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Abstract 
 

Aims: As shown in literature, several authors have adopted various individual frailty mixing distributions 
as a way of dealing with possible heterogeneity due to unobserved covariates in a group of insurers. This 
research contribution is to generalize the frailty mixing distribution to nest other classes of frailty 
distributions not in literature and apply the proposed distributions in valuation of life annuity business. 
Methodology: A simulation study is done to assess the performance of the aforementioned models. The 
baseline parameters is estimated using Bayesian Inference and a better model is suggested for valuation 
of life annuity business. 
Results: As a result of generalizing the frailty some new classes of frailty distributions are constructed 
such as; the Reciprocal Inverse Gaussian Frailty, the Inverse Gamma Frailty, the Harmonic Frailty and 
the Positive Hyperbolic Frailty. 
From the simulation study, the proposed new frailty models shows that ignoring frailty leads to an 
underestimation of future residual lifetime since the survival curve shifts to the right when heterogeneity 
is accounted for. This is consistent with frailty literature. 
The Reciprocal Inverse Gaussian model closely represents the Association of Kenya Insurers graduated 
rates with a slight increase in survival due to longevity risk. 

Original Research Article 



 
 
 

Onchere et al.; JAMCS, 35(6): 112-131, 2020; Article no.JAMCS.57462 
 
 
 

113 
 
 

Conclusion: The proposed new frailty models show an increase in the insurers expected liability when 
unobserved heterogeneity is accounted for. This is consistent with frailty literature and thus can be 
applied to avoid underestimating the insurer’s liability in the context of life annuity business. 
The RIG model as proposed in estimating future liability by directly adjusting the AKI mortality rates 
shows an increase in longevity risk. The extent of heterogeneity of the insured group determines the level 
of risk. The RIG frailties should be considered for multivariate cases where the insureds are clustered in 
groups. 

 
 
Keywords: Frailty model; generalized inverse Gaussian distribution; reciprocal inverse Gaussian 

distribution; harmonic distribution; positive hyperbolic distribution; Bayesian inference; life 
annuity insurance. 

 

1 Introduction 
 
Frailty modeling is based on mixture distributions where the population hazard is considered a mixture of 
measurable (e.g. health status) and unmeasured (e.g. congenital personal characteristics) risk factors 
affecting mortality. The frailty model is an extension of the Cox PH model. It is a random effects model 
which has a multiplicative effect on the hazard rate that adds additional risks based on each individual’s 
information. The term “frailty” was introduced by Vaupel et al. [1] in a seminal paper on individual survival 
models. They discuss the impact of heterogeneity in individual mortality. Their findings showed that 
standard life-table methods overestimates current life expectancy and potential gains in life expectancy from 
health and safety interventions, while underestimating rates of individual aging, past progress in reducing 
mortality. 
 
Standard life tables assume that the population under study is homogeneous. This means that all individuals 
in that study are subject under the same risk at a given age. Basic observation of medical statistics shows that 
individuals differ greatly see Vaupel et al. [1]. 
 
Frailty models have been adopted by several authors in insurance, for instance; Shusu et al. [2] applies frailty 
to quantify the extent of heterogeneity in Australian population mortality on life annuity rates and pension 
costs the results confirm significant heterogeneity exists. Ramona and Sherris [3] have used frailty model to 
quantify the impact of heterogeneity due to underwriting factors and frailty on annuity values the results 
showed that heterogeneity remains after underwriting and that frailty significantly impacts the fair value of 
both standard and underwritten annuities. 
 
Annamaria and Pitacco [4] suggests adopting a frailty model for risk classification for life annuity portfolios. 
In particular, they identify risk groups within a population by assigning specific ranges of values to the 
frailty within each group. Pitacco E. [5] applies frailty modelling to analyze the impact of frailty, in its 
various interpretations, on the results of cash flows, profits, etc of life insurance and life annuity portfolios 
and related risk profiles.  
 
Avanzi et al. [6] bootstrap data on Canadian pensioners’ mortality to study the characteristics of its                
implied heterogeneity they find strong support for the Gamma frailty model. Nadine G. et al. [7] utilizes               
the frailty model to reflect mortality heterogeneity in optimal risk classification for substandard              
annuities. Their findings indicate that extended frailty risk classification can enhance the insurer’s 
profitability. 
 
