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ABSTRACT 
 

Most widely used integrated hydrologic models use outdated descriptions of the stream-aquifer flow 
exchange. Understandably they do it for practical reasons to avoid computational costs in large-
scale regional studies. In this article we propose a largely analytical technique that (1) describes 
the situation when the connection is unsaturated while avoiding a lot of numerical work and at the 
same time remains quite physical, (2) has the capability to describe fluctuations between saturated 
and unsaturated connections, and (3) can be coupled easily with the numerical groundwater model 
that describes what happens in the broad system of cells away from the river(s). Essentially two 
separate methods are compared for the purpose of selecting the most practical of the two. 
 

 

Keywords: Stream-aquifer interaction; flow exchange; stream depletion; saturated or unsaturated 
hydraulic connection; analytical coupling. 

 

1. BACKGROUND INTRODUCTION 
 

In the United States the development of most 
groundwater (or integrated hydrologic) simulation 
models in wide use today for large-scale regional 
studies was initiated some 60-70 years ago. 

Then models such as MODFLOW [1] tried to              
be as rigorous and physically based as             
possible. However at the time computer            
storage and power were limited. Out of      
necessity the mathematical models had to 
greatly simplify a complex reality and as a result 
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the models ended up highly conceptual in some 
places. 
 
Discussion of the limitations of MODFLOW to 
estimate the seepage flow between a stream and 
a water-table aquifer, whether in saturated or 
unsaturated connection, are provided in a 
number of publications [2,3]. 
 
At that time the United States’ interest in water, 
in its availability and purity, was fairly limited. It 
was not until the Water Resources Research Act 
was passed in 1964 that substantial financial 
support became available for research in the 
general field of water. Great improvements were 
then implemented in the following decades with 
use of more powerful computers, GIS and 
numerous other technologies. Yet for some 
components the original empirical approaches 
have remained unchanged. 
 
Nowadays however concern for the availability of 
water under simultaneous conditions of climate 
change and continued growth of population has 
greatly increased. This is evident in California. 
The “Sustainable Groundwater Management 
Act”, SGMA, passed on September 16, 2014, 
requires that new agencies, Sustainable 
Groundwater Agencies, SGA, be created in all 
groundwater basins. These new agencies, which 
had to be created by June 30, 2017, must 
provide the Department of Water Resources by 
January 31, 2022 a plan that would show that the 
SGA has taken action for sustainability of the 
groundwater resource. The majority of these 
plans will be supported by simulations with 
groundwater models. 
 
Back in the early 1970s days, with limited 
computer capability, it was customary to assume 
that the flow in the water-table aquifer was 
essentially horizontal (the Dupuit-Forchheimer, 
DF, assumption). Given that assumption the 
groundwater flow equation to be solved for the 
large system was two-dimensional in a horizontal 
plane since there was no vertical flow. The 
obvious purpose was not to have to deal 
numerically with a three-dimensional problem 
size. 
 
However it is very clear that in the vicinity of a 
river’s cross-section the flow is not horizontal. 
Fig. 1 illustrates that point where flow lines are 
shown for a river with rectangular cross-section. 
These flow lines were obtained with a numerical 
code using a very fine grid under a steady-state 
condition. The flow in the aquifer does not 

become horizontal until a significant distance 
away from the banks of the river, where the 
equipotential (constant head) lines become 
essentially vertical. 
 
However the size of the space where the flow is 
not horizontal is small relative to the size of the 
finite difference cells in the large-scale region. It 
was wasteful to have to solve a three-
dimensional system of equations when as a 
whole it was necessary only over a limited 
domain. Thus the idea came to couple an 
analytical solution in a vertical plane with the two-
dimensional system of equations in the horizontal 
plane. For different cross-section shapes 
(elliptical, triangular, rectangular, trapezoidal) 
such analytical solutions were found. The 
problem was then ,deduced from the analytical 
solutions, to estimate a dimensionless 
conductance of the big streamtube from the 
river’s wetted perimeter to a location where the 
head in the aquifer satisfied the assumption that 
flow was horizontal. At the right and left 
boundaries of Fig. 1 the potential (constant head) 
lines are vertical. 
 
Fig. 1 shows many small streamtubes. The 
resistance to flow in each of these streamtubes is 
quite different. It is relatively small for the top 
streamtubes, where flow is almost linear. It is 
much larger for the bottom ones where the 
geometry of flow is complex, involving zones of 
divergence and convergence and significant 
curvature.  The task was to find the conductance 
of the overall streamtube, the composite of all the 
small streamtubes. That task was successful 
over a decade long sustained effort [2,4] Once a 

value for the dimensionless conductance, G , 
considering only one side, was obtained then 
one could estimate the one-sided seepage 
discharge in the case of saturated flow as: 
 

Qone-sided = GLRKH (hS - hDF )          (1) 

 

LR  is the length of the river within the aquifer 

cell that contains the river , KH  is the aquifer 

horizontal conductivity, hS  is the head in the 

river and hDF  is the head in the aquifer at a 

distance such that by that location the flow has 
become horizontal, referred also as the far 

distance hfar . hDF  is the head calculated by 

the solution of the two-dimensional groundwater 
equations in the horizontal plane. 
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Fig. 1. View of seepage from the river to the aquifer in a vertical cross-section 
 
It was then possible to link an essentially two-
dimensional analytical vertical model to a 
numerical two-dimensional groundwater model in 
the horizontal plane. This resulted in an effective 
3-dimensional model without the heavy burden to 
do it entirely numerically. 
 

Following this somewhat lengthy explanation of 
the background needed to understand the 
additional research to be presented, it is time to 
state the purpose of this article. The main 
purpose of this article is to address the case of 
unsaturated connection between the river and 
the water-table below the riverbed. Whereas the 
numerical solution of the saturated groundwater 
flow equations is relatively simple that for 
unsaturated flow is significantly more 
complicated, being highly nonlinear. 
 

To avoid those difficulties, two approximate 
analytical methods of solution for the description 
of the unsaturated zone water content profile 
below a tight riverbed (clogging layer) have been 
developed. The first developed method has (1) 
the disadvantage of requiring one numerical 
integration and (2) to be limited to a few values of 

the parameters that characterize the relative 
conductivity and capillary pressure of the aquifer 
porous medium. The second method avoids both 
these limitations but may appear less realistic. A 
comparison of the two methods on a common set 
of data is presented to verify that they give 
essentially the same results. 
 

2. GENERAL APPROACH TO SOLVE     
THE CASE OF UNSATURATED 
CONNECTION 

 
The first issue to consider is under what 
condition does unsaturated connection start 
when until then the connection was saturated? 
The initial time at which desaturation starts is 
termed incipient desaturation, and in reverse 
incipient resaturation. 
 
Once an unsaturated connection is established 
the system includes one more zone, the 
unsaturated zone. The physical system now 
consists of the river, a clogging layer, an 
unsaturated zone, a capillary fringe, a water table 
mound, a river cell and adjacent cells. 

 

 
 

Fig. 2. Schematic view of the different components of system 
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Not only is the river cell divided into two halves 
but in addition the initial half-cell is reduced by 
the half-width of the water-table mound, B. So for 
that reason it is referred to as the reduced half 
river cell. It may be important to recognize that 
once desaturation has started the head in the 

reduced half river cell, still denoted hf , is no 

longer exactly the head in the full river cell, 

denoted hfrc . If the river width is small relative 

to the width of the (aquifer) river cell, which in 
large-scale regional studies is usually the case, 
then the two heads are essentially the same. If 
that is not the case a very minor change is 
needed. By law of averaging: 
 

hf =
Ghfrc - 2Bzrf

G - 2B
                        (2) 

 
provides the correction).  G is the grid size, B half 

the river bottom width and zrf  is the water table 

mound height measured from the aquifer layer 
bottom. 
 
