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Abstract
In this paper, we proposeMultiresolution Equivariant Graph Variational Autoencoders (MGVAE),
the first hierarchical generative model to learn and generate graphs in a multiresolution and
equivariant manner. At each resolution level, MGVAE employs higher order message passing to
encode the graph while learning to partition it into mutually exclusive clusters and coarsening into
a lower resolution that eventually creates a hierarchy of latent distributions. MGVAE then
constructs a hierarchical generative model to variationally decode into a hierarchy of coarsened
graphs. Importantly, our proposed framework is end-to-end permutation equivariant with respect
to node ordering. MGVAE achieves competitive results with several generative tasks including
general graph generation, molecular generation, unsupervised molecular representation learning
to predict molecular properties, link prediction on citation graphs, and graph-based image
generation. Our implementation is available at https://github.com/HyTruongSon/MGVAE.

1. Introduction

Understanding graphs in a multiscale and multiresolution perspective is essential for capturing the structure
of molecules, social networks, or the World Wide Web. Graph neural networks (GNNs) utilizing various
ways of generalizing the concept of convolution to graphs [1–3] have been widely applied to many learning
tasks, including modeling physical systems [4], finding molecular representations to estimate quantum
chemical computation [5–8], and protein interface prediction [9]. One of the most popular types of GNNs is
message passing neural nets (MPNNs) that are constructed based on the message passing scheme in which
each node propagates and aggregates information, encoded by vectorized messages, to and from its local
neighborhood. While this framework has been immensely successful in many applications, it lacks the ability
to capture the multiscale and multiresolution structures that are present in complex graphs [10–13].

Ying et al [14] proposed a multiresolution GNN that employs a differential pooling operator to coarsen
the graph. While this approach is effective in some settings, it is based on soft assignment matrices, which
means that (a) the sparsity of the graph is quickly lost in higher layers (b) the algorithm is not able to learn
an actual hard clustering of the vertices. The latter is important in applications such as learning molecular
graphs, where clusters should ideally be interpretable as concrete subunits of the graphs, e.g. functional
groups.

In contrast, in this paper we propose an architecture calledMultiresolution Graph Network (MGN), and
its generative cousin,Multiresolution Graph Variational Autoencoder (MGVAE), which explicitly learn a
multilevel hard clustering of the vertices, leading to a true multiresolution hierarchy. In the decoding stage, to
‘uncoarsen’ the graph, MGVAE needs to generate local adjacency matrices, which is inherently a second order
task with respect to the action of permutations on the vertices, hence MGVAE needs to leverage the recently
developed framework of higher order permutation equivariant message passing networks [8, 15].

Learning to generate graphs with deep generative models is a difficult problem because graphs are
combinatorial objects that typically have high order correlations between their discrete substructures
(subgraphs) [16–20]. Graph-based molecular generation [21–25] involves further challenges, including
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correctly recognizing chemical substructures, and importantly, ensuring that the generated molecular graphs
are chemically valid. MGN allows us to extend the existing model of variational autoencoders (VAEs) with a
hierarchy of latent distributions that can stochastically generate a graph in multiple resolution levels. Our
experiments show that having a flexible clustering procedure from MGN enables MGVAE to detect,
reconstruct and finally generate important graph substructures, especially chemical functional groups.

2. Related work

There have been significant advances in understanding the invariance and equivariance properties of neural
networks in general [26, 27], of GNNs [15, 28], of neural networks learning on sets [29–31], along with their
expressive power on graphs [32, 33]. Our work is in line with group equivariant networks operating on
graphs and sets. Multiscale, multilevel, multiresolution and coarse-grained techniques have been widely
applied to graphs and discrete domains such as diffusion wavelets [34]; spectral wavelets on graphs [35];
finding graph wavelets based on partitioning/clustering [10]; graph clustering and finding balanced cuts on
large graphs [36–39]; and link prediction on social networks [40]. Prior to our work, some authors such as
[41] proposed a multiscale generative model on graphs using generative adversarial network (GAN) [42], but
the hierarchical structure was built by heuristics algorithm, not learnable and not flexible to new data that is
also an existing limitation of the field. In general, our work exploits the powerful group equivariant networks
to encode a graph and to learn to form balanced partitions via back-propagation in a data-driven manner
without using any heuristics as in the existing works.