Eriksson F and Scheike T [8] applies the additive Gamma frailty models to competing risks in related 
individuals. 
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2 Methodology 
 
The multiplicative approach: 
 

)()|( 0 tuhuth 
 

 

)(0 th
is the ‘standard hazard function’ corresponding to a ‘standard individual’, conventionally those with 

frailty 1u  .The non-negative quantity u  encompasses all other factors affecting mortality other than age 

which acts in a multiplicative manner. Individuals with 1u experience a force of mortality that is 

proportionally higher at all ages. Individuals with 1u experience proportionally lower mortality rates. 
 
Frailty models without observed covariates: 
 
This model is used when only survival data is available for the analysis, or when additional information is of 

no interest. I.e 
)()|( 0 tuhuth 

 
 

This model is non-identifiable from survival data, since different combinations of 
)(0 th

 and frailty 

distributions may produce the same marginal hazard rate
)(th

. The model becomes identifiable when the 

parametric structure of 
)(0 th

 is fixed and u  is assumed to belong to some parametric distribution family. 
 
Univariate frailty models: 
 
This model accounts for heterogeneity due to unobserved risk factors for independent life times in a 
proportional hazard model. The variability can be split into a part that depends on observable risk factors, 
and is therefore theoretically predictable, and a part that is theoretically unpredictable, even when all 
relevant information is known. This model has been used by several authors Rocha [9] and Hougaard [10] to 
show that these two sources of variability can explain some unexpected results. 
 

2.1 Model construction 
 
Let T be the future life-time random variable with a continuous distribution. A non-negative random variable 

u  is called “frailty” if the conditional hazard function given uU   is given by;  
0);()|( 0  ttuhuth

 

where 
)(0 th

 is called the baseline age-specific hazard function for a “standard” individual. The 
“population” hazard corresponding to a randomly selected individual that is actually observed is given by;  

 
)(*)()()]|([ 00 thuduufthuuthE    increases less rapidly than for individuals.  This is because the 

population becomes populated by more and more robust individuals as the frail members fail. The 

conditional survival function is given by; 


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
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 is the cumulative baseline hazard. 
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Comparing the conditional and unconditional survival functions yields 
utsuts )}({)|(    

 
This shows that an individual with frailty of level of 2 is twice as likely to die compared to a “standard” 
individual. 
 
Since the frailty “u” is unobserved and considered random it is integrated out and thus the population is 
considered a mixture over “u”. The univariate marginal survival function is; 
 

           0));((][)]|([)()|()( 0

0

)(0  


 ttHLeEutsEduufutsts u
tuH

                (1) 

 
The contribution is to construct a generalized frailty mixing distribution to nest other individual classes of 
frailty distributions. 
 
2.1.1 Baseline hazard distribution  
 
The baseline hazard used in this study is the Exponential Distribution. 
 
The Exponential Baseline Distribution. 
 
The density function, survival function and hazard function are; 
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2.1.2 The generalized inverse Gaussian frailty 
 
The Generalized Inverse Gaussian (GIG) distribution can be constructed under various parametizations. For 

instance, considering The Sichel’s [11] parametization 
 

;  
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where 
)(vK

is a Bessel function of the third kind with order w and index v. 
 

Using the transformation; dxdzxz
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Is the probability density function of a GIG(v,φ,θ)  
 
The Laplace transform is 
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The marginal survival function at time 0t  
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Special cases  
 
Case 1: Inverse Gaussian Distribution (IG): 
 

Let 
2

1
v  in equation (3) 
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Substituting 
2

2
,

1



   we get 
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For identifiability reasons the mean is normalized to one. i.e.  



1

;1   thus the variance 
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The Laplace transform is therefore 
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The marginal survival function at time 0t  
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Case 2:Reciprocal Inverse Gaussian Distribution (RIG)  
 

Let:
2

1
v in equation (3) 
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For identifiability the mean is normalized to one i.e. 
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The Laplace becomes; 
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The marginal survival function at time 0t  
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Case 3: Gamma Distribution: 
 

Let 
0,0,0   v

in equation (3) 
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For purposes of identifiability assume the distribution of � has mean normalized to one (�=b) and variance 
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The Laplace becomes 
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The marginal survival function at time 0t  
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Case 4: The Levy Distribution: 
 

This is a special case of the Inverse Gaussian distribution. 
 

