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Abstract: In this paper, we introduce the notion of modified Suzuki-Edelstein-Geraghty proximal contraction
and prove the existence and uniqueness of best proximity point for such mappings. Our results extend and
unify many existing results in the literature. We draw corollaries and give illustrative example to demonstrate
the validity of our result.
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1. Introduction and Preliminaries

I n 1922, Banach [1] introduced a remarkable principle, namely Banach contraction principle which
asserts that every contraction self-mapping on a complete metric space has a unique fixed point. This

principle plays a leading role in the development of fixed point theory. Banach’s contraction principle has
been generalized and extended in different directions. On his work, Edelstein [2] introduced the notion
of contractive mapping and generalized Banach contraction principle. In 1973, Geraghty [3] generalized
Banach’s contraction principle by replacing the contraction constant by a function having certain specified
properties. In 2008, Suzuki [4] introduced a new type of mapping and presented a generalization of the Banach
contraction principle in which the completeness can also be characterized by the existence of a fixed point of
these mappings. All these generalizations are only applicable for self-mappings.

In recent years, best proximity point theory attracted the attention of several authors. The purpose of best
proximity point theory is to address a problem of finding the distance between two closed sets by using non
self-mappings from one set to the other. The problem is known as the proximity point problem. Best proximity
point theory analyzes the existence of an approximate solution that is optimal.

Let A and B be two non-empty subsets of a metric space (X, d) and T : A → B is a mapping,
then d(x, Tx) ≥ d(A, B) for all x ∈ A. In general, for non self-mapping T : A → B, the fixed point equation
Tx = x may not have a solution. In this case, it is focused on the possibility of finding an element x ∈ A that
is an approximate solution such that the error d(x, Tx) is minimum, possibly d(x, Tx) = d(A, B).

A best proximity point becomes a fixed point if the underlying mapping is a self-mapping. Therefore,
it can be concluded that best proximity point theorems generalize fixed point theorems in a natural way. In
recent years, the existence and convergence of best proximity points is an interesting aspect of optimization
theory which attracted the attention of many authors [5–9].

We recall the following notations and definitions: Let (X, d) be a metric space and let A and B be
non-empty subsets of X.

A0 := {x ∈ A : d(x, y) = d(A, B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}.

We denote by F the class of all functions β : [0, ∞)→ [0, 1) satisfying the following condition:

β(tn)→ 1 =⇒ tn → 0.

We denote by Φ the class of all functions φ : [0, ∞)→ [0, ∞) satisfying the following conditions:

1. φ is continuous,
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2. φ is non-decreasing, and
3. φ(t) = 0 ⇐⇒ t = 0.

Definition 1. [10] Let A and B be two non-empty subsets of a metric space (X, d) and α : A× A → [0, ∞) be
a function. We say that a non self-mapping T : A→ B is α−proximal admissible if, for all x, y, u, v ∈ A,

α(x, y) ≥ 1
d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

=⇒ α(u, v) ≥ 1.

Definition 2. [11] Let A and B be two non-empty subsets of a metric space (X, d) and α : A × A → [0, ∞)

be a function. We say that a non self-mapping T : A → B is triangular α−proximal admissible if, for all
x, y, z, x1, x2, u1, u2 ∈ A,

(T1)


α(x1, x2) ≥ 1
d(u1, Tx1) = d(A, B)
d(u2, Tx2) = d(A, B)

=⇒ α(u1, u2) ≥ 1,

(T2)

{
α(x, z) ≥ 1
α(z, y) ≥ 1

=⇒ α(x, y) ≥ 1.

Definition 3. [12] Let A and B be two non-empty subsets of a metric space (X, d) and A0 6= ∅, we say that the
pair (A, B) has weak P-property if and only if{

d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)

=⇒ d(x1, x2) ≤ d(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B.