One main objective of the approach is to simplify 
the analysis of the unsaturated connection 
condition by approximating the shape of the 
water content profile in the unsaturated zone 
instead of solving numerically the unsaturated 
flow equation (e.g. Richards equation). 
 

3. INCIPIENT DESATURATION  
 
When a river is in saturated connection with the 
underlying aquifer what could cause desaturation 
to occur? For that to happen the head in the 
aquifer cell that contains the river (the river cell) 
must drop significantly so that the flow between 
the river and the half river cell, under such a 
large driving head drop, cannot be maintained by 
the river unless there is a significant suction 
coming from the aquifer. 
 
Desaturation in the aquifer will start when the 
suction at the bottom of the clogging layer, also 
the top of the aquifer, will be equal to the entry 
capillary pressure in drainage for the geologic 

material that makes the aquifer, hce . 

 
(Throughout this article when the term “capillary 
pressure” is used, for brevity, it actually means 
capillary pressure “expressed as an equivalent 
water height” and has dimension of length). 

That will cause incipient desaturation (incip).   
That value of head is obtained from the 
expression [5]: 
 

hf
incip = hS -

(B+H )Krcl
KHG

(H + hce + ercl )

ercl

 (3) 

 

hS  is the head in the stream, H  is the river 

stage , Krcl is the conductivity of the (real) 

clogging layer and ercl  is its thickness In this 

formula G  is the conductance that includes the 
possibility of anisotropy, of an excess far 
distance due to grid size and naturally the 
presence of the clogging layer [4]. 
 

We note that incipient desaturation will also 
depend upon the river head, the size of the 

wetted perimeter and naturally depends upon G, 
the one-sided stream-aquifer flow exchange 
(SAFE) dimensionless conductivity [5]. 
 

4. THE APPROXIMATE PROFILE OF THE 
UNSATURATED ZONE 

 

The word interface refers to the boundary 
between the bottom of the clogging layer and the 
top of the underlying aquifer. We use the term 
capillary zone for the combination of both the 
unsaturated zone and the capillary fringe. Fig. 3 
illustrates the water content profile shape under 
the river and the notations used in the 
unsaturated zone and the water table mound. 
 

qI  is the water content at the interface, q  is the 

average water content in the unsaturated zone 

and qS
is the saturated water content. z f is the 

depth of the unsaturated zone between the 
bottom of the clogging layer and the top of the 
capillary zone while zrf is the elevation of the 

phreatic surface within the mound from the 
bottom of the aquifer. 
 

Under an unsaturated connection if we knew the 
capillary pressure at the interface, hcI , then we 

would know the seepage velocity at the interface, 

iS , 
 

given by Darcy’s law:   
iS = Krcl

(H + hcI + ercl )

ercl

         (4) 

 

At the depth 
z f

 the capillary pressure is known 

hce
. What would be a reasonable capillary 

pressure (or equivalently water content or 
relative permeability) profile in between? 
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Fig. 3. Water content profile below the river 
 

The flow rate at the bottom of the riverbed is the 
seepage rate. At the top of the capillary fringe the 
flow rate is the recharge rate to the aquifer. In 
MODFLOW, for example, no distinction is made 
between seepage and recharge rates. They are 
automatically deemed the same. That would be 
true under a steady-state condition. As an 
approximation it would seem reasonable (1) to 
use a steady-state profile associated with the 
seepage rate (or the recharge rate or a 
combination) and (2) to use a succession of 
steady-states to describe the transient behavior. 
Two procedures have been tried and the main 
purpose of this paper is to see how they 
compare. 
 

4.1 First Choice for the Steady-state 
Profile in the Unsaturated Zone 

 

This was a first approximation that was used and 
it may not be the most practical. Using a few 
additional assumptions regarding the Brooks-
Corey parameters associated with the geologic 
material of the aquifer, namely M=2.5 and p=5           

(M is the exponent in the expression of capillary 
pressure and p  in the expression of relative 

conductivity, as  power functions of normalized 

water content) such a profile is derived (for 
details see Appendix 2). 
 

hc
* =

1+ hcI
* v* - e

Dzz
*
(1- hcI

* v* )

v*[1+ hcI
* v* + e

Dzz
*
(1- hcI

* v* )]

  (5) 

 
with   

hc
* =

hc
hce

   (6a)  
z* =

z

z f

   (6b)  
v* =

v

KV

      (6c) 

 

Dz = ln{(
1+ hcI

* v*

1+ v*
)(
1- v*

1- hcI
* v*

)}   (6d) 

 

and  z f =
hce

2 v*
ln{(

1+ hcI
* v*

1+ v*
)(
1- v*

1- hcI
* v*

)}       (7) 

 
v  is the steady-state water velocity (in the Darcy 
sense) in the unsaturated zone. Having 

calculated hc
*

 the normalized water content is 

obtained, q* , 



 
 
 
 

Morel-Seytoux; PSIJ, 24(3): 20-42, 2020; Article no.PSIJ.56687 
 
 

 
25 

 

since: q* = (hc
*)
-
1

M                                          (8) 

 

Having calculated the point values of water 
content along the profile in the unsaturated zone 
then one calculates the average value in that 

zone, q . This is done by numerical integration in 
this case. This value will be used to estimate how 
much water has drained from the unsaturated 

zone during a period of time, Dt = t - to . 
 
In these equations the steady-state velocity, v , 
is selected to be the seepage rate at the end of 

the period, iS . The time at the beginning of the 

period of time is denoted to  and at the end tn

(or simply t ). 
 
The recharge rate is the seepage rate plus the 
amount of water that has drained from the 
unsaturated zone into the capillary fringe in other 
words into the aquifer. The volume of water 

drained between the time to  and the time t , the 

duration Dt , is the amount of air gained in that 
zone in other words is: 

DVdrain =
(qS -q )z f

Dt
-
(qS -q

o )z f
o

Dt
        (9) 

 
If indeed there is drainage, because the water-

table is receding, both q £qo and z f ³ z f
o  and 

DVdrain  is positive. It is the reverse if the water-

table is rising. 
 

In this equation q  refers to the average water 
content within the unsaturated zone. The 
recharge rate by mass balance is thus:  
 

vrech
mass = iS +

(qS -q )z f
Dt

-
(qS -q

o)z f
o

Dt
          (10) 

 
 (Even though the numerical value of Δt is 1 (say 
a day), as a check on proper dimensionality of 
the derived expressions it is better to keep it 
explicitly. The superscript “mass” is not generally 
shown when mass estimate is meant).  The 
superscript “o” refers to old values, at the 
beginning of a period (time step). The superscript 
“n ” (or no superscript) refers to new values, at 
the end of the period.  

 
4.2 Second Choice for the Steady-state Profile in the Unsaturated Zone 
 
In this case a different functional relationship is assumed between relative permeability and capillary 

pressure namely: krw = e
-
(hc-hce )

HcS                                                                                                     (11) 

 
Using this formulation (Appendix 1) one obtains:  
 

(krw )mean = v
* +

[1- krw(hcI )]

ln[
1- v*

krw (hcI )- v
*
]

                                                                  (12) 

 

(hc )mean = hce -HcS ln[(krw )mean ]                                                                  (13) 

 

q =qmean =qr + (qS -qr )[
(hc )mean
hce

]
-
1

M                                                      (14) 

 

z f = HcS ln[
1- v*

krw(hcI )- v
*
]                                                                                        (15) 
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Eqs.(9) and (10) still apply. 
 

5. THE THICKNESS OF THE UNSATURATED ZONE, z f  

 
Even though a value can be obtained from the steady-state profile a more dynamic approach is used. 
The details of the derivations are available in an earlier article [6] and only a summary is provided. 