In the field of deep generative models, it is generally recognized that introducing a hierarchy of latents
and adding stochasticity among latents leads to more powerful models capable of learning more complicated
distributions [43–48]. Our work combines the hierarchical VAE with learning to construct the hierarchy that
results into a generative model able to generate graphs at many resolution levels.

Recent advancements in graph and molecule generation have shown a great potential for designing a
wide range of drug candidates with desired properties. Generative Flow Networks (GFlowNets), introduced
by [49] as a method to sample a diverse set of candidates in an active learning context, has been found to be
capable of generating a diverse set of small molecules [50] and biological sequences such as proteins and
DNAs [51]. On the another hand, diffusion models have been popularly adopted to generate the periodic
structure of stable materials (e.g. crystals) [52] and generate molecular conformation [53]. As a future work,
our scheme of multiresolution generation (i.e. generating the structure at multiple levels of resolutions) can
be applied for these most recent techniques in order to improve the accuracy and efficiency in generating
large, long-range, and hierarchical structures such as proteins.

3. Multiresolution graph network

3.1. Construction
An undirected weighted graph G = (V,E ,A,Fv,Fe) with node set V and edge set E is represented by an
adjacency matrixA ∈ N|V|×|V|, whereAij > 0 implies an edge between node vi and vj with weightAij (e.g.
Aij ∈ {0,1} in the case of unweighted graph); while node features are represented by a matrix Fv ∈ R|V|×dv ,
and edge features are represented by a tensor Fe ∈ R|V|×|V|×de . The second-order tensor representation of
edge features is necessary for our higher-order message passing networks described in the next section.
Indeed, Fv can be encoded in the diagonal of Fe.

Definition 3.1. A K-cluster partition of graph G is a partition of the set of nodes V into K mutually exclusive
clusters V1, ..,VK. Each cluster corresponds to an induced subgraph Gk = G[Vk].

Definition 3.2. A coarsening of G is a graph G̃ of K nodes defined by a K-cluster partition in which node ṽk
of G̃ corresponds to the induced subgraph Gk. The weighted adjacency matrix Ã ∈ NK×K of G̃ is

Ãkk′ =

{
1
2

∑
vi,vj∈Vk

Aij, if k= k′,∑
vi∈Vk,vj∈Vk′

Aij, if k ≠ k′,

where the diagonal of Ã denotes the number of edges inside each cluster, while the off-diagonal denotes the
number of edges between two clusters.

Figure 1 shows an example of definitions 3.1 and 3.2: a three-cluster partition of the Aspirin C9H8O4

molecular graph and its coarsening graph. Definition 3.3 defines the multiresolution of graph G in a
bottom-up manner in which the bottom level is the highest resolution (e.g. G itself) while the top level is the
lowest resolution (e.g. G is coarsened into a single node).
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Figure 1. Aspirin C9H8O4, its three-cluster partition and the corresponding coarsen graph.

Figure 2.Hierarchy of three-level Multiresolution Graph Network on Aspirin molecular graph.

Definition 3.3. An L-level coarsening of a graph G is a series of L graphs G(1), ..,G(L) in which

1. G(L) is G itself.
2. For 1⩽ ℓ⩽ L− 1, G(ℓ) is a coarsening graph of G(ℓ+1) as defined in definition 3.2. The number of nodes

in G(ℓ) is equal to the number of clusters in G(ℓ+1).
3. The top level coarsening G(1) is a graph consisting of a single node, and the corresponding adjacencymatrix

A(1) ∈ N1×1.

Definition 3.4. An L-level MGN of a graph G consists of L− 1 tuples of five network components

{(c(ℓ),e(ℓ)local,d
(ℓ)
local,d

(ℓ)
global,p

(ℓ))}Lℓ=2. The ℓth tuple encodes G(ℓ) and transforms it into a lower resolution graph

G(ℓ−1) in the higher level. Each of these network components has a separate set of learnable parameters

(θ1
(ℓ),θ2

(ℓ),θ3
(ℓ),θ

(ℓ)
4 ,θ

(ℓ)
5 ). For simplicity, we collectively denote the learnable parameters as θ, and drop

the superscript. The network components are defined as follows:

1. Clustering procedure c(G(ℓ);θ), which partitions graph G(ℓ) into K clusters V(ℓ)
1 , . . . ,V(ℓ)

K . Each cluster is
an induced subgraph G(ℓ)

k of G(ℓ) with adjacency matrixA(ℓ)
k .