Definition 4. [10] Let A and B be two non-empty subsets of a metric space (X, d) and α, η : A× A → [0, ∞)

be functions. We say that a non self-mapping T : A → B is α−proximal admissible with respect to η if, for all
x, y, u, v, z, w ∈ A, 

α(x, y) ≥ η(x, y)
d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

=⇒ α(u, v) ≥ η(u, v).

Definition 5. [13] Let A and B be two non-empty subsets of a metric space (X, d) and T : A→ B be a mapping.
We say that T has the RJ-property if for any sequence {xn} ⊆ A,{

lim
n→∞

d(xn+1, Txn) = d(A, B)

lim
n→∞

xn = x
=⇒ x ∈ A0.

Remark 1. [13] Any continuous mapping T : A→ B has the RJ-property provided that A and B are non-empty
closed subsets of a metric space (X, d). If A and B are not closed subsets of X, then T may not have RJ-property.

Example 1. [13] Let X = R, A = (0, 1) and B = (2, 3). We define d : X × X → [0, ∞) and T : A → B by
d(x, y) = |x− y| and Tx = 3− x. Let {xn} = {1− 1

n} ⊆ A, then

lim
n→∞

xn = 1 and lim
n→∞

d(xn+1, Txn) = lim
n→∞

d(1− 1
n + 1

, 2 +
1
n
) = 1 = d(A, B),

but 1 /∈ A0. Hence T does not satisfy the RJ-property.
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In 2016, Hamzehnejadi and Lashkaripour [13] proved best proximity point results for non self-map
satisfying the RJ-property.

Definition 6. [13] Let A and B be two non-empty subsets of a metric space (X, d) and α : X × X → [0, ∞) be
a function. A mapping T : A → B is said to be a generalized α− φ−Geraghty proximal contraction if there
exists β ∈ F such that for all x, y, u, v ∈ A,{

d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

=⇒ α(x, y)φ(d(u, v)) ≤ β
(
φ(M(x, y, u, v))

)
φ(M(x, y, u, v)),

where M(x, y, u, v) = max {d(x, y), d(x, u), d(y, v)} and φ ∈ Φ.

Theorem 1. [13] Let (X, d) be a complete metric space, A and B be non-empty subsets of X, α : X × X → [0, ∞) be a
function and T : A→ B be a mapping. If the following conditions are satisfied:

1. T is a generalized α− φ−Geraghty proximal contraction type mapping,
2. T(A0) ⊆ B0 and T is triangular α−proximal admissible,
3. T has the RJ-property,
4. if {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ A as n → ∞, then there exists a

subsequence {xnk} of {xn} such that α(xnk , x) ≥ 1 for all k,
5. there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 1,

then there exists x∗ ∈ A0 such that d(x∗, Tx∗) = d(A, B). Moreover, if α(x, y) ≥ 1 for all x, y ∈ PT(A), where PT(A)

denotes the set of best proximity points of T, then x∗ is a unique best proximity point of T.

In this paper, we denote by Φϕ the class of functions ϕ : [0, ∞)→ [0, ∞) satisfying the following property:

ϕ(t) ≤ 1
2

t for all t ≥ 0.

We denote by Ψ the set of non-decreasing functions ψ : [0, ∞)→ [0, ∞) such that

lim
n→∞

ψn(t) = 0 for all t ≥ 0.

Recently, Hussain et al., [14] proved the existence of best proximity point for modified Suzuki-Edelstein
α-proximal contraction.

Definition 7. [14] Suppose A and B are two non-empty subsets of a metric space (X, d). A non self-mapping
T : A→ B is said to be modified Suzuki-Edelstein Proximal contraction if

ϕ(d(x, Tx))− 2d(A, B) ≤ α(x, y)d(x, y) =⇒ α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ A, where ϕ ∈ Φϕ, ψ ∈ Ψ and α : A× A→ [0, ∞).