 

C
ap
R
es

is the capillary resistance, a negative value defined as: 
 

 

CapRes = -HcS[1- (hcI
* )

-
p-M

M ]                                                                   (16) 

 
The instantaneous recharge rate is  
 

vrech
dyn = 2KV [

CapRes

z f
+ krw (q )]- iS                                                                        (17) 

 
Eq.(10) is a mass estimate of the recharge rate.  We then require that the two estimates given by 

Eqs.(10) and (17) yield the same estimate of z
f

, mathematically a second order algebraic equation:  

 

iS +[
(qS -q )z f

Dt
-
(qS -q

o )z f
o

Dt
]= 2KV [

CapRes

z f
+ krw(q )]- iS                           (18) 

 

The solution of that algebraic second order equation yields the value of z f .  

6. THE ELEVATION OF THE WATER-TABLE MOUND, z
rf

 

 
The water table mound is excited by the recharge rate from the river and the lateral outflow to (or 
inflow from) the part of the river cell which is not below the river.  Mass balance for the position of the 
mound is: 
 

fef (B+H )
dzrf
dt

= (B+H )vrech -GKH (zrf - hf )

= (B+H ){2KV [
CapRes
z f

+ krw ]- iS}-GKH (zrf - hf )

                                   (19) 

 

In this expression fef  is the specific yield (effective porosity) in the mound region.  The SAFE 

dimensionless conductance appearing in Eq. (19) is G flat-anis-D  accounting for the fact that 

there is no longer river penetration, the possibility of anisotropy in the aquifer and an excess distance 
from the standard far distance [4]. 
 
The solution (for details see Appendix 3) for zrf(n) (where n is the period (usually day) number for 
time) is: 
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zrf (n) = rrf zrf (n-1)+arf [hf (n-1)+s rf vrech(n -1)] 

+brf [hf (n)+srf vrech(n)]                                                                                             (20) 

 

rrf = e

-
1

Crf  (21a)  a
rf
= [C

rf
(1-r

rf
)- r

rf
]  (21b)   brf = [1-Crf (1- rrf )]                  (21c) 

 

This is the dynamic estimate for zrf  so zrf
dyn

. 

But by mass balance it can be estimated as 

zrf
mass = zrf = D- ercl - z f - hce  (22). 

Naturally the two values should be the same. D 
is the distance from the river bottom to the 
aquifer bottom. 
 

7. PROCEDURAL STEPS IN CASE OF 
DESATURATION 

 

The external excitations to the system are the 
stage (maximum water depth) in the river, H, and 
the head in the part of the half river cell away 

from the banks, hf . The first step is to estimate 

(guess) the value of the interface capillary 
pressure, hcI, and thus determine θI, θ and iS as 
well.  Then one estimates a value for zf by 
requiring that the recharge rates estimated by 
mass balance and dynamically be the same, 
using Eq. (18). That defines a value of zf.  Next 
the value of zrf is obtained by mass balance and 
dynamically. 
 

One estimates the value of zrf  using Eq.(22) and 

dynamically, zrf
dyn

, using Eq. (20). 

 

Had one chosen the right value for hcI  the two 

estimated values for zrf  would be the same. If 

they are not the same then iteratively one 

chooses other values of hcI  so that ultimately 

the two values match within a given tolerance. 
Once that tolerance is met the right values of 

hcI  and of all the other variables were obtained. 

The numerical algorithm guarantees that mass 
balance is always secured. 
 

8. COMPARISON OF THE TWO 
UNSATURATED ZONE METHODS 

 
The basic parameters for the comparison are in 
Table 1. 
 

Saturated water content = 0.4; residual water 
content = 0.2 

Table 1. Parameters of the system 
 

Parameter Definition Unit Value 
D Aquifer thickness below river bottom m 20 
B Half-width of the river m 5 
G Lateral grid m 200 
KH Aquifer hydraulic conductivity (horizontal)  m/day 2.5 
KV Aquifer hydraulic conductivity (vertical) m/day 2.5 
Krcl Hydraulic conductivity of clogging layer m/day 0.01 
ercl Thicknesss of clogging layer m 0.4 
hce BC air entry value, aquifer 

BC air entry value, clogging layer 
m 
m 

0.30 
2.00 

M BC exponent, aquifer 
BC exponent, clogging layer 

- 
- 

2.5 
2.5 

p BC Exponent conductivity aquifer 
BC exponent conductivity clogging layer 

- 
- 

5 
5 

H  Water level in river (river stage) m 0.1 

fe
 

Aquifer effective porosity   0.2 

hf
ini Initial head in reduced half river cell  m 20.7 
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Fig. 4 shows the comparison for the capillary 
pressure at the interface.  
 
If the value exceeds 0.30 m then the connection 
is unsaturated. Otherwise it is saturated. The 
simulation starts with the system under saturated 
connection. 
 

Naturally when in a saturated connection                
the results are identical since the same 
methodology applies. That changes at time                     
8. The system remains in unsaturated              
connection till time 36 where it changes again              

to a saturated connection. Now during that        
period and later there is a slight difference 
between methods 1 and 2 for the unsaturated 
connection. However the differences are             
minor. 
 
Fig. 5 shows the comparison for the seepage 
rates. These are the important variables. The 
same conclusions hold. 
 

Fig. 6 shows the comparison for the recharge 
rates. The same conclusions hold. The difference 
are minor. 

 

 
 

Fig. 4. Comparison for the capillary pressure at the interface 
 

 
 

Fig. 5. Comparison for the seepage rates 
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Fig. 6. Comparison for the recharge rates 
 
Note that with these approaches the seepage 
and recharge rates are not the same and in 
reality they are not. In models like MODFLOW 
they are assumed to be the same. As the water-
table draws down the drainage from the 
unsaturated zone is added to the seepage                 
rate to constitute the recharge rate. Vice              
versa when the water-table rises some of the 
upward inflow replenishes the unsaturated zone 
and the seepage rate is higher than the recharge 
rate.  
 
The difference between seepage and recharge 
rates is shown in Fig. 7 for model 1. 

Fig. 8 shows the difference between seepage 
and recharge rates for model 2. The patterns are 
similar for the two models. 

 
Finally Fig. 9 shows the pattern of evolution of 
the head in the (reduced half) river cell. Incipient 
desaturation happens for the value of head = 
19.1749 m. The same value characterizes 
incipient resaturation because in this simulation 
the river stage keeps the same value throughout. 
From time 20 to 21 there is a significant increase 
in the head, leading to significant changes in 
values of seepage and recharge as can be seen 
in Figs. 5, 6, 7 and 8. 

 

 
 

Fig. 7. Comparison of seepage and recharge rates for model 1 
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Fig. 8. Comparison of seepage and recharge rates for model 2 
 

 
 

Fig. 9. Pattern of evolution of head in the (reduced half) river cell 
 

9. DISCUSSION 
 

The main purpose of this article was to compare 
the two models developed to describe the 
unsaturated zone when the connection between 
the river and the aquifer is unsaturated. First the 
two models had to be described in some details. 
 
In real situations the determination of seepage 
and recharge would be dependent upon river 

stage and heads further away from the river cell. 
These cells would be conditioned by the overall 
aquifer system behavior in a large region. Thus 
that head should at least the head in an adjacent 

cell, hadj . Using the head in the river cell as a 

boundary condition is not realistic when 
considering a complex regional situation. 
However in this article the focus was not on how 
this approach would be integrated into a full 
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regional hydrologic model but to test its capability 
to describe seepage and recharge.  What drives 
the exchange flow between the stream and the 
aquifer is the fluctuating head drop between the 
river and the aquifer. Since it depends on that 
drop and not on the individual values of head in 
the river and in the aquifer river cell, it did not 
matter for this numerical example how that drop 
fluctuates as long as it does. This is why in this 
simulation the river stage could remain constant. 
 