2. Local encoder elocal(G(ℓ)
k ;θ), which is a permutation equivariant (see definitions 3.7 and 3.8) GNN that

takes as input the subgraph G(ℓ)
k , and outputs a set of node latents Z(ℓ)

k represented as a matrix of size
|V(ℓ)

k | × dz.
3. Local decoder dlocal(Z(ℓ)

k ;θ), which is a permutation equivariant neural network that tries to reconstruct
the subgraph adjacency matrixA(ℓ)

k for each cluster from the local encoder’s output latents.
4. (Optional) Global decoder dglobal(Z(ℓ);θ), which is a permutation equivariant neural network that recon-

structs the full adjacency matrixA(ℓ) from all the node latents of K clustersZ(ℓ) =
⊕

kZ
(ℓ)
k represented as

a matrix of size |V(ℓ)| × dz.
5. Pooling network p(Z(ℓ)

k ;θ), which is a permutation invariant (see definitions 3.7 and 3.8) neural net-
work that takes the set of node latents Z(ℓ)

k and outputs a single cluster latent z̃(ℓ)k ∈ dz. The coarsening
graph G(ℓ−1) has adjacency matrix A(ℓ−1) built as in definition 3.2, and the corresponding node features
Z(ℓ−1) =

⊕
k z̃

(ℓ)
k represented as a matrix of size K× dz.

Algorithmically, MGN works in a bottom-up manner as a tree-like hierarchy starting from the highest
resolution graph G(L), going to the lowest resolution G(1) (see figure 2). Iteratively, at ℓth level, MGN
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partitions the current graph into K clusters by running the clustering procedure c(ℓ). Then, the local encoder
e(ℓ)local and local decoder d

(ℓ)
global operate on each of the K subgraphs separately, and can be executed in parallel.

This encoder/decoder pair is responsible for capturing the local structures. Finally, the pooling network p(ℓ)

shrinks each cluster into a single node of the next level. Optionally, the global decoder d(ℓ)global makes sure that
the whole set of node latents Z(ℓ) is able to capture the inter-connection between clusters.

In terms of time and space complexity, MGN is more efficient than existing methods in the field. The cost
of global decoding the highest resolution graph is proportional to |V|2. For example, while the encoder can
exploit the sparsity of the graph and has complexityO(|E|), a simple dot-product decoder dglobal(Z) =
sigmoid(ZZT) has both time and space complexity ofO(|V|2) which is infeasible for large graphs. In
contrast, the cost of running K local dot-product decoders isO

(
|V|2/K), which is approximately K times

more efficient.

3.2. Basic tensor operations
In order to build higher order equivariant networks, we revisit some basic tensor operations: tensor product
(see definition 3.5) and tensor contraction (see definition 3.6). It can be shown that these tensor operations
respect permutation equivariance [8, 28]. Based on them, we build our second order message passing
networks.

Definition 3.5. The tensor product of A ∈ Rna with B ∈ Rnb yields a tensor C= A⊗B ∈ Rna+b
where

Ci1,i2,..,ia+b = Ai1,i2,..,iaBia+1,ia+2,..,ia+b .

Definition 3.6. The contraction of A ∈ Rna along the pair of dimensions {x,y} (assuming x< y) yields a
(a− 2)th order tensor

Ci1,..,ix−1,j,ix+1,..,iy−1,j,iy+1,..,ia =
∑
ix,iy

Ai1,..,ia

where we assume that ix and iy have been removed from amongst the indices of C. Using Einstein notation,
this can be written more compactly as

C{i1,i2,..,ia}\{ix,iy} = Ai1,i2,..,iaδ
ix,iy

where δ is the Kronecker delta. In general, the contraction of A along dimensions {x1, ..,xp} yields a tensor

C= A↓x1,..,xp ∈ Rna−p
where

A↓x1,..,xp =
∑
ix1

∑
ix2

. . .
∑
ixp

Ai1,i2,..,ia

or compactly as

A↓x1,..,xp = Ai1,i2,..,iaδ
ix1 ,ix2 ,..,ixp .