Theorem 2. [14] Suppose A and B are two non-empty closed subsets of a complete metric space (X, d) with A0 is
non-empty and let T : A→ B with T(A0) ⊆ B0 be continuous modified Suzuzi-Edelstein proximal admissible mapping
with respect to η(x, y) = 2 and the pair (A, B) satisfies the weak P-property. If, the elements x0 and x1 with d(x1, Tx0) =

d(A, B) satisfies α(x0, x1) ≥ 2, then T has a unique best proximity point.

Lemma 1. [15] Suppose (X, d) is a metric space and {xn} be a sequence in X such that d(xn, xn+1) → 0 as n → ∞.
If {xn} is not a Cauchy sequence, then there exist an ε > 0 and sequences of positive integers {mk} and {nk} with
mk > nk > k such that d(xmk , xnk ) ≥ ε, d(xmk−1, xnk ) < ε and

(i) lim
k→∞

d(xmk−1, xnk+1) = ε (ii) lim
k→∞

d(xmk , xnk ) = ε

(iii) lim
k→∞

d(xmk−1, xnk ) = ε (iv) lim
k→∞

d(xmk , xnk+1) = ε.
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Motivated by the work of Suzuki, Edelstein and Geraghty, we introduce the notion of modified
Suzuki-Edelstein-Geraghty proximal contraction and prove the existence and uniqueness of best proximity
point for such mappings.

2. Main results

Definition 8. Let A and B be two non-empty subsets of metric space (X, d). Let T : A→ B be non self-mapping
and α : A × A → [0, ∞) be a function. T is said to be a modified Suzuki-Edelstein-Geraghty proximal
contraction if there exist β ∈ F and φ ∈ Φ such that for all x, y ∈ A,

ϕ(d(x, Tx))− 2d(A, B) ≤ α(x, y)d(x, y)

α(x, y)φ(d(Tx, Ty)) ≤ β
(
φ(M(x, y))

)
φ(max{d(x, y), m(x, y)− d(A, B)}), (1)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, m(x, y) = max{d(x, Tx), d(y, Ty)} and ϕ ∈ Φϕ.

Theorem 3. Let (X, d) be a complete metric space and A and B be non-empty closed subsets of X with A0 is non-empty.
If T : A→ B be a modified Suzuki-Edelstein-Geraghty proximal contraction mapping such that the following conditions
hold:

1. T(A0) ⊆ B0 and the pair (A, B) satisfies the weak P-property,
2. T is triangular α-proximal admissible with respect to η(x, y) = 2,
3. T is continuous,
4. there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2,

then T has a unique best proximity point in A0.

Proof. By assumption (iv), there exist x0, x1 ∈ A such that

d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2. (2)

Since Tx0 ∈ B, by the definition of A0, from (2), we have x1 ∈ A0. Since T(A0) ⊆ B0, we have Tx1 ∈ B0.
Hence by definition of B0, there exists an element x2 ∈ A such that

d(x2, Tx1) = d(A, B). (3)

Since T is α-proximal admissible with respect to η(x, y) = 2, we obtain α(x1, x2) ≥ 2. On continuing this
process, we have

d(xn+1, Txn) = d(A, B) and α(xn, xn+1) ≥ 2, (4)

for all n ∈ N.
Now,

ϕ(d(xn−1, Txn−1)) ≤
1
2

d(xn−1, Txn−1) ≤ 2d(xn−1, Txn−1) ≤ 2(d(xn−1, xn) + d(xn, Txn−1))

= 2(d(xn−1, xn) + d(A, B)) = 2d(xn−1, xn) + 2d(A, B). (5)

From (5), we have

ϕ(d(xn−1, Txn−1))− 2d(A, B) ≤ 2d(xn−1, xn) ≤ α(xn−1, xn)d(xn−1, xn).