In real circumstances the river stage would not 
be a boundary condition.  It would be a state 
variable conditioned by the surface river flow, 
characterized by a routing model. How to 
proceed for real situations has been suggested in 
other articles and most recently [6,7]. The two 
models discussed for description of the 
unsaturated zone turned have produced 
fortunately very similar results. That in no way 
proves that they are accurate or at least accurate 
enough. To prove that acceptable accuracy, a 
similar study would have to be conducted using a 
two-dimensional simulation using a numerical 
solution of Richards equation. 
 

However since full solution of Richards equation 
could not be practically included in codes for 
large-scale regional studies one has to be 
satisfied with an improvement over the very 
crude approach currently in use. The fact, for 
example, that the new approach is able to 

distinguish between seepage and recharge, 
whereas in MODFLOW they are systematically 
assumed to be the same, is already an indication 
of its superiority, at least in theory. In this 
simulation when the connection is unsaturated 
the head in the river cell is smaller than                    
the elevation of the river bottom and that is true 
for all the times when the connection is 
unsaturated. Thus MODFLOW would calculate a 
constant seepage rate according to the formula 
[3]: 
 

iS =
Krl
ercl

[hS - hbrb ]=
Krl
ercl

[H + ercl ]       (23) 

 

Numerically: iS =
0.01

0.4
[0.1+ 0.4]= 0.0125  m/day. 

Fig. 10 shows the differences for seepage 
calculated for models 1 and 2 and according to 
River Package (RP) [1].  
 
The differences are major when the connection is 
unsaturated. In the simulation the leakance 
coefficient for the RP method is the leakance 
coefficient of the clogging layer that is 

Lrcl =
Krcl
ercl

 (24). (In large-scale simulations for 

real systems that leakance coefficient would be 
calibrated). During the periods when the 
connection is saturated the difference

 

 
 

Fig. 10. Comparison of seepage results calculated by different methods 
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between the 3 approaches is very minor. 
However this is due primarily because the 
resistance in this simulation in the clogging layer 
is large and fully obscures the other resistances. 
Finally the seepage calculated by Models 1 and 
2 is large because the suction exerted by the 
unsaturated zone is very large, rising up to 1.5 m 
as shown in Fig. 4. Such high suction is possible 
because the drainage entry pressure of the 
clogging layer is assumed to be 2 m as shown in 
Table 1. The clogging layer remains saturated. 
That assumption needs to be questioned. In 
practice it is doubtful that the riverbed would 
remain saturated so long when there is a large 
suction in the aquifer under the riverbed. The 
value of 2 meters may be unrealistic and thus the 
differences shown in Fig. 10 may be grossly 
exaggerated. A study of what realistic values can 
be for the riverbed depending its soil 
classification would be useful. A different 
analysis is required for an approximate solution 
when there is drainage occurring within the 
riverbed itself. That would definitely be the case 
when the river goes dry. 
 
For the sake of completeness full results of the 
simulation runs for Models 1 and 2 are provided 
in Appendix 4. 
 

10. CONCLUSIONS 
 
Both models 1 and 2 estimate approximately a 
water content (or capillary pressure or relative 
conductivity) profile in the unsaturated zone 
beneath the riverbed and above the phreatic 
surface of the water-table aquifer. From that 
profile the seepage and the aquifer recharge 
rates are derived. 
 
The difference between these two models is in 
the choice of the approximate profile. In model 1 
the way the profile is chosen is somewhat more 
refined but it was derived for one set of 
parameters characterizing the soil type of the 

material of the aquifer, namely p  and M . Only 

for a few other values of these parameters can a 
profile be derived exactly.  On the other hand 
with the second model all values of these 
parameters can be used. This it is a more 
universal model.  
 
The practical benefit of the comparison is that it 
is possible to use the simpler method, model 2, 
to describe the unsaturated zone behavior with 
essentially the same results obtained with the 
more numerically complicated and less general 

method, model 1. This is important because if 
inserted in large-scale numerical models the new 
methodology should not create a significant 
added numerical burden. After all, MODFLOW’s 
approach to calculate seepage may be rather 
crude and violating basic physical principles but it 
has the advantage of not adding numerical work 
to a groundwater system already under 
numerical stress. 
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Appendix 1. Steady-state unsaturated zone water content profile assuming relative 

permeability to be an exponential function of capillary pressure 
 
Nevertheless still assuming the B-C relation between water content and capillary pressure holds. 
 

Darcy’s velocity equation is: 
 

vw = KVkrw[
¶hc
¶z

+1]          (1) 

 

with the vertical coordinate z oriented positive downward with origin at the bottom of the clogging 
layer. It is convenient to define a normalized capillary pressure and normalized vertical coordinate: 
 

hc
* =

hc
hce

             (2) 

 

z* =
z

z f
             (3) 

 

where z f  is the depth of the unsaturated zone above the capillary fringe. 

 

In terms of capillary pressure and coordinate z the velocity is: 
 

vw = KV [krw
¶hc
¶z

+ krw ]                                                                                               (4) 

 

Mass conservation under steady-state is: 
¶vw
¶z

= 0 or vw = constant                                         (5) 

 

Define the capillary drive in the form: 
 

Hc(hc )= krw
hce

hc
ò (hc )dhc

            (6) 

 

and thus: ¶Hc(hc )

¶z
= krw(hc )

¶hc
¶z

            (7) 

 
which transforms the velocity expression as: 
 

vw = KV [
¶Hc
¶z

+ krw ]                                                                                                   (8) 
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Steady-state requires: ¶Hc(hc )

¶z
+ krw (hc )= v

*                                                                         (9) 

 

Now assume an exponential variation of the relative conductivity as a function of capillary pressure: 
 

krw = e
-a(hc-hce ) = (eahce )e-ahc                                                                                 (10) 

 

Substitution in Eq.(6) yields:  
 

Hc (hc ) = (eahce )e-ax

hce

hc
ò dx = eahce (

-1

a
)e-ax

hce

hc
= (
1

a
)[1- e-a(hc-hce )]=

1- krw
a

 (11) 

 

Given that 
Hc (¥) = krw

hce

¥
ò (hc )dhc = HcS =

Mhce
p-M

                                                                             (12) 

 

It follows that: 
 

1

a
= HcS  (13)   krw = e

-
(hc-hce )

HcS  (14)    Hc(hc )= HcS[1- krw(hc )]                               (15) 

It follows that  
¶Hc (hc )

¶z
= -HcS

¶krw (hc )

¶z
                                                                              (16) 

 

Substitution in Eq.(9):  krw (hc )-HcS
¶krw (hc )

¶z
= v*                                                             (17) 

 

Solution is of the form: krw (hc )= Ae
bz +D  . Substitution yields: 

 

Aebz +D-HcSAbe
bz = v*  or krw(hc ) = Ae

z

HcS + v*                                                (18) 

 

Boundary conditions are that for hc = hce  when z = z f  krw =1 so 
 

1- v* = Ae

z f

HcS                                                                                                           (19) 
 
 

and at the bottom of the clogging layer  z = 0and hc = hcI   

 

thus krw(hcI ) = A+ v
*

 and  A = krw(hcI )- v
*

 

 

Substitution in Eq.(19): 1- v* = [krw(hcI )- v
*]e

z f

HcS   z f = HcS ln[
1- v*

krw(hcI )- v
*
]    (20) 
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{Note that for this equation to have meaning the argument of the logarithm must be positive.  Typically 

the normalized seepage rate v* =
v

KV
=
Krcl
KV

[
H + hcI + ercl

ercl
]  is less than 1 which then 

requires that 
 

1³ krw(hcI ) ³ v
*

  

 

At incipient desaturation when hcI = hce   when  v* £1 then krw(hcI ) =1 

 

As hcI  gradually increases v* increases but krw(hcI )  decreases so that z f eventually would 

approach infinity, which never happens practically because that would require that the water-table had 
dropped tremendously} 
 

Finally: krw(hc ) = [krw(hcI )- v
*]e

z f

HcS
z*

+ v*                                                                    (21)  

 
One can calculate the average value of the relative permeability over the unsaturated zone: 

 (krw )mean = {[krw (hcI )- v
*]e

z f

HcS
z*

+ v*}
0

1
ò dz*                                             (22) 

 

(krw )mean = v
* +[krw (hcI )- v

*]
HcS
z f
(e

z f

HcS -1) 

 

= v* +
HcS
z f
[1- krw (hcI )]     = v

* +
1- krw (hcI )

ln[
1- v*

krw (hcI )- v
*
]

                                      (23) 

 
Then assuming that the average capillary pressure is the capillary pressure associated with the 
average relative conductivity then: 
 

(hc )mean = hce -HcS ln[(krw )mean ]                                                                     (24) 

 

Since the argument of the logarithm is less than one the value of the left hand side, (hc )mean , is 

greater than hceas it should be. 