3.3. Higher order message passing
In this paper we consider permutation symmetry, i.e. symmetry to the action of the symmetric group, Sn. An
element σ ∈ Sn is a permutation of order n, or a bijective map from {1, . . . ,n} to {1, . . . ,n}. The action of Sn
on an adjacency matrixA ∈ Rn×n and on a latent matrix Z ∈ Rn×dz are

[σ · A]i1,i2 =Aσ−1(i1),σ−1(i2), [σ · Z]i,j = Zσ−1(i),j,

for σ ∈ Sn. Here, the adjacency matrixA is a second order tensor with a single feature channel, while the
latent matrix Z is a first order tensor with dz feature channels. In general, the action of Sn on a kth order
tensor X ∈ Rnk×d (the last index denotes the feature channels) is defined similarly as:

[σ · X ]i1,..,ik,j = Xσ−1(i1),..,σ−1(ik),j, σ ∈ Sn.

Network components of MGN (as defined in section 3.1) at each resolution level must be either equivariant,
or invariant with respect to the permutation action on the node order of G(ℓ). Formally, we define these
properties in definition 3.7.

Definition 3.7. An Sn-equivariant (or permutation equivariant) function is a function f : Rnk×d → Rnk
′
×d ′

that satisfies f(σ · X ) = σ · f(X ) for all σ ∈ Sn and X ∈ Rnk×d. Similarly, we say that f is Sn-invariant (or per-
mutation invariant) if and only if f(σ · X ) = f(X ).

4
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Definition 3.8. An Sn-equivariant network is a function f : Rnk×d → Rnk
′
×d ′

defined as a composition of Sn-
equivariant linear functions f1, .., fT and Sn-equivariant nonlinearities γ1, ..,γT:

f = γT ◦ fT ◦ .. ◦ γ1 ◦ f1.

On the another hand, an Sn-invariant network is a function f : Rnk×d → R defined as a composition of an
Sn-equivariant network f ′ and an Sn-invariant function on top of it, e.g. f = f ′ ′ ◦ f ′.

Example 3.9. The simplest implementation of the encoder is MPNNs [7]. The node embeddings (messages)
H0 are initialized by the input node features:H0 = Fv. Iteratively, themessages are propagated from each node
to its neighborhood, and then transformed by a combination of linear transformations and non-linearities,
e.g.

Ht = γ(Mt),Mt =D−1AHt−1Wt−1,

where γ is an element-wise non-linearity function, Dii =
∑

jAij is the diagonal matrix of node degrees, and
Ws are learnable weight matrices. The output of the encoder is set by messages of the last iteration: Z =
HT. The simplest implementation of the decoder is via a dot-product that estimates the adjacency matrix as
Â= sigmoid(ZZT). This implementation of encoder and decoder is considered as first order.

In order to build higher order equivariant networks, we revisit some basic tensor operations: the tensor
product A⊗B and tensor contraction A↓x1,..,xp (details and definitions are section 3.2). It can be shown that

these tensor operations respect permutation equivariance [8, 28]. Based on these tensor contractions and
definition 3.7, we can construct the second-order Sn-equivariant networks as in definition 3.8 (see
example 3.10): f = γ ◦MT ◦ .. ◦ γ ◦M1. The second-order networks are particularly essential for us to
extend the original VAE [54] model that approximates the posterior distribution by an isotropic Gaussian
distribution with a diagonal covariance matrix and uses a fixed prior distributionN (0,1). In contrast, we
generalize by modeling the posterior byN (µ,Σ) in which Σ is a full covariance matrix, and we learn an
adaptive parameterized priorN (µ̂, Σ̂) instead of a fixed one. Only the second-order encoders can output a
permutation equivariant full covariance matrix, while lower-order networks such as MPNNs are unable to.
See sections 4.2, 4.3 and 4.4 for details.

Example 3.10. The second order message passing has the message H0 ∈ R|V|×|V|×(dv+de) initialized by pro-
moting the node features Fv to a second order tensor (e.g. we treat node features as self-loop edge features),
and concatenating with the edge features Fe. Iteratively,

Ht = γ(Mt),Mt =Wt

⊕
i,j

(A⊗Ht−1)↓i,j

 ,
where A⊗Ht−1 results in a fourth order tensor while ↓i,j contracts it down to a second order tensor along
the ith and jth dimensions,⊕ denotes concatenation along the feature channels, andWt denotes a multilayer
perceptron (MLP) on the feature channels. We remark that the popular MPNNs [7] is a lower-order one and
a special case in which Mt =D−1AHt−1Wt−1 where Dii =

∑
jAij is the diagonal matrix of node degrees.