Let 0,
2

1
,0   v in equation (4) 
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For purposes of identifiability assume the distribution of � has mean normalized to 1. e.g. 1][ UE  

 
The Laplace becomes 
 

 

s
U esL 2)( 

 
 

The marginal survival function at time 0t  
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Case 5: The Harmonic Distribution  
 

Let 
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The Laplace becomes; 
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For purposes of identifiability assume the distribution of � has mean normalized to 1. 
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The marginal survival function at time 0t  
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Case 6: The Positive Hyperbolic Distribution  
 

Let 
0,1,0   v

 in equation (3) 
 
The Laplace becomes; 
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For purposes of identifiability assume the distribution of � has mean normalized to 1. e.g. 
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 in equation (2) 
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)(

))2(()
)2(

(

2

1

2

)(







K

sK
s

U sL





 
 

The marginal survival function at time 0t  
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3 Results and Discussion 
 
3.1 Simulation study 
 
A simulation study is done to check the performance of the proposed models. A comparison is done on the 
survival function in the presence of different levels of frailty (heterogeneity) and without frailty 
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(homogeneity). The baseline parameters are estimated via Bayesian analysis using Gibbs Sampler. RCODE 
is shown in APPENDIX. 
CASE1 
 

Gamma-Exponential Model 
 

The Survival function without frailty:
tetS )(  

 

The Survival function with frailty:

2/12 )1()(   ttS  
 

λ=0.05 (failure rate), δ2=5,30,60 (frailty levels) t=55:110 (age) 
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Inverse Gaussian-Exponential Model 
 

The Survival function without frailty:
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λ=0.05 (failure rate), δ2=5,30,60 (frailty levels) t=55:110 (age) 
 

CASE3 
 

Reciprocal Inverse Gaussian-Exponential Model 
 

The Survival function without frailty:
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λ=0.05 (failure rate), β=0.1, t=55:110 (age) 
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Levy-Exponential Model 
 

The Survival function without frailty:
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The Survival function with frailty: 
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a=0.05, n=2.5 (shape and scale parameters) 
CASE6 
 
Positive Hyperbolic-Exponential Model 
 

The Survival function without frailty:
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The Survival function with frailty: )(
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theta=10, varphi=0.03(shape and scale parameters) 
 

 

 
 

Fig. 1. Graphical representation of exponential model 



 
 
 

Onchere et al.; JAMCS, 35(6): 112-131, 2020; Article no.JAMCS.57462 
 
 
 

124 
 
 

Discussion: 
 
From the simulation study above the proposed new frailty models shows that ignoring frailty leads to an 
underestimation of future residual lifetime since the survival curve shifts to the right when heterogeneity is 
accounted for this is consistent with frailty literature. The aforementioned models can therefore be applied in 
insurance to avoid underestimating the insurer’s liability in the context of life annuity business. 
 
Parameter estimation: 
 
Model parameters are fixed quantitative values that characterize the model believed to reflect the real world. 
They have to be estimated either by statistical inference from observations or by expert opinion. Since the 
baseline model assumes the population to be homogeneous, the Association of Kenya Insurer’s (AKI-2010) 
graduated rates will be considered as the baseline. 
 

3.2 Applications in insurance industry 
 
The pricing of long term insurance, annuity and pension products is largely influenced by the choice of the 
mortality projection model. Frailty models are used in life insurance to represent heterogeneity in a 
population due to non-observed risk factors. Heterogeneity due to observable risk factors is addressed at 
policy issue during the underwriting process to ensure that each contract is assigned premium consistent with 
the insured risk. Neglecting such factors or use of age and sex as the only rating factors (see Joelle F. [12]) 
may lead to mispricing of insurance products. 
 
The aims of this exercise are: 
 

 The first aim is to show that when heterogeneity is disregarded the expected residual lifetime is 
underestimated thus leading to an underestimation of the insurer’s liability. 