By (1), it follows that

φ(d(xn, xn+1)) = φ(d(Txn−1, Txn)) ≤ α(xn−1, xn)φ(d(Txn−1, Txn))

≤ β
(
φ(M(xn−1, xn))

)
φ(max{d(xn−1, xn), m(xn−1, xn)− d(A, B)}), (6)

where M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)} = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)},
and m(xn−1, xn) = max{d(xn−1, Txn−1), d(xn, Txn)} = max{d(xn−1, xn), d(xn, xn+1)}.
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Suppose xn0 = xn0+1 for some n0 ∈ N. Assume that xn0+1 6= xn0+2, then by (6), it follows that

φ(d(xn0+1, xn0+2)) ≤ β
(
φ(M(xn0 , xn0+1))

)
φ(max{m(xn0 , xn0+1)− d(A, B)})

< φ({max{m(xn0 , xn0+1)− d(A, B)})
= φ(max{d(xn0 , xn0+1), d(xn0+1, xn0+2)} − d(A, B)})
≤ φ({d(xn0+1, xn0+2) + d(A, B)} − d(A, B))

= φ(d(xn0+1, xn0+2)),

a contradiction. Therefore xn0+1 = xn0+2, hence xn0 = xn0+1 = xn0+2, so from (4), it follows that d(xn0 , Txn0) =

d(xn0+1, Txn0) = d(A, B), i.e., xn0 is a best proximity point of T, which is the desired result. Therefore, we
assume that xn 6= xn+1 for all n ∈ N∪ {0}. From (6), we obtain

φ(d(xn, xn+1)) = φ(d(Txn−1, Txn))

≤ β
(
φ(M(xn−1, xn))

)
φ(max{m(xn−1, xn)− d(A, B)})

< φ(max
{

d(xn−1, xn), max{m(xn−1, xn)} − d(A, B)})
= φ(max

{
d(xn−1, xn), max{d(xn−1, xn), d(xn, xn+1)} − d(A, B)})

≤ φ(max
{

d(xn−1, xn), max{d(xn−1, xn) + d(A, B), d(xn, xn+1) + d(A, B)} − d(A, B)})
= φ(max{d(xn−1, xn), d(xn, xn+1)}). (7)

If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then φ(d(xn, xn+1)) < φ(d(xn, xn+1)), a contradiction.
Hence max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn), so, by (7), we have φ(d(xn, xn+1)) < φ(d(xn−1, xn)). By
the non-decreasing property of φ, it follows that d(xn, xn+1) ≤ d(xn−1, xn), for all n ≥ 1. Hence we deduce that
{d(xn, xn+1)} is a decreasing sequence of non-negative real numbers. So, there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r. (8)

Suppose that r > 0. From (7), we have

0 <
φ(d(xn, xn+1))

φ(d(xn−1, xn)
≤ β(φ(M(xn−1, xn))) < 1, (9)

where
M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn). (10)

On letting n→ ∞ in (9) and using (10), we obtain lim
n→∞

β(φ(d(xn−1, xn))) = 1. Since β ∈ F , it follows that

lim
n→∞

φ(d(xn−1, xn)) = 0. By continuity of φ, we get

φ( lim
n→∞

d(xn, xn+1)) = 0, (11)

i.e., φ(r) = 0, so that r = 0. i.e.,
lim

n→∞
d(xn, xn+1) = 0. (12)

Now, we show that {xn} is a Cauchy sequence. Suppose {xn} is not a Cauchy sequence. Then there exists
an ε > 0 for which we can find sequences of positive integers {mk} and {nk} with mk > nk > k such that

d(xmk , xnk ) ≥ ε and d(xmk−1, xnk ) < ε. (13)

Since T is triangular α-proximal admissible with respect to η(x, y) = 2, we can show that α(xn, xm) ≥ 2
for all n, m ∈ N with n < m. If n = m + 1, we have

α(xn, xm) ≥ 2. (14)
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Suppose that α(xn, xm) ≥ 2 for all n, m ∈ N with n < m. To show this we shall prove that α(xn, xm+1) ≥ 2
with n < m. From (4), we have

α(xm, xm+1) ≥ 2. (15)