 

Similarly: (q*)mean = [
(hc )mean
hce

]
-
1

M ; qmean =qr + (qS -qr )(q
*)mean                     (25) 
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Appendix 2. “Steady-state unsaturated seepage water content profile assuming Brooks-Corey 
functions” 

 

Darcy’s equation for velocity :      v* =
v

KV
= krw[

hcedhc
*

dz
+1]                                          (1) 

 

Expressing krw  as a function of hc : 

 

krw = (hc
*)
-
p

M = (hc
*)-a                                               (2) 

 
Substitution in Eq. (1) yields: 
 

v* = (hc
*)-a[

hcedhc
*

dz
+1]  or    

v* - (hc
*)-a

(hc
*)-a

=
hcedhc

*

dz
                               

   (3) 

 
Separation of variables yields: 
 

(hc
*)-a dhc

*

v* - (hc
*)-a

=
dz

hce
                                               (4) 

 

Let x = hc
* v*  then   hc

* = x / v* and    dhc
* =

dx

v*  
Substitution in Eq. (4) yields: 
 

(
x

v*
)-a

dx

v*

v* - (
x

v*
)-a

=
dz

hce
                                                                                                       (5) 

 

In case a = 2   

(
v*

x2
)
dx

v*

v* -
v*

x2

=
dz

hce
   or  

dx

x2 v*

1-
1

x2

=
dz

hce
  or 

dx

1- x2
= - v*

dz

hce
                             (6) 

 
Note that Eq. (4) is also integrable exactly for values of a  equal to 3 and 4. Integration of Eq. (5b) 

between the limits hc
* v*  and hcI

* v*  yields: 
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1

2
ln(
1+ x

1- x
)
hc
* v*

hcI
* v*

=
v*z

hce
                                                 (7) 

 
or ultimately: 
 

1

2
ln{(

1+ hcI
* v*

1+ hc
* v*

)(
1- hc

* v*

1- hcI
* v*

)} =
v*

hce
z                                                         (8) 

 

When hc
* =1 , one is at the top of the capillary fringe and then: 

 

1

2
ln{(

1+ hcI
* v*

1+ v*
)(
1- v*

1- hcI
* v*

)} =
v*

hce
z f                                 (9)  

 

Defining:  Dz = ln{(
1+ hcI

* v*

1+ v*
)(
1- v*

1- hcI
* v*

)}                              (10)  

 
and dividing Eq.(8) by Eq.(9) one obtains: 
 

z* =
z

z f
= ln{(

1+ hcI
* v*

1+ hc
* v*

)(
1- hc

* v*

1- hcI
* v*

)} /Dz                                 (11) 

 
which solved for the normalized capillary pressure yields:  
 

hc
* =

1+ hcI
* v* - e

Dzz
*
(1- hcI

* v* )

v*[1+ hcI
* v* + e

Dzz
*
(1- hcI

* v* )]
                                          (12) 

 

One can verify that for z* = 0  one obtains correctly hc
* = hcI

*
.  For z* =1 one obtains also 

correctly hc
* =1. That follows from the very definition of the parameter Dz . 

 

If  v* < 0  let tan(hcI
* -v* ) = A , tan( -v* ) = P   and Dz = A-P  

 
The relation between normalized capillary pressure and normalized unsaturated zone coordinate 

z* =
z

z f
 is: 
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z* =
A- tan(hc

* -v* )

Dz

 or  hc
* =
tan-1[A-Dzz

* ]

-v*
  

 

while the full thickness of the unsaturated zone is: z f =
hceDz

-v*  
 

Appendix 3.  “Constant C Linear Reservoir type equation with a right hand-side excitation 
varying linearly with time 

 
The excitation varies linearly in time and thus the basic governing equation is: 
 

C
dU

dt
+U = Eo + (En -Eo )t                                                                                  (1) 

 

We look for a solution of the form:   U(t) = A+Mt +De
-
t

C                                              (2) 

 

dU(t)

dt
=M -

D

C
e
-
t

C                                                                                                          (3) 

 
Substitution in Eq. (1) yields: 
 

C(M -
D

C
e
-
t

C )+[A+Mt +De
-
t

C ]= Eo + (En -Eo )t                                               (4) 

 
Satisfaction of the equation requires that:  
 

M = (En -Eo )                                                                                                                    (5) 

 
and 
 

A = Eo -C(En -Eo )                                                                                                         (6) 

 
Substitution in Eq. (2) yields:  
 

U(t) = Eo -C(En -Eo)+ (En -Eo)t +De
-
t

C                                                         (7) 

 

At time zero then: U(0)= Eo -C(En -Eo )+D                                                             (8)  

 
which yields D. 
 
Substitution in Eq. (7) yields: 
 

U(t) =U(0)e
-
t

C +[Eo -C(En -Eo )](1- e
-
t

C ]+ (En -Eo )t                                    (9) 
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Application for end of period n making t =1 and setting rU = e
-
1

C                                   (10) 

 
yields: 

 
U(n) = rUU(n-1)+ (1- rU ){E(n -1)-C[E(n)-E(n -1)]}+[E(n)-E(n-1)]    (11) 

 
Grouping terms: 

 

U(n) = rUU(n-1)+{(1- rU )(1+C)-1}E(n-1)+{1-C(1-rU )}E(n)      (12) 

 
or 

 

U(n) = rUU(n-1)+[C(1- rU )- rU ]E(n-1)+[1-C(1- rU )]E(n)               (13) 

 

with   aU = [C(1- rU )- rU ]                                                                                        (14a) 

 

  bU = [1-CU (1- rU )]                                                                                               (14b) 

 

then Eq.(13) becomes:  U(n) = rUU(n-1)+aUUE(n-1)+bUE(n)                         (15) 

 
Appendix 4. Tabulated full results of the simulation for Models 1 and 2 

 
Simulation results for Model 1 -- unsatseep#22_results_2018.mp 

  DAY JUNSAT  HCI      ZF     HSTAGE    ZRF       HF      HFRP    AISRP    AIS    VRECH   WCI     WC  

   0   -1  -0.5000   0.0000  20.1000  20.0000  20.7000  20.7000  -.0130  -.0130  -.0130  0.4000  0.4000    

   1   -1  -0.8477   0.0000  20.1000  20.4584  20.5000  20.5000  -.0100  -.0087  -.0087  0.4000  0.4000    

   2   -1  -0.6737   0.0000  20.1000  20.2790  20.3000  20.3000  -.0050  -.0043  -.0043  0.4000  0.4000    

   3   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.4000  0.4000    

   4   -1  -0.3265   0.0000  20.1000  19.9214  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

   5   -1  -0.1533   0.0000  20.1000  19.7431  19.7000  19.7000  0.0100  0.0087  0.0087  0.4000  0.4000    

   6   -1   0.0197   0.0000  20.1000  19.5653  19.5000  19.5000  0.0150  0.0130  0.0130  0.4000  0.4000    