 Secondly, is to show the relevance of the proposed Reciprocal Inverse Gaussian Frailty mixture to 
reflect the insurer’s mortality rating.  

 
Assumption: 
 

 The force of mortality μ is assumed piece-wise constant, taking a common value across each whole 
year of age [x, x+1) similar assumption found in Dodd E et al. [13] 

 The frailty model considered here is one without observed covariates since only survival data is 
available for analysis. 

 Maximum age is 109 
 Fixed annual interest rate of 2% 

 

3.3 Data analysis and results 
 
The Data: 
 
3.3.1 The Kenyan life tables 2007-2010 
 
The AKI 2010 table of mortality is based upon data collected by the Association of Kenya Insurers for an 
investigation into the mortality of assured lives in the Republic of Kenya. The method used was the census 
method between 2007-2010 inclusive. The AKI 2010 mortality rates will be used as the baseline hazard rate 
in the study. 
 
Consider two hypothetical insurers i.e. insurer X and Y 
 



Insurer X assumes the population to be 
Life-tables from the Association of Kenya Insurers (AKI 2010) graduated rates.
 
Insurer Y assumes the population to be heterogeneous with respect to both observable and unobserved risk 
factors and applies frailty modeling to modify the AKI q
 
The Reciprocal Inverse Gaussian-Exponential Model
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Where H0(t)~AKI 2010 q-rates 
 

Fig. 2. AKI and frailty survival functions

Discussion: 
 

1. Ignoring heterogeneity due to other factors affecting mortality other than age and sex ie applying 
the AKI 2010 rates as it is leads to an underestimation of life expectancy 
to the right when heterogeneity is accounted for.

2. The Reciprocal Inverse Gaussian model closely represents the AKI 2010 graduated rates with a 
slight increase in survival due to longevity risk. 

 
3.3.2 Deferred life annuity business
 
These are annuities which commence in m (say) years' time, provided that the annuitant is then active. Thus 

the present value of amount b payable for a future lifetime 
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Insurer X assumes the population to be heterogeneous with respect to underwriting factors and applies the 
tables from the Association of Kenya Insurers (AKI 2010) graduated rates. 

Insurer Y assumes the population to be heterogeneous with respect to both observable and unobserved risk 
ors and applies frailty modeling to modify the AKI q-rates. 
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slight increase in survival due to longevity risk.  
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heterogeneous with respect to underwriting factors and applies the 

Insurer Y assumes the population to be heterogeneous with respect to both observable and unobserved risk 

Ignoring heterogeneity due to other factors affecting mortality other than age and sex ie applying 
as the survival curve shifts 

The Reciprocal Inverse Gaussian model closely represents the AKI 2010 graduated rates with a 

These are annuities which commence in m (say) years' time, provided that the annuitant is then active. Thus 

BLACK: AKI 
2010 LT: 
ultimate q-rates 
GREEN: 
FRAILTY LT: 
ultimate q-rates 
plus unobserved 
risk factors.  
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D  is a pure endowment factor and 

 

 

Fig. 3. AKI and RIG frailty insurers expected liability

Discussion: 
 

1. When heterogeneity is disregarded the expected liability is underestimated.
2. The Reciprocal Inverse Gaussian frailty is a close estimate of the insurer liability with a slight 

increase due to observed heterogeneity.
 

4 Conclusion 
 
The proposed new frailty models show an increase in the insurers expected liability when unobserved 
heterogeneity is accounted for. This is consistent with frailty literature and thus can be applied to avoid 
underestimating the insurer’s liability in the context of lif
 
The RIG model as proposed in estimating future liability by directly adjusting the AKI mortality rates shows 
an increase in longevity risk. The extent of heterogeneity of the insured group determines the level of risk. 
The RIG frailties should be considered for multivariate cases where the insureds are clustered in groups.
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APPENDIX 1A 
 