Also since T is triangular α-proximal admissible with respect to η(x, y) = 2, then from (14) and (15),
α(xn, xm+1) ≥ 2 for all n, m ∈ N with n < m. Hence for any mk, nk ∈ N with nk < mk, we get α(xmk , xnk ) ≥ 2.
From (12) and (13), we can choose a positive integer k1 ∈ N such that

ϕ(d(xmk , Txmk )) ≤
1
2

d(xmk , Txmk ) =
1
2

d(xmk , xmk+1) ≤
1
2

ε ≤ 1
2

d(xmk , xnk ) ≤ 2d(xmk , xnk )

≤ 2
(
d(xmk , Txnk−1) + d(Txnk−1 , xnk )

)
≤ 2d(xmk , xnk ) + 2d(A, B). (16)

From (16), we have that ϕ(d(xmk , Txmk ))− 2d(A, B) ≤ 2d(xmk , xnk ) ≤ α(xmk , xnk )d(xmk , xnk ). Therefore,

ϕ(d(xmk , Txmk ))− 2d(A, B) ≤ α(xmk , xnk )d(xmk , xnk ). (17)

By (1), we get

φ(d(xmk+1 , xnk+1)) ≤ α(xmk , xnk )φ(d(xmk+1 , xnk+1))

≤ β
(
φ(M(xmk , xnk ))

)
φ(max{d(xmk , xnk ), max{m(xmk , xnk )} − d(A, B)}), (18)

where

max{d(xmk , xnk ),max {m(xmk , xnk )} − d(A, B)}
= max{d(xmk , xnk ), max{d(xmk , Txmk ), d(xnk , Txnk )} − d(A, B)}
= max{d(xmk , xnk ), max{d(xmk , xmk+1), d(xnk , xnk+1)} − d(A, B)}
≤ max{d(xmk , xnk ), max{d(xmk , xmk+1) + d(A, B), d(xnk , xnk+1) + d(A, B)} − d(A, B)}
= max{d(xmk , xnk ), d(xmk , xmk+1), d(xnk , xnk+1)}.

Hence by applying Lemma 1

lim
k→∞

max{d(xmk , xnk ), max {m(xmk , xnk )} − d(A, B)} ≤ lim
k→∞

max{d(xmk , xnk ), d(xmk , xmk+1), d(xnk , xnk+1)} = ε.

On letting k→ ∞ in (18), it follows that

0 <
φ(ε)

φ(ε)
≤ lim

k→∞
β(φ(M(xmk , xnk ))) ≤ 1,

thus,
lim
k→∞

β(φ(M(xmk , xnk ))) = 1.

Since β ∈ F , we have
lim
k→∞

φ(max{d(xnk , xmk ), d(xmk , xmk+1), d(xnk , xnk+1)}) = 0.

This yields, by continuity of φ, that

φ( lim
k→∞

(max{d(xnk , xmk ), d(xmk , xmk+1), d(xnk , xnk+1)})) = 0,

i.e., φ(ε) = 0 and hence ε = 0, a contradiction. Hence {xn} is a Cauchy sequence. By the completeness of X
and closed property of A, there exists x∗ ∈ A such that lim

n→∞
xn = x∗. Since T is continuous, from (4), we obtain

d(A, B) = lim
n→

d(xn+1, Txn) = d(x∗, Tx∗),

hence x∗ is the best proximity point of T.
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We now show the uniqueness of best proximity point. Suppose that u and v are the two distinct best
proximity points of T. Since d(u, Tu) = d(A, B) = d(v, Tv), by weak P-property of the pair (A, B), we get

d(u, v) ≤ d(Tu, Tv). (19)

Now, we consider

ϕ(d(u, Tu)) ≤ 1
2

d(u, Tu) ≤ 2d(u, Tu) = 2d(A, B). (20)

From (20), we have that

ϕ(d(u, Tu))− 2d(A, B) ≤ 0 ≤ α(u, v)d(u, v).