The messageHT of the last iteration is still second order, so we contract it down to the first order latent Z =⊕
i HT↓i .

3.4. Learning to cluster
Definition3.11. Aclustering ofn objects into k clusters is amappingπ : {1, ..,n}→ {1, ..,k} inwhichπ(i) = j
if the ith object is assigned to the jth cluster. The inverse mapping π−1( j) = {i ∈ [1,n] : π(i) = j} gives the set
of all objects assigned to the jth cluster. The clustering is represented by an assignment matrix Π ∈ {0,1}n×k

such that Πi,π(i) = 1.

Definition 3.12. The action of Sn on a clustering π of n objects into k clusters and its corresponding assign-
ment matrix Π are

[σ ·π](i) = π(σ−1(i)), [σ ·Π]i,j =Πσ−1(i),j, σ ∈ Sn.

Definition 3.13. LetN be a neural network that takes as input a graph G of n nodes, and outputs a clustering
π of k clusters.N is said to be equivariant if and only ifN (σ · G) = σ · N (G) for all σ ∈ Sn.

From definition 3.13, intuitively the assignment matrix Π still represents the same clustering if we
permute its rows. The learnable clustering procedure c(G(ℓ);θ) is built as follows:

5
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1. A GNN parameterized by θ encodes graph G(ℓ) into a first order tensor of K feature channels
p̃(ℓ) ∈ R|V(ℓ)|×K.

2. The clustering assignment is determined by a row-wise maximum pooling operation:

π(ℓ)(i) = arg max
k∈[1,K]

p̃(ℓ)i,k (1)

that is an equivariant clustering in the sense of definition 3.13.

A composition of an equivariant function (e.g. graph net) and an equivariant function (e.g. maximum
pooling given in equation (1)) is still an equivariant function with respect to the node permutation. Thus,
the learnable clustering procedure c(G(ℓ);θ) is permutation equivariant.

In practice, in order to make the clustering procedure differentiable for backpropagation, we replace the
maximum pooling in equation (1) by sampling from a categorical distribution. Let π(ℓ)(i) be a categorical

variable with class probabilities p(ℓ)i,1 , ..,p
(ℓ)
i,K computed as softmax from p̃(ℓ)i,: . The Gumbel-max trick [55–57]

provides a simple and efficient way to draw samples π(ℓ)(i):

Π
(ℓ)
i = one-hot

(
arg max

k∈[1,K]

[
gi,k + logp(ℓ)i,k

])
,

where gi,1, ..,gi,K are i.i.d samples drawn from Gumbel(0,1). Given the clustering assignment matrix Π(ℓ),
the coarsened adjacency matrixA(ℓ−1) (see definitions 3.1 and 3.2) can be constructed as Π(ℓ)TA(ℓ)Π(ℓ).

It is desirable to have a balanced K-cluster partition in which clusters V(ℓ)
1 , ..,V(ℓ)

K have similar sizes that
are close to |V(ℓ)|/K. The local encoders tend to generalize better for same-size subgraphs. We want the
distribution of nodes into clusters to be close to the uniform distribution. We enforce the clustering
procedure to produce a balanced cut by minimizing the following Kullback–Leibler divergence:

DKL(P||Q) =
K∑

k=1

P(k) log
P(k)

Q(k)
, (2)

where

P=

(
|V(ℓ)

1 |
|V(ℓ)|

, ..,
|V(ℓ)

K |
|V(ℓ)|

)
, Q=

(
1

K
, ..,

1

K

)
.

The whole construction of MGN is equivariant with respect to node permutations of G. In the case of
molecular property prediction, we want MGN to learn to predict a real value y ∈ R for each graph G while
learning to find a balanced cut in each resolution to construct a hierarchical structure of latents and coarsen
graphs. The total loss function is

LMGN(G,y) =

∥∥∥∥∥f
(

L⊕
ℓ=1

R
(
Z(ℓ)

))
− y

∥∥∥∥∥
2

2

+
L∑

ℓ=1

λ(ℓ)DKL

(
P(ℓ)||Q(ℓ)

)
,

where f is a multilayer perceptron,⊕ denotes the vector concatenation, R is a readout function that produces

a permutation invariant vector of size d given the latent Z |V(ℓ)|×d at the ℓth resolution, λ(ℓ) ∈ R is a
hyperparameter, andDKL(P(ℓ)||Q(ℓ)) is the balanced-cut loss as defined in equation (2).