WINBUGS CODE 
 
MODEL<-FUNCTION(){ 
FOR(I IN 1:55){ 
S[I] ~ DEXP(LAMBDA)    } 
LAMBDA ~ DEXP(0.09)    } 
WRITE.MODEL(MODEL,"MODEL.TXT") 
INIT<-FUNCTION(){LIST(ALPHA=DEXP(0.9))} 
DATA=LIST(S=GIG_TABLE$S.X._AKI.MALE.I.2.) 
BUGS=BUGS(DATA=DATA,INITS=INIT,PARAMETERS.TO.SAVE=C("LAMBDA"),MODEL.FILE="
MODEL.TXT",BUGS.DIRECTORY="C:/USERS/DELL/DOCUMENTS/R/WIN-
LIBRARY/3.5/R2WINBUGS",N.CHAINS=1,N.ITER=100000,N.BURNIN=100,CODAPKG=TRUE,DEB
UG=T) 
 
Node Statistics 
 
  NODE   MEAN  SD  MC ERROR 2.5% MEDIAN 97.5% START
 SAMPLE 
 DEVIANCE  100.8  1.396 0.04448 99.8 100.3  104.8  3     1010 
 LAMBDA  1.115  0.1478 0.004396 0.8378 1.105  1.422  3     1010 
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CASE 1 R-CODE: 
 
PAR(MFROW=C(2,2)) 
AGE=56:1 
SURVIVAL_FUNCTION=SEQ(0,1,1/55) 
LAMBDA=1.115# WINBUGS ESTIMATE 
S1 <-(1+5*LAMBDA*AGE)^(-1/5) 
S2 <-(1+30*LAMBDA*AGE)^(-1/30) 
S3 <-(1+60*LAMBDA*AGE)^(-1/60) 
S4 <- EXP(-LAMBDA*AGE) 
PLOT(AGE,SURVIVAL_FUNCTION,TYPE="N",MAIN="GAMMA-EXPONENTIAL MODEL") 
LINES(AGE,S1,COL="BLACK") 
LINES(AGE,S2,COL="BLUE") 
LINES(AGE,S3,COL="GREEN") 
LINES(AGE,S4,COL="RED") 
 
CASE 2 R-CODE: 
 
S1 <-EXP((1-(1+2*5*LAMBDA*AGE)^(0.5))/5) 
S2 <-EXP((1-(1+2*30*LAMBDA*AGE)^(0.5))/30) 
S3 <-EXP((1-(1+2*60*LAMBDA*AGE)^(0.5))/60) 
PLOT(AGE,SURVIVAL_FUNCTION,TYPE="N",MAIN="IGAUSSIAN-EXPONENTIAL MODEL") 
LINES(AGE,S1,COL="BLACK") 
LINES(AGE,S2,COL="BLUE") 
LINES(AGE,S3,COL="GREEN") 
LINES(AGE,S4,COL="RED") 
 
CASE 3 R-CODE: 
 
BETA=0.9 
S1<-((1+2*BETA*LAMBDA*AGE)^(-0.5))*EXP((1-BETA)*(1-
(1+2*BETA*LAMBDA*AGE)^(0.5))/BETA) 
PLOT(AGE,SURVIVAL_FUNCTION,TYPE="N",MAIN="R.I.G -EXPONENTIAL MODEL") 
LINES(AGE,S1,COL="BLACK") 
LINES(AGE,S4,COL="RED") 
 
CASE 4 R-CODE: 
 
S1 <- EXP(-SQRT(2*LAMBDA*AGE))  
PLOT(AGE,S1,MAIN="LEVY-EXPONENTIAL MODEL",TYPE="L") 
LINES(AGE,S4,COL="RED") 
 
CASE 5 R-CODE: 
 
PAR(MFROW=C(1,2)) 
A=0.05 
N=2.5 
S1 <- BESSELK(SQRT(2*A*N*LAMBDA*AGE+A^2),0)/(N*BESSELK(1/N,1))  
PLOT(AGE,S1,YLAB="SURVIVALFUNCTION",TYPE="O",MAIN="HARMONIC-EXPONENTIAL 
MODEL") 
LINES(AGE,S4,COL="RED") 
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CASE 6 R-CODE: 
 