   7   -1   0.1923   0.0000  20.1000  19.3878  19.3000  19.3000  0.0200  0.0173  0.0173  0.4000  0.4000    

   8    1   0.3000   0.0000  20.1000  19.2774  19.1749  19.2169  0.0125  0.0200  0.0200  0.4000  0.4000    

   9    1   0.4177   0.1193  20.1000  19.1807  18.9000  18.9143  0.0125  0.0229  0.0245  0.3752  0.3866    

  10    1   0.5306   0.2357  20.1000  19.0643  18.7000  18.7186  0.0125  0.0258  0.0296  0.3592  0.3768    

  11    1   0.6644   0.3777  20.1000  18.9223  18.5000  18.5215  0.0125  0.0291  0.0359  0.3455  0.3676    

  12    1   0.8019   0.5302  20.1000  18.7698  18.3000  18.3240  0.0125  0.0325  0.0416  0.3350  0.3597    

  13    1   0.9366   0.6891  20.1000  18.6109  18.1000  18.1261  0.0125  0.0359  0.0468  0.3268  0.3532    

  14    1   1.0643   0.8523  20.1000  18.4477  17.9000  17.9279  0.0125  0.0391  0.0514  0.3205  0.3477    

  15    1   1.1822   1.0187  20.1000  18.2813  17.7000  17.7296  0.0125  0.0421  0.0555  0.3156  0.3430    

  16    1   1.2887   1.1876  20.1000  18.1124  17.5000  17.5312  0.0125  0.0447  0.0591  0.3116  0.3390    

  17    1   1.3833   1.3591  20.1000  17.9409  17.3000  17.3327  0.0125  0.0471  0.0622  0.3085  0.3356    

  18    1   1.4667   1.5343  20.1000  17.7657  17.1000  17.1340  0.0125  0.0492  0.0651  0.3060  0.3326    

  19    1   1.5404   1.7172  20.1000  17.5828  16.9000  16.9348  0.0125  0.0510  0.0680  0.3040  0.3299    

  20    1   1.6046   1.9072  20.1000  17.3928  16.7000  16.7353  0.0125  0.0526  0.0705  0.3023  0.3275    

  21    1   1.5971   1.8126  20.1000  17.4874  17.6000  17.5943  0.0125  0.0524  0.0451  0.3025  0.3278    

  22    1   1.5293   1.6073  20.1000  17.6927  17.7000  17.6996  0.0125  0.0507  0.0318  0.3043  0.3303    

  23    1   1.4609   1.4664  20.1000  17.8336  17.8000  17.8017  0.0125  0.0490  0.0355  0.3062  0.3328    

  24    1   1.3941   1.3378  20.1000  17.9622  17.9000  17.9032  0.0125  0.0474  0.0355  0.3082  0.3352    

  25    1   1.3280   1.2229  20.1000  18.0771  18.0000  18.0039  0.0125  0.0457  0.0353  0.3103  0.3376    

  26    1   1.2616   1.1164  20.1000  18.1836  18.1000  18.1043  0.0125  0.0440  0.0347  0.3126  0.3400    

  27    1   1.1939   1.0156  20.1000  18.2844  18.2000  18.2043  0.0125  0.0423  0.0337  0.3151  0.3426    

  28    1   1.1244   0.9185  20.1000  18.3815  18.3000  18.3042  0.0125  0.0406  0.0326  0.3179  0.3453    

  29    1   1.0525   0.8239  20.1000  18.4761  18.4000  18.4039  0.0125  0.0388  0.0312  0.3211  0.3482    

  30    1   0.9782   0.7309  20.1000  18.5691  18.5000  18.5035  0.0125  0.0370  0.0298  0.3247  0.3513    

  31    1   0.8812   0.6151  20.1000  18.6849  18.7000  18.6992  0.0125  0.0345  0.0262  0.3300  0.3558    
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  32    1   0.7530   0.4706  20.1000  18.8294  18.9000  18.8964  0.0125  0.0313  0.0218  0.3384  0.3624    

  33    1   0.6028   0.3098  20.1000  18.9902  19.1000  19.0944  0.0125  0.0276  0.0187  0.3513  0.3716    

  34    1   0.4353   0.1370  20.1000  19.1630  19.3000  19.2930  0.0125  0.0234  0.0166  0.3723  0.3849    

  35    1   0.3002   0.0013  20.1000  19.2987  19.5000  19.4897  0.0125  0.0200  0.0179  0.3999  0.4000    

  36   -1   0.3002   0.0013  20.1000  19.2987  19.7000  19.4897  0.0125  0.0200  0.0179  0.3999  0.4000    

  37   -1  -0.3268   0.0000  20.1000  19.9218  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

  38   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.4000  0.4000    

  39   -1  -0.6735   0.0000  20.1000  20.2786  20.3000  20.3000  -.0050  -.0043  -.0043  0.4000  0.4000    

  40   -1  -0.8472   0.0000  20.1000  20.4576  20.5000  20.5000  -.0100  -.0087  -.0087  0.4000  0.4000    

  41   -1  -0.3263   0.0000  20.1000  19.9210  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

  42   -1  -0.2400   0.0000  20.1000  19.8323  19.8000  19.8000  0.0075  0.0065  0.0065  0.4000  0.4000    

  43   -1  -0.1534   0.0000  20.1000  19.7433  19.7000  19.7000  0.0100  0.0087  0.0087  0.4000  0.4000    

  44   -1  -0.0669   0.0000  20.1000  19.6544  19.6000  19.6000  0.0125  0.0108  0.0108  0.4000  0.4000    

  45   -1   0.0195   0.0000  20.1000  19.5656  19.5000  19.5000  0.0150  0.0130  0.0130  0.4000  0.4000    

  46   -1   0.1058   0.0000  20.1000  19.4769  19.4000  19.4000  0.0175  0.0151  0.0151  0.4000  0.4000    

  47   -1   0.1921   0.0000  20.1000  19.3882  19.3000  19.3000  0.0200  0.0173  0.0173  0.4000  0.4000    

  48   -1   0.2783   0.0000  20.1000  19.2997  19.2000  19.2000  0.0225  0.0195  0.0195  0.4000  0.4000    

  49    1   0.3000   0.0000  20.1000  19.2775  19.1745  19.2166  0.0125  0.0200  0.0200  0.4000  0.4000    

  50    1   0.3613   0.0619  20.1000  19.2381  19.0000  19.0121  0.0125  0.0215  0.0220  0.3857  0.3925    

  51    1   0.4348   0.1368  20.1000  19.1632  18.9000  18.9134  0.0125  0.0234  0.0250  0.3724  0.3850    

  52    1   0.5105   0.2148  20.1000  19.0852  18.8000  18.8145  0.0125  0.0253  0.0278  0.3617  0.3784    

  53    1   0.5869   0.2947  20.1000  19.0053  18.7000  18.7156  0.0125  0.0272  0.0306  0.3529  0.3727    

  54    1   0.6631   0.3758  20.1000  18.9242  18.6000  18.6165  0.0125  0.0291  0.0332  0.3456  0.3676    

  55    1   0.7385   0.4581  20.1000  18.8419  18.5000  18.5174  0.0125  0.0310  0.0357  0.3395  0.3632    

  56    1   0.8126   0.5412  20.1000  18.7588  18.4000  18.4183  0.0125  0.0328  0.0380  0.3343  0.3592    

  57    1   0.8850   0.6251  20.1000  18.6749  18.3000  18.3191  0.0125  0.0346  0.0403  0.3297  0.3556    

  58    1   0.9554   0.7097  20.1000  18.5903  18.2000  18.2199  0.0125  0.0364  0.0424  0.3258  0.3523    

  59    1   1.0234   0.7950  20.1000  18.5050  18.1000  18.1207  0.0125  0.0381  0.0445  0.3224  0.3494    