By (1) and (19), it follows that

φ(d(u, v)) ≤ φ(d(Tu, Tv)) ≤ α(u, v)φ(d(Tu, Tv))

≤ β
(
φ(M(u, v))

)
φ(max{d(u, v), max{m(u, v)} − d(A, B)})

< φ(max{d(u, v), max{m(u, v)} − d(A, B)})
= φ(max{d(u, v), max{d(u, Tu), d(v, Tv)} − d(A, B)})
= φ(d(u, v)),

a contradiction. Hence u = v.

Example 2. Let X = R2, A = [0, ∞) × {1}, B = [0, ∞) × {0}, A0 = [0, 1] × {1} and B0 = [0, 1] × {0}. We
define d by d((x1, x2), (y1, y2)) =

√
(x1 − y1)2 + (x2 − y2)2 for all (x1, x2), (y1, y2) ∈ X and a map T : A → B

by

T(x, 1) =

{ ( 1
2 x, 0

)
if x ∈ [0, 1]

( 3
2 x− 1, 0) if x ≥ 1.

We also define functions α : A× A→ [0, ∞), β : [0, ∞)→ [0, 1), andφ : [0, ∞)→ [0, ∞) by

α((p, q), (r, s)) =

{
2 if (p, q), (r, s) ∈ [0, 1]× {1}.
0 otherwise,

β(t) =

{
0 if t = 0,
1+t

1+2t if t > 0,

and

φ(t) =

{
1
2 t if t ∈ [0, 1],

t
1+t if t ≥ 1.

Clearly, T(A0) ⊆ B0, d(A, B) = 1 and T is continuous. We choose x0 = ( 1
2 , 1) and x1 = ( 1

4 , 1) such that
d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2. Now, let (x, 1), (y, 1), (u, 1), (v, 1) ∈ A such that

α((x, 1), (y, 1)) ≥ 2,
d((u, 1), T(x, 1)) = d(A, B) = 1
d((v, 1), T(y, 1)) = d(A, B) = 1.

(21)

From (21), we obtain x, y ∈ [0, 1], u = 1
2 x ∈ [0, 1

2 ], v = 1
2 y ∈ [0, 1

2 ] and hence d((u, 1), (v, 1)) ≤
d(T(x, 1), T(y, 1)). Therefore, the pair (A, B) satisfies the weak P-property. Also, α((u, 1), (v, 1)) ≥ 2. Hence T
is α−proximal admissible. Clearly, T is a triangular α−proximal admissible with respect to η((x, 1), (y, 1)) = 2.
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Now, we show that T is a modified Suzuki-Edelstein-Geraghty proximal contraction mapping. Let
(x, 1), (y, 1) ∈ [0, 1] × {1}, then α((x, 1), (y, 1)) = 2. Without loss of generality assume that x > y. Now,
we consider

max {d ((x, 1) , (y, 1)) , max {m ((x, 1) , (y, 1))} − d (A, B)}
= max {d ((x, 1) , (y, 1)) , max {d ((x, 1) , T (x, 1)) , d ((y, 1) , T (y, 1))} − d (A, B)}

= max
{

d ((x, 1) , (y, 1)) , max
{

d
(
(x, 1) ,

(
1
2

x, 0
))

, d
(
(y, 1) ,

(
1
2

y, 0
))}

− 1
}

= max
{

d ((x, 1) , (y, 1)) ,
{

d
(
(x, 1) ,

(
1
2

x, 0
))}

− 1
}

≤ max
{

d ((x, 1) , (y, 1)) ,
{

d
(
(x, 1) ,

(
1
2

x, 0
))}}

= d
(
(x, 1) ,

(
1
2

x, 0
))

.