VARPHI=10 
THETA=0.03 
S1<-SQRT((VARPHI^2)/(VARPHI+2*LAMBDA*AGE)*THETA)*(BESSELK 
(SQRT((2*LAMBDA*AGE+VARPHI)*THETA),1)/BESSELK(SQRT(THETA*VARPHI),2)) 
PLOT(AGE,S1,YLAB="SURVIVALFUNCTION",TYPE="O",MAIN="POSITIVE HYPERBOLIC-
EXPONENTIAL MODEL") 
LINES(AGE,S4,COL="RED") 
 
COMPARISON GRAPHS 1 R-CODE 
 
GIG_TABLE=READ.CSV("C:/USERS/DELL/DESKTOP/PROJECTS/GIG_BOOK1.CSV",HEADER=T) 
PLOT(AGE..X.,S.X._AKI.MALE.I.2.,TYPE="O",MAIN="AKI AND FRAILTY SURVIVAL 
FUNCTIONS", YLAB="SURVIVAL_FUNCTION", XLAB="AGE") 
BETA=0.9 
RIG_SX<-((1+2*BETA*BETA*GIG_TABLE$HX_AKI)^(-0.5))*EXP((1-BETA*BETA)*(1-
(1+2*BETA*BETA*GIG_TABLE$HX_AKI)^(0.5))/(BETA*BETA)) 
LINES(AGE..X.,RIG_SX,COL="GREEN",TYPE="O") 
 
COMPARISON GRAPHS 2 R-CODE 
 
PLOT(AGE..X.,AX_AKI,TYPE="O",MAIN="AKI AND RIG FRAILTY INSURERS EXPECTED 
LIABILITY", YLAB="EXPECTED LIABILITY", XLAB="AGE") 
lines(Age..x.,ax_RIG,col="red") 
 