4. Hierarchical generative model

In this section, we introduce our hierarchical generative model for multiresolution graph generation based
on variational principles.

4.1. Background on graph VAE
Suppose that we have input data consisting ofm graphs (data points) G = {G1, ..,Gm}. The standard VAEs,
introduced by [54] have the following generation process, in which each data graph Gi for i ∈ {1,2, ..,m} is
generated independently:

1. Generate the latent variables Z = {Z1, ..,Zm}, where each Zi ∈ R|Vi|×dz is drawn i.i.d. from a prior distri-
bution p0 (e.g. standard Normal distributionN (0,1)).

2. Generate the data graph Gi ∼ pθ(Gi|Zi) from the model conditional distribution pθ.

6
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We want to optimize θ to maximize the likelihood pθ(G) =
´
pθ(Z)pθ(G|Z)dZ . However, this requires

computing the posterior distribution pθ(G|Z) =
∏m

i=1 pθ(Gi|Zi), which is usually intractable. Instead, VAEs
apply the variational principle, proposed by [58], to approximate the posterior distribution as
qϕ(Z|G) =

∏m
i=1 qϕ(Zi|Gi) via amortized inference and maximize the evidence lower bound (ELBO) that is a

lower bound of the likelihood:

LELBO(ϕ,θ) = Eqϕ(Z|G)[logpθ(G|Z)]−DKL(qϕ(Z|G)||p0(Z)) (3)

=
m∑
i=1

[
Eqϕ(Zi|Gi)[logpθ(Gi|Zi)]−DKL(qϕ(Zi|Gi)||p0(Zi))

]
. (4)

The probabilistic encoder qϕ(Z|G), the approximation to the posterior of the generative model pθ(G,Z), is
modeled using equivariant GNNs (see example 3.10) as follows. Assume the prior over the latent variables to
be the centered isotropic multivariate Gaussian pθ(Z) =N (Z;0, I). We let qϕ(Zi|Gi) be a multivariate
Gaussian with a diagonal covariance structure:

logqϕ(Zi|Gi) = logN
(
Zi;µi,σ

2
i I
)
, (5)

where µi,σi ∈ R|Vi|×dz are the mean and standard deviation of the approximate posterior output by two
equivariant graph encoders. We sample from the posterior qϕ by using the reparameterization trick:

Zi = µi +σi ⊙ ϵ,

where ϵ∼N (0, I) and⊙ is the element-wise product.
On the another hand, the probabilistic decoder pθ(Gi|Zi) defines a conditional distribution over the

entries of the adjacency matrixAi :

pθ(Gi|Zi) =
∏

(u,v)∈V2
i

pθ(Aiuv = 1|Ziu,Ziv).

For example, [59] suggests a simple dot-product decoder that is trivially equivariant:

pθ(Aiuv = 1|Ziu,Ziv) = γ(ZT
iuZiv),

where γ denotes the sigmoid function.

4.2. Multiresolution VAEs
Based on the construction of multiresolution graph network (see section 3.1), the latent variables are

partitioned into disjoint groups, Zi = {Z(1)
i ,Z(2)

i , ..,Z(L)
i } where Z(ℓ)

i = {[Z(ℓ)
i ]k ∈ R|[V(ℓ)

i ]k|×dz}k is the set
of latents at the ℓth resolution level in which the graph G(ℓ)

i is partitioned into a number of clusters [G(ℓ)
i ]k.

In the area of normalizing flows (NFs), [47] has shown that stochasticity (e.g. a chain of stochastic
sampling blocks) overcomes expressivity limitations of NFs. In general, our MGVAE is a stochastic version of
the deterministic MGN such that stochastic sampling is applied at each resolution level in a bottom-up
manner. The prior (equation (6)) and the approximate posterior (equation (7)) are represented by

p(Zi) =
L∏

ℓ=1

p
(
Z(ℓ)

i

)
=

L∏
ℓ=1

∏
k

p
(
[Z(ℓ)

i ]k

)
, (6)

qϕ (Zi|Gi) = qϕ
(
Z(L)

i |G(L)
i

) 1∏
ℓ=L−1

qϕ
(
Z(ℓ)

i |Z(ℓ+1)
i ,G(ℓ)

i

)
, (7)

in which each conditional in the approximate posterior are in the form of factorial Normal distributions, in
particular

qϕ
(
Z(ℓ)

i |Z(ℓ+1)
i ,G(ℓ)

i

)
=
∏
k

qϕ
([

Z(ℓ)
i

]
k

∣∣Z(ℓ+1)
i ,

[
G(ℓ)
i

]
k

)
,

7
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where each encoder qϕ([Z(ℓ)
i ]k