Also we consider

ϕ (d ((x, 1) , T (x, 1))) ≤ 1
2

d ((x, 1) , T (x, 1)) =
1
2

d
(
(x, 1) ,

( x
2

, 0
))
≤ 2d

(
(x, 1) ,

( x
2

, 0
))

≤ 2
(

d ((x, 1) , (y, 1)) + d
(
(y, 1) ,

( x
2

, 0
)))

≤ 2
(

d ((x, 1) , (y, 1)) + d
(( x

2
, 1
)

,
( x

2
, 0
)))

= 2d ((x, 1) , (y, 1)) + 2d (A, B) .

Hence ϕ(d((x, 1), T(x, 1))) − 2d(A, B) ≤ 2d((x, 1), (y, 1)) = α((x, 1), (y, 1))d((x, 1), (y, 1)). By (1), it
follows that

1
4

√
(x− y)2 = φ(d((T(x, 1), T(y, 1)))) ≤ α((x, 1), (y, 1))φ(d((T(x, 1), T(y, 1))))

≤ β
(
φ(M((x, 1), (y, 1)))

)
φ(max{d((x, 1), (y, 1)), max{m((x, 1), (y, 1))} − d(A, B)})

< φ(max{d((x, 1), (y, 1)), max{m((x, 1), (y, 1))} − d(A, B)})

= φ(d((x, 1), (
1
2

x, 0))) =

√
1
4 x2 + 1

1 +
√

1
4 x2 + 1

.

Therefore, T is a modified Suzuki-Edelstein-Geraghty proximal contraction mapping. The point (0, 1) ∈
A0 is the unique best proximity point of T.

If φ(t) = t for all t ≥ 0, in Theorem 3, we have the following corollary.

Corollary 1. Suppose that A and B are two non-empty closed subsets of a complete metric space (X, d) with A0

is non-empty. Assume that α : A × A → [0, ∞) is a function and there exists β ∈ F . If T : A → B be a
non self-mapping such that for all x, y ∈ A, ϕ(d(x, Tx)) − 2d(A, B) ≤ α(x, y)d(x, y) impliesα(x, y)d(Tx, Ty) ≤
β
(

M(x, y)
)
max{d(x, y), m(x, y) − d(A, B)}, where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, m(x, y) =

max{d(x, Tx), d(y, Ty)} and ϕ ∈ Φϕ with the following conditions hold:

1. T(A0) ⊆ B0 and the pair (A, B) satisfies the weak P-property,
2. T is triangular α-proximal admissible with respect to η(x, y) = 2,
3. T is continuous,
4. there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2,

then T has a unique best proximity point in A0.

We can prove the existence and uniqueness of best proximity point by replacing the continuity assumption
with RJ-property in Theorem 3.
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Theorem 4. Let (X, d) be a complete metric space and A and B be non-empty closed subsets of X with A0 is non-empty.
If T : A→ B be a modified Suzuki-Edelstein-Geraghty proximal contraction mapping such that the following conditions
hold:

1. T(A0) ⊆ B0 and the pair (A, B) satisfies the weak P-property,
2. T is triangular α-proximal admissible with respect to η(x, y) = 2,
3. T has the RJ-property and assume that α(x, y) ≥ 2 for all x, y ∈ A,
4. there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2,

then T has a unique best proximity point in A0.

Proof. From the proof of Theorem 3, {xn} is cauchy such that xn → x∗ ∈ A as n → ∞. Since T has the
RJ-property x∗ ∈ A0. We shall prove that d(x∗, Tx∗) = d(A, B). From the proof of Theorem 3, we have
d(xn+1, xn+2) ≤ d(xn, xn+1) for all n ∈ N∪ {0}.

Suppose d(xn, x∗) < 1
2 d(xn, xn+1) and d(xn+1, x∗) < 1

2 d(xn+1, xn+2), for some n ∈ N. Therefore,

d(xn, xn+1) ≤ d(xn, x∗) + d(x∗, xn+1) <
1
2

d(xn, xn+1) +
1
2

d(xn+1, xn+2)

≤ 1
2

d(xn, xn+1) +
1
2

d(xn, xn+1) = d(xn, xn+1),

a contradiction. Hence d(xn, x∗) ≥ 1
2 d(xn, xn+1) and d(xn+1, x∗) ≥ 1

2 d(xn+1, xn+2), for all n ∈ N.
Now, we consider

ϕ(d(xn, Txn)) ≤
1
2

d(xn, Txn) ≤ d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn)

≤ 2d(xn, x∗) + d(A, B) ≤ 2d(xn, x∗) + 2d(A, B).