  60    1   1.0887   0.8811  20.1000  18.4189  18.0000  18.0214  0.0125  0.0397  0.0465  0.3194  0.3467    

  61    1   1.1191   0.9199  20.1000  18.3801  18.1000  18.1143  0.0125  0.0405  0.0437  0.3181  0.3455    

  62    1   1.1050   0.8970  20.1000  18.4030  18.2000  18.2104  0.0125  0.0401  0.0384  0.3187  0.3460    

  63    1   1.0689   0.8474  20.1000  18.4526  18.3000  18.3078  0.0125  0.0392  0.0353  0.3203  0.3475    

  64    1   1.0179   0.7813  20.1000  18.5187  18.4000  18.4061  0.0125  0.0379  0.0328  0.3227  0.3496    

  65    1   0.9567   0.7055  20.1000  18.5945  18.5000  18.5048  0.0125  0.0364  0.0307  0.3258  0.3523    

  66    1   0.8881   0.6240  20.1000  18.6760  18.6000  18.6039  0.0125  0.0347  0.0288  0.3296  0.3554    

  67    1   0.8138   0.5391  20.1000  18.7609  18.7000  18.7031  0.0125  0.0328  0.0271  0.3342  0.3591    

  68    1   0.7353   0.4521  20.1000  18.8479  18.8000  18.8024  0.0125  0.0309  0.0254  0.3397  0.3634    

  69    1   0.6533   0.3638  20.1000  18.9362  18.9000  18.9018  0.0125  0.0288  0.0238  0.3465  0.3683    

  70    1   0.5686   0.2746  20.1000  19.0254  19.0000  19.0013  0.0125  0.0267  0.0223  0.3549  0.3740    

  71    1   0.5211   0.2254  20.1000  19.0746  18.9500  18.9564  0.0125  0.0255  0.0234  0.3604  0.3776    

  72    1   0.5174   0.2218  20.1000  19.0782  18.9000  18.9091  0.0125  0.0254  0.0253  0.3608  0.3779    

  73    1   0.5357   0.2408  20.1000  19.0592  18.8500  18.8607  0.0125  0.0259  0.0267  0.3586  0.3764    

  74    1   0.5652   0.2717  20.1000  19.0283  18.8000  18.8116  0.0125  0.0266  0.0280  0.3552  0.3742    

  75    1   0.6000   0.3083  20.1000  18.9917  18.7500  18.7623  0.0125  0.0275  0.0292  0.3516  0.3718    

  76    1   0.6372   0.3477  20.1000  18.9523  18.7000  18.7129  0.0125  0.0284  0.0304  0.3480  0.3693    

  77    1   0.6753   0.3887  20.1000  18.9113  18.6500  18.6633  0.0125  0.0294  0.0316  0.3446  0.3669    

  78    1   0.7138   0.4304  20.1000  18.8696  18.6000  18.6138  0.0125  0.0303  0.0327  0.3414  0.3646    

  79    1   0.7522   0.4726  20.1000  18.8274  18.5500  18.5641  0.0125  0.0313  0.0338  0.3385  0.3624    

  80    1   0.7903   0.5152  20.1000  18.7848  18.5000  18.5145  0.0125  0.0323  0.0349  0.3358  0.3603  

 

C ******************************************************************************************************   

 

Simulation results for Model 2 --  unsatseep#23_results_2019.mp 

  DAY JUNSAT  HCI      ZF     HSTAGE    ZRF       HF      HFRP    AISRP    AIS    VRECH   WCI     WC  

   0   -1  -0.5000   0.0000  20.1000  20.0000  20.7000  20.7000  -.0130  -.0130  -.0130  0.4000  0.4000    

   1   -1  -0.8477   0.0000  20.1000  20.4584  20.5000  20.5000  -.0100  -.0087  -.0087  0.4000  0.4000    

   2   -1  -0.6737   0.0000  20.1000  20.2790  20.3000  20.3000  -.0050  -.0043  -.0043  0.4000  0.4000    

   3   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.4000  0.4000    

   4   -1  -0.3265   0.0000  20.1000  19.9214  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

   5   -1  -0.1533   0.0000  20.1000  19.7431  19.7000  19.7000  0.0100  0.0087  0.0087  0.4000  0.4000    

   6   -1   0.0197   0.0000  20.1000  19.5653  19.5000  19.5000  0.0150  0.0130  0.0130  0.4000  0.4000    

   7   -1   0.1923   0.0000  20.1000  19.3878  19.3000  19.3000  0.0200  0.0173  0.0173  0.4000  0.4000    

   8    1   0.3000   0.0000  20.1000  19.2774  19.1749  19.1812  0.0125  0.0200  0.0200  0.4000  0.4000    

   9    1   0.3030   0.0030  20.1000  19.2970  18.9000  18.9202  0.0125  0.0201  0.0201  0.3992  0.3996    

  10    1   0.5005   0.1673  20.1000  19.1327  18.7000  18.7221  0.0125  0.0250  0.0285  0.3630  0.3792    

  11    1   0.7323   0.3451  20.1000  18.9549  18.5000  18.5232  0.0125  0.0308  0.0397  0.3400  0.3641    
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  12    1   0.9255   0.5103  20.1000  18.7897  18.3000  18.3250  0.0125  0.0356  0.0461  0.3274  0.3553    

  13    1   1.0900   0.6765  20.1000  18.6235  18.1000  18.1267  0.0125  0.0397  0.0513  0.3194  0.3492    

  14    1   1.2250   0.8480  20.1000  18.4520  17.9000  17.9282  0.0125  0.0431  0.0557  0.3139  0.3446    

  15    1   1.3259   1.0242  20.1000  18.2758  17.7000  17.7294  0.0125  0.0456  0.0591  0.3104  0.3410    

  16    1   1.3954   1.2134  20.1000  18.0866  17.5000  17.5299  0.0125  0.0474  0.0623  0.3081  0.3379    

  17    1   1.4328   1.3839  20.1000  17.9161  17.3000  17.3314  0.0125  0.0483  0.0621  0.3070  0.3356    

  18    1   1.4523   1.5386  20.1000  17.7614  17.1000  17.1337  0.0125  0.0488  0.0616  0.3064  0.3338    

  19    1   1.4656   1.7519  20.1000  17.5481  16.9000  16.9331  0.0125  0.0491  0.0667  0.3060  0.3318    

  20    1   1.4717   1.9439  20.1000  17.3561  16.7000  16.7335  0.0125  0.0493  0.0655  0.3059  0.3302    

  21    1   1.4705   1.8208  20.1000  17.4792  17.6000  17.5938  0.0125  0.0493  0.0400  0.3059  0.3306    

  22    1   1.4613   1.5850  20.1000  17.7150  17.7000  17.7008  0.0125  0.0490  0.0295  0.3062  0.3326    

  23    1   1.4484   1.4556  20.1000  17.8444  17.8000  17.8023  0.0125  0.0487  0.0376  0.3065  0.3342    

  24    1   1.4262   1.3072  20.1000  17.9928  17.9000  17.9047  0.0125  0.0482  0.0360  0.3072  0.3361    

  25    1   1.3977   1.1914  20.1000  18.1086  18.0000  18.0055  0.0125  0.0474  0.0380  0.3081  0.3378    

  26    1   1.3697   1.1092  20.1000  18.1908  18.1000  18.1046  0.0125  0.0467  0.0401  0.3089  0.3392    

  27    1   1.3243   1.0015  20.1000  18.2985  18.2000  18.2050  0.0125  0.0456  0.0372  0.3104  0.3411    

  28    1   1.2698   0.9034  20.1000  18.3966  18.3000  18.3049  0.0125  0.0442  0.0366  0.3123  0.3431    