∣∣Z(ℓ+1)
i , [G(ℓ)

i ]k) operates on a subgraph [G(ℓ)
i ]k as follows:

• The pooling network p(ℓ+1) shrinks the latent Z(ℓ+1)
i into the node features of G(ℓ)

i as in the construction
of MGN (see definition 3.4).

• The local (deterministic) graph encoder d(ℓ)local encodes each subgraph [G
(ℓ)
i ]k into a mean vector and a diag-

onal covariance matrix (see equation (5)). A second order encoder can produce a positive semidefinite non-
diagonal covariance matrix, that can be interpreted as a Gaussian Markov random fields (MRFs) (details in
section 4.3). The new subgraph latent [Z(ℓ)

i ]k is sampled by the reparameterization trick.

The prior can be either the isotropic GaussianN (0,1) as in standard VAEs, or be implemented as a
parameterized GaussianN (µ̂, Σ̂) where µ̂ and Σ̂ are learnable equivariant functions (details in section 4.4).
The reparameterization trick for conventionalN (0,1) prior is the same as in section 4.1, while the new one
for the generalized and learnable priorN (µ̂, Σ̂) is given in section 4.3. On the another hand, the probabilistic

decoder pθ(G(1)
i , ..,G(L)

i |Z(1)
i , ..,Z(L)

i ) defines a conditional distribution over all subgraph adjacencies at each
resolution level:

pθ
(
G(1)
i , ..,G(L)

i |Z(1)
i , ..,Z(L)

i

)
=
∏
ℓ

pθ
(
G(ℓ)
i |Z(ℓ)

i

)
=
∏
ℓ

∏
k

pθ
(
[A(ℓ)

i ]k|[Z(ℓ)
i ]k

)
.

Extending from equation (3), we write our multiresolution variational lower bound LMGVAE(ϕ,θ) on
logp(G) compactly as

LMGVAE(ϕ,θ) =
∑
i

∑
ℓ

[
E
qϕ(Z(ℓ)

i |G(ℓ)
i )

[
logpθ

(
G(ℓ)
i |Z(ℓ)

i

)]
−DKL

(
qϕ
(
Z(ℓ)

i |G(ℓ)
i

)
||p0
(
Z(ℓ)

i

))]
, (8)

where the first term denotes the reconstruction loss (e.g. ||A(ℓ)
i −Â(ℓ)

i || whereA(L)
i is Gi itself,A(ℓ<L)

i is the

adjacency produced by MGN at level ℓ, and Â(ℓ)
i are the reconstructed ones by the decoders); and the second

term is indeedDKL

(
N (µ

(ℓ)
i ,Σ

(ℓ)
i )||N (µ̂(ℓ),Σ̂

(ℓ)
)
)
where µ(ℓ)

i ∈ R|V(ℓ)
i |×d and Σ(ℓ)

i ∈ R|V(ℓ)
i |×|V(ℓ)

i |×d are the

mean and covariance tensors produced by the ℓth encoder for graph Gi, while µ̂
(ℓ)and Σ̂

(ℓ)
are learnable

ones in an equivariant manner as in section 4.4. In general, the overall optimization is given as follows:

min
ϕ,θ,{µ̂(ℓ),Σ̂

(ℓ)}ℓ

LMGVAE

(
ϕ,θ;{µ̂(ℓ),Σ̂

(ℓ)
}ℓ
)
+
∑
i,ℓ

λ(ℓ)DKL

(
P(ℓ)i ||Q(ℓ)

i

)
,

where ϕ denotes all learnable parameters of the encoders, θ denotes all learnable parameters of the decoders,

andDKL(P
(ℓ)
i ||Q(ℓ)

i ) is the balanced-cut loss for graph Gi at level ℓ as defined in section 3.4.

4.3. MRFs
Undirected graphical models have been widely applied in the domains spatial or relational data, such as
image analysis and spatial statistics. In general, kth order graph encoders encode an undirected graph

G = (V,E) into a kth order latent z ∈ Rnk×