Table 1. Association of Kenya Insurers Table I=2% 
 

Age (x) lx dx px qx μx Dx Nx ax_AKI 
55 100000 373 0.99627 0.00373 0.00374 33650.42 872239.81 25.92 
56 99627 375 0.99624 0.00376 0.00377 32867.49 838589.39 25.51 
57 99252 382 0.99615 0.00385 0.00386 32101.78 805721.90 25.10 
58 98870 391 0.99604 0.00396 0.00396 31351.19 773620.12 24.68 
59 98479 403 0.99591 0.00409 0.00410 30614.87 742268.93 24.25 
60 98076 415 0.99577 0.00423 0.00424 29891.88 711654.06 23.81 
61 97661 428 0.99562 0.00438 0.00439 29181.77 681762.18 23.36 
62 97233 442 0.99545 0.00455 0.00456 28484.15 652580.41 22.91 
63 96791 457 0.99528 0.00472 0.00473 27798.66 624096.26 22.45 
64 96334 473 0.99509 0.00491 0.00492 27124.93 596297.59 21.98 
65 95861 491 0.99488 0.00512 0.00513 26462.49 569172.66 21.51 
66 95370 511 0.99464 0.00536 0.00537 25810.76 542710.17 21.03 
67 94859 533 0.99438 0.00562 0.00564 25169.11 516899.41 20.54 
68 94326 559 0.99408 0.00592 0.00594 24536.85 491730.29 20.04 
69 93767 587 0.99375 0.00626 0.00627 23913.30 467193.44 19.54 
70 93181 617 0.99337 0.00663 0.00665 23297.77 443280.14 19.03 
71 92563 652 0.99296 0.00704 0.00707 22689.61 419982.37 18.51 
72 91912 690 0.99250 0.00750 0.00753 22088.09 397292.76 17.99 
73 91222 732 0.99198 0.00802 0.00806 21492.47 375204.67 17.46 
74 90490 778 0.99140 0.00860 0.00864 20901.99 353712.21 16.92 
75 89711 830 0.99075 0.00925 0.00930 20315.86 332810.22 16.38 
76 88881 888 0.99001 0.00999 0.01004 19733.19 312494.36 15.84 
77 87994 952 0.98918 0.01082 0.01087 19153.03 292761.17 15.29 
78 87042 1023 0.98825 0.01175 0.01182 18574.39 273608.14 14.73 
79 86019 1103 0.98718 0.01282 0.01290 17996.14 255033.75 14.17 
80 84916 1192 0.98596 0.01404 0.01414 17417.07 237037.61 13.61 
81 83724 1292 0.98456 0.01544 0.01556 16835.82 219620.54 13.04 
82 82431 1405 0.98296 0.01704 0.01719 16250.92 202784.72 12.48 
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Age (x) lx dx px qx μx Dx Nx ax_AKI 
83 81026 1531 0.98110 0.01890 0.01908 15660.76 186533.80 11.91 
84 79495 1673 0.97895 0.02105 0.02127 15063.55 170873.04 11.34 
85 77822 1833 0.97645 0.02356 0.02384 14457.33 155809.50 10.78 
86 75989 2012 0.97352 0.02648 0.02684 13839.99 141352.17 10.21 
87 73977 2213 0.97008 0.02992 0.03038 13209.28 127512.18 9.65 
88 71763 2437 0.96604 0.03396 0.03455 12562.81 114302.91 9.10 
89 69326 2685 0.96127 0.03873 0.03950 11898.19 101740.10 8.55 
90 66641 2957 0.95562 0.04438 0.04539 11213.06 89841.91 8.01 
91 63683 3252 0.94894 0.05106 0.05241 10505.34 78628.85 7.48 
92 60432 3564 0.94102 0.05898 0.06079 9773.46 68123.50 6.97 
93 56867 3887 0.93164 0.06836 0.07081 9016.68 58350.04 6.47 
94 52980 4209 0.92056 0.07944 0.08277 8235.61 49333.36 5.99 
95 48771 4510 0.90752 0.09248 0.09704 7432.75 41097.75 5.53 
96 44261 4769 0.89226 0.10774 0.11400 6613.14 33665.00 5.09 
97 39493 4955 0.87453 0.12548 0.13407 5784.93 27051.86 4.68 
98 34537 5039 0.85411 0.14589 0.15769 4959.87 21266.92 4.29 
99 29499 4989 0.83088 0.16912 0.18527 4153.23 16307.05 3.93 
100 24510 4785 0.80479 0.19521 0.21718 3383.19 12153.82 3.59 
101 19725 4421 0.77588 0.22412 0.25375 2669.36 8770.64 3.29 
102 15305 3913 0.74432 0.25569 0.29529 2030.50 6101.27 3.00 
103 11391 3300 0.71032 0.28968 0.34205 1481.70 4070.77 2.75 
104 8092 2642 0.67344 0.32656 0.39536 1031.84 2589.07 2.51 
105 5449 1983 0.63605 0.36395 0.45247 681.25 1557.23 2.29 
106 3466 1399 0.59625 0.40375 0.51710 424.82 875.98 2.06 
107 2067 920 0.55481 0.44519 0.58913 248.33 451.17 1.82 
108 1147 560 0.51172 0.48828 0.66998 135.07 202.84 1.50 
109 587 313 0.46686 0.53314 0.76172 67.76 67.76 1.00 