  29    1   1.2047   0.8073  20.1000  18.4927  18.4000  18.4047  0.0125  0.0426  0.0353  0.3147  0.3453    

  30    1   1.1294   0.7133  20.1000  18.5867  18.5000  18.5044  0.0125  0.0407  0.0338  0.3177  0.3479    

  31    1   1.0236   0.5989  20.1000  18.7011  18.7000  18.7001  0.0125  0.0381  0.0299  0.3224  0.3516    

  32    1   0.8725   0.4583  20.1000  18.8417  18.9000  18.8970  0.0125  0.0343  0.0248  0.3305  0.3575    

  33    1   0.6816   0.3031  20.1000  18.9969  19.1000  19.0947  0.0125  0.0295  0.0201  0.3440  0.3669    

  34    1   0.4568   0.1336  20.1000  19.1664  19.3000  19.2932  0.0125  0.0239  0.0162  0.3690  0.3829    

  35   -1   0.3000   0.0000  20.1000  19.3000  19.5000  19.5000  0.0150  0.0200  0.0177  0.4000  0.4000    

  36   -1  -0.1538   0.0000  20.1000  19.7439  19.7000  19.7000  0.0100  0.0087  0.0087  0.4000  0.4000    

  37   -1  -0.3268   0.0000  20.1000  19.9218  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

  38   -1  -0.5000   0.0000  20.1000  20.1000  20.1000  20.1000  0.0000  0.0000  0.0000  0.4000  0.4000    

  39   -1  -0.6735   0.0000  20.1000  20.2786  20.3000  20.3000  -.0050  -.0043  -.0043  0.4000  0.4000    

  40   -1  -0.8472   0.0000  20.1000  20.4576  20.5000  20.5000  -.0100  -.0087  -.0087  0.4000  0.4000    

  41   -1  -0.3263   0.0000  20.1000  19.9210  19.9000  19.9000  0.0050  0.0043  0.0043  0.4000  0.4000    

  42   -1  -0.2400   0.0000  20.1000  19.8323  19.8000  19.8000  0.0075  0.0065  0.0065  0.4000  0.4000    

  43   -1  -0.1534   0.0000  20.1000  19.7433  19.7000  19.7000  0.0100  0.0087  0.0087  0.4000  0.4000    

  44   -1  -0.0669   0.0000  20.1000  19.6544  19.6000  19.6000  0.0125  0.0108  0.0108  0.4000  0.4000    

  45   -1   0.0195   0.0000  20.1000  19.5656  19.5000  19.5000  0.0150  0.0130  0.0130  0.4000  0.4000    

  46   -1   0.1058   0.0000  20.1000  19.4769  19.4000  19.4000  0.0175  0.0151  0.0151  0.4000  0.4000    

  47   -1   0.1921   0.0000  20.1000  19.3882  19.3000  19.3000  0.0200  0.0173  0.0173  0.4000  0.4000    

  48   -1   0.2783   0.0000  20.1000  19.2997  19.2000  19.2000  0.0225  0.0195  0.0195  0.4000  0.4000    

  49    1   0.3000   0.0000  20.1000  19.2775  19.1745  19.1809  0.0125  0.0200  0.0200  0.4000  0.4000    

  50    1   0.3030   0.0030  20.1000  19.2970  19.0000  19.0151  0.0125  0.0201  0.0201  0.3992  0.3996    

  51    1   0.4182   0.1038  20.1000  19.1962  18.9000  18.9151  0.0125  0.0230  0.0244  0.3751  0.3865    

  52    1   0.5387   0.1960  20.1000  19.1040  18.8000  18.8155  0.0125  0.0260  0.0292  0.3583  0.3762    

  53    1   0.6503   0.2804  20.1000  19.0196  18.7000  18.7163  0.0125  0.0288  0.0329  0.3468  0.3687    

  54    1   0.7544   0.3622  20.1000  18.9378  18.6000  18.6172  0.0125  0.0314  0.0360  0.3383  0.3630    

  55    1   0.8519   0.4435  20.1000  18.8565  18.5000  18.5182  0.0125  0.0338  0.0388  0.3317  0.3584    

  56    1   0.9432   0.5254  20.1000  18.7746  18.4000  18.4191  0.0125  0.0361  0.0415  0.3265  0.3546    

  57    1   1.0281   0.6082  20.1000  18.6918  18.3000  18.3200  0.0125  0.0382  0.0439  0.3222  0.3514    

  58    1   1.1060   0.6922  20.1000  18.6078  18.2000  18.2208  0.0125  0.0402  0.0461  0.3187  0.3487    

  59    1   1.1763   0.7774  20.1000  18.5226  18.1000  18.1216  0.0125  0.0419  0.0481  0.3158  0.3463    

  60    1   1.2383   0.8637  20.1000  18.4363  18.0000  18.0222  0.0125  0.0435  0.0499  0.3134  0.3442    

  61    1   1.2641   0.9015  20.1000  18.3985  18.1000  18.1152  0.0125  0.0441  0.0470  0.3125  0.3433    

  62    1   1.2388   0.8581  20.1000  18.4419  18.2000  18.2123  0.0125  0.0435  0.0403  0.3134  0.3442    

  63    1   1.2140   0.8228  20.1000  18.4771  18.3000  18.3090  0.0125  0.0428  0.0402  0.3143  0.3450    

  64    1   1.1643   0.7563  20.1000  18.5437  18.4000  18.4073  0.0125  0.0416  0.0367  0.3163  0.3467    

  65    1   1.1015   0.6823  20.1000  18.6177  18.5000  18.5060  0.0125  0.0400  0.0346  0.3189  0.3488    

  66    1   1.0261   0.6023  20.1000  18.6977  18.6000  18.6050  0.0125  0.0382  0.0325  0.3223  0.3515    

  67    1   0.9399   0.5193  20.1000  18.7807  18.7000  18.7041  0.0125  0.0360  0.0303  0.3267  0.3547    

  68    1   0.8442   0.4348  20.1000  18.8652  18.8000  18.8033  0.0125  0.0336  0.0280  0.3322  0.3587    

  69    1   0.7405   0.3497  20.1000  18.9503  18.9000  18.9026  0.0125  0.0310  0.0258  0.3393  0.3637    

  70    1   0.6299   0.2641  20.1000  19.0359  19.0000  19.0018  0.0125  0.0282  0.0235  0.3487  0.3700    

  71    1   0.5656   0.2159  20.1000  19.0841  18.9500  18.9568  0.0125  0.0266  0.0243  0.3552  0.3742    

  72    1   0.5770   0.2246  20.1000  19.0754  18.9000  18.9089  0.0125  0.0269  0.0273  0.3540  0.3735    

  73    1   0.5943   0.2376  20.1000  19.0624  18.8500  18.8608  0.0125  0.0274  0.0280  0.3522  0.3723    

  74    1   0.6121   0.2511  20.1000  19.0489  18.8000  18.8127  0.0125  0.0278  0.0285  0.3504  0.3711    

  75    1   0.6305   0.2650  20.1000  19.0350  18.7500  18.7645  0.0125  0.0283  0.0290  0.3486  0.3699    

  76    1   0.7056   0.3232  20.1000  18.9768  18.7000  18.7141  0.0125  0.0301  0.0333  0.3421  0.3655    

  77    1   0.7267   0.3396  20.1000  18.9604  18.6500  18.6658  0.0125  0.0307  0.0316  0.3404  0.3644    
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  78    1   0.8028   0.4017  20.1000  18.8983  18.6000  18.6152  0.0125  0.0326  0.0363  0.3349  0.3606    

  79    1   0.8269   0.4214  20.1000  18.8786  18.5500  18.5668  0.0125  0.0332  0.0344  0.3333  0.3595    

  80    1   0.8979   0.4837  20.1000  18.8163  18.5000  18.5161  0.0125  0.0349  0.0390  0.3290  0.3564    
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