  are adjacent in 3�����  row, then {�,�}  are non-adjacent in any other rows. This 

implies ∑ �{�,�}
� =

(�� ����)

�
��� 1. This gives us a factorization of ���� satisfying the limitation (��). 

 
The next step is to check whether 4 −factors can be constructed using 2 −factors obtained from �� (3,3�) 
when � is even. 
 
Theorem 2 
 
Let 3� ≡ 1���(4). Then the complete graph ���  has 2 −factors and 4 −factors. 
  
Proof. 
 
Let � = ��� , where  3� ≡ 1���(4). Then � is a 4� −regular graph. According to the Peterson Theorem it 
is 2 −factorable since it is 2�� −regular graph for �� = 2� and number of 2−factors in a factorization is 
�� ��

�
 which is divisible by 2.  Take any two 2 −factors �� and ��, where �� = (�,��) and �� = (�,��).  

 
The union �� ∪ �� = (�,�� ∪ ��). This leads to form 4 −factors. 
 

3 Results and Discussion 
 
To illustrate the theorem 1, consider the factorization of ��  using the normalized generalized Hadamard 
matrix ��(3,9). 
 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1
1 � ��

1 �� �

1 1 1
1 � ��

1 �� �

1 1 1
1 � ��

1 �� �
1 1 1
1 � ��

1 �� �

� � �
� �� 1
� 1 ��

�� �� ��

�� 1 �
�� � 1

1 1 1
1 � ��

1 �� �

�� �� ��

�� 1 �
�� � 1

� � �
� �� 1
� 1 �� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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We want to find 2 − factorization {��,��,��,��} of the complete graph ��  fulfilling the limitation �� . 
Considering all possible combinations, a feasible 2−factorization of �� is (Fig. 3). 
 
�� = �{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,1}� 

�� = �{1,3},{3,5},{5,7},{7,9},{9,4},{4,2},{2,6},{6,8},{8,1}� 

�� = �{1,5},{5,9},{9,2},{2,8},{8,4},{4,7},{7,3},{3,6},{6,1}� 

�� = �{1,4},{4,6},{6,9},{9,3},{3,8},{8,5},{5,2},{2,7},{7,1}� 

 

 
 

Fig. 3. � − factorization of �� obtained from ��(�,��) 
 

Note that only 
(���)

�
 number of rows in the generalized Hadamard matrices have been considered for this 

construction. That number is the same as the number of 2 − factors of the complete graph of � vertices. 

From each row � = 1,2,… ,
(���)

�
 , distinct �� factor can be constructed.  

 
Now consider the construction of 4 −factors of ��  by using the theorem 2 since 3� ≡ 1���(4). We have 
already obtained the 4 different 2−factors. By getting the combinations of 2 −factors using Round Robin 
tournament schedule and then taking the union of them, 3 different 4 − factors can be constructed. 
Ultimately, 4 −factorization is obtained.  

 
We can have {��,��} and {��,��} or {��,��} and {��,��} or {��,��} and {��,��} as 3 different 4 − factors 
(Fig. 4). 
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Fig. 4. � − factorization of 
 
Let us illustrate the problem of finding a factorization satisfying limitation 
 

� =

⎣
⎢
⎢
⎢
⎡
1 1 1
1 � ��

1 �� ��

1
��

�

1
��

��

1 �� � �� ��

1 �� �� �� � ⎦
⎥
⎥
⎥
⎤

 

 
We want to find a 1 −factorization {�
For the rows (1,�,��,��,��)  and
select  {1,2},{1,3},{1,4},{1,5},{2,3},
2 −factors satisfying limitation (��). 
 

�{1,2},{1,3},{2,4},{3,5},{4,5}�          �

�{1,2},{1,3},{2,5},{3,4},{4,5}�          �

�{1,2},{1,4},{2,3},{3,5},{4,5}�          �

�{1,2},{1,4},{2,5},{3,4},{3,5}�          �

�{1,2},{1,5},{2,4},{3,4},{3,5}�           

�{1,2},{1,5},{2,3},{3,4},{4,5}�          �
 
Hence, from 12 possible combinations of these pairs of edges a feasible 
requirements is  
 

�� = �{1,2},{1,3},{2,4},{3,5},{4,5}� 

�� = �{1,4},{1,5},{2,3},{2,5},{3,4}�
 
It has already been drawn in Fig.01. Further, we came up with following conjecture.
 

Conjecture 1: Let �  be an odd prime number. Then there exist 

limitation (��). 
 

4 Conclusion 
 
Beyond the work of some of the authors, the present work progresses on the idea of constructing the 
factorization of complete graphs, focusing on generalized Hadamard matrices. In particular, 
of complete graphs ��: � = 3� is discussed. Mor
(���)

�
 number of rows in the generalized Hadamard matrices are used to form 

graphs. We discuss some illustrative examples that might be used for studying the factori
graphs. Further, we extend our research to construct 4
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factorization of �� obtained from ��(�,��) 

Let us illustrate the problem of finding a factorization satisfying limitation (��) for the following example,

{��,��} of the complete graph on 5 vertices �� satisfying limitation
) and  (1,��,��,�,��) , there are 10 edges we would potentially 
} {2,4},{2,5},{3,4},{3,5}, and {4,5}.  However there are 12 possible 
 

�{1,3},{1,4},{2,3},{2,5},{4,5}� 

�{1,3},{1,4},{2,5},{2,4},{3,5}� 

�{1,3},{1,5},{2,4},{2,5},{3,4}� 

�{1,3},{1,5},{2,3},{2,4},{4,5}� 

 �{1,4},{1,5},{2,3},{2,5},{3,4}� 

�{1,4},{1,5},{2,3},{2,4},{3,5}� 

Hence, from 12 possible combinations of these pairs of edges a feasible 2 −factorization of ��

}� 

}� 

ready been drawn in Fig.01. Further, we came up with following conjecture. 

be an odd prime number. Then there exist 2 −  factorization of ��

Beyond the work of some of the authors, the present work progresses on the idea of constructing the 
factorization of complete graphs, focusing on generalized Hadamard matrices. In particular, 2

is discussed. More specifically, we introduce some limitations. 

number of rows in the generalized Hadamard matrices are used to form 2-factorization of complete 

graphs. We discuss some illustrative examples that might be used for studying the factorization of complete 
graphs. Further, we extend our research to construct 4−factorization of complete graphs of order 
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for the following example, 

satisfying limitation (��). 
, there are 10 edges we would potentially 

However there are 12 possible 

� satisfying the 

�  fulfilling the 

Beyond the work of some of the authors, the present work progresses on the idea of constructing the 
−factorization 

e specifically, we introduce some limitations. In Particular, 

factorization of complete 

zation of complete 
factorization of complete graphs of order 3� when 
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� is even. In particular, the following problem might be considered: show whether these constructions can 
be applied for any generalized Hadamard matrix of order ��, where � is odd prime and � > 1. This will be 
the concern of our future work by automating the results we obtained. 
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