 
Table 2. Reciprocal Inverse Gaussian frailty table 

 
Age (x) lx dx px qx μx Dx Nx ax_RIG 
55 100000 372 0.996281 0.003719 0.003726 33650 878247.8375 26.10 
56 99628 374 0.996251 0.003749 0.003756 32868 844597.4126 25.70 
57 99255 381 0.996162 0.003838 0.003845 32103 811729.492 25.29 
58 98874 389 0.996063 0.003937 0.003945 31352 779626.8461 24.87 
59 98484 401 0.995925 0.004075 0.004083 30617 748274.458 24.44 
60 98083 413 0.995787 0.004213 0.004222 29894 717657.8366 24.01 
61 97670 426 0.995639 0.004361 0.004371 29184 687763.8575 23.57 
62 97244 440 0.995471 0.004529 0.004539 28487 658579.5088 23.12 
63 96803 455 0.995303 0.004697 0.004708 27802 630092.1796 22.66 
64 96349 471 0.995116 0.004884 0.004896 27129 602289.9148 22.20 
65 95878 488 0.994909 0.005091 0.005104 26467 575160.8191 21.73 
66 95390 508 0.994673 0.005327 0.005341 25816 548693.567 21.25 
67 94882 531 0.994407 0.005593 0.005609 25175 522877.3834 20.77 
68 94351 556 0.994112 0.005888 0.005905 24543 497702.2257 20.28 
69 93796 583 0.993788 0.006212 0.006231 23921 473158.7423 19.78 
70 93213 614 0.993416 0.006584 0.006606 23306 449238.1822 19.28 
71 92599 648 0.993004 0.006996 0.007021 22698 425932.3335 18.76 
72 91952 685 0.992554 0.007446 0.007474 22098 403233.8993 18.25 
73 91267 727 0.992036 0.007964 0.007996 21503 381136.2169 17.72 
74 90540 772 0.99147 0.00853 0.008567 20914 359633.1356 17.20 
75 89768 823 0.990828 0.009172 0.009214 20329 338719.5759 16.66 
76 88944 880 0.990109 0.009891 0.009940 19747 318390.9808 16.12 
77 88065 942 0.989304 0.010696 0.010754 19169 298643.7836 15.58 
78 87123 1012 0.988386 0.011614 0.011682 18592 279475.276 15.03 
79 86111 1090 0.987344 0.012656 0.012737 18015 260883.6277 14.48 
80 85021 1177 0.986153 0.013847 0.013944 17439 242868.2112 13.93 
81 83844 1275 0.984794 0.015206 0.015323 16860 225429.5706 13.37 
82 82569 1384 0.983241 0.016759 0.016901 16278 208569.6022 12.81 



 
 
 

Onchere et al.; JAMCS, 35(6): 112-131, 2020; Article no.JAMCS.57462 
 
 
 

131 
 
 

Age (x) lx dx px qx μx Dx Nx ax_RIG 
83 81185 1506 0.981449 0.018551 0.018725 15691 192291.5672 12.25 
84 79679 1643 0.979385 0.020615 0.020830 15098 176600.1638 11.70 
85 78036 1796 0.97698 0.02302 0.023289 14497 161501.8186 11.14 
86 76240 1967 0.974194 0.025806 0.026145 13886 147004.6688 10.59 
87 74273 2159 0.970938 0.029062 0.029493 13262 133118.9576 10.04 
88 72114 2369 0.967143 0.032857 0.033409 12624 119856.8237 9.49 
89 69745 2602 0.962696 0.037304 0.038018 11970 107232.5984 8.96 
90 67143 2855 0.957484 0.042516 0.043446 11298 95262.56797 8.43 
91 64288 3126 0.951381 0.048619 0.049841 10605 83965.01852 7.92 
92 61163 3410 0.944245 0.055755 0.057370 9892 73359.89808 7.42 
93 57752 3701 0.935921 0.064079 0.066224 9157 63468.22153 6.93 
94 54052 3985 0.926268 0.073732 0.076592 8402 54311.19591 6.46 
95 50066 4249 0.915131 0.084869 0.088688 7630 45908.98751 6.02 
96 45817 4472 0.902404 0.097596 0.102693 6846 38278.89263 5.59 
97 41346 4630 0.888007 0.111993 0.118776 6056 31433.26875 5.19 
98 36715 4703 0.871916 0.128084 0.137062 5273 25376.8782 4.81 
99 32013 4668 0.854189 0.145811 0.157603 4507 20104.21426 4.46 
100 27345 4513 0.83497 0.16503 0.180359 3774 15597.03775 4.13 
101 22832 4236 0.814463 0.185537 0.205226 3090 11822.54697 3.83 
102 18596 3851 0.792907 0.207093 0.232049 2467 8732.756213 3.54 
103 14745 3383 0.770577 0.229423 0.260616 1918 6265.5795 3.27 
104 11362 2871 0.747285 0.252715 0.291309 1449 4347.695494 3.00 
105 8491 2339 0.724535 0.275465 0.322225 1062 2898.796177 2.73 
106 6152 1839 0.701138 0.298862 0.355051 754 1837.285661 2.44 
107 4313 1391 0.677556 0.322444 0.389263 518 1083.264561 2.09 
108 2922 1012 0.653726 0.346274 0.425067 344 564.9578495 1.64 
109 1910 708 0.629511 0.370489 0.462812 221 220.6619453 1.00 
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