From the above inequality, we obtain

ϕ(d(xn, Txn))− 2d(A, B) ≤ 2d(xn, x∗) ≤ α(xn, x∗)d(xn, x∗).

Since xn ∈ A ∀n ∈ N and x∗ ∈ A, we obtain α(xn, x∗) ≥ 2. Thus from (1), it follows that

φ(d(Txn, Tx∗)) ≤ α(xn, x∗)φ(d(Txn, Tx∗))

≤ β
(
φ(M(xn, x∗))

)
φ(max{d(xn, x∗), m(xn, x∗)− d(A, B)})

< φ(max
{

d(xn, x∗), max{m(xn, x∗)} − d(A, B)})
≤ φ(max

{
d(xn, x∗), max{d(xn, xn+1) + d(xn+1Txn), d(x∗, Tx∗)} − d(A, B)})

= φ(max
{

d(xn, x∗), max{d(xn, xn+1), d(x∗, Tx∗)− d(A, B)}}). (22)

Letting n→ ∞ in (22), we obtain

φ
(

lim
n→∞

d(Txn, Tx∗)
)
< φ

(
d(x∗, Tx∗)− d(A, B)

)
. (23)

Since d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Txn) + d(Txn, Tx∗), we get

d(x∗, Tx∗)− d(xn+1, Txn) ≤ d(x∗, xn+1) + d(Txn, Tx∗).

From the property of φ, it follows that

φ
(
d(x∗, Tx∗)− d(xn+1, Txn)

)
≤ φ

(
d(x∗, xn+1) + d(Txn, Tx∗)

)
.

Hence
φ
(
d(x∗, Tx∗)− d(A, B)

)
≤ φ

(
lim

n→∞
d(Txn, Tx∗)

)
. (24)



Eng. Appl. Sci. Lett. 2020, 3(4), 94-104 103

By (23) and (24), we have

φ
(
d(x∗, Tx∗)− d(A, B)

)
≤ φ

(
lim

n→∞
d(Txn, Tx∗)

)
< φ

(
d(x∗, Tx∗)− d(A, B)

)
,

a contradiction. Hence d(x∗, Tx∗) = d(A, B). Therefore, x∗ is the best proximity point of T. Uniqueness follows
from the proof of Theorem 3.

If we take φ(t) = t for all t ≥ 0, in Theorem 4, we have the following corollary.

Corollary 2. Suppose that A and B are two non-empty closed subsets of a complete metric space (X, d) with A0 is
non-empty. Further suppose that α : A× A → [0, ∞) is a function and there exists β ∈ F . If T : A → B be a non
self-mapping such that for all x, y ∈ A, we have ϕ(d(x, Tx))− 2d(A, B) ≤ α(x, y)d(x, y) implies α(x, y)d(Tx, Ty) ≤
β
(

M(x, y)
)
max{d(x, y), m(x, y) − d(A, B)}, where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, m(x, y) =

max{d(x, Tx), d(y, Ty)} and ϕ ∈ Φϕ, with the following conditions hold:

1. T(A0) ⊆ B0 and the pair (A, B) satisfies the weak P-property,
2. T is triangular α-proximal admissible with respect to η(x, y) = 2,
3. T has the RJ-property and assume that α(x, y) ≥ 2 for all x, y ∈ A,
4. there exist x0, x1 ∈ A such that d(x1, Tx0) = d(A, B) and α(x0, x1) ≥ 2,

then T has a unique best proximity point in A0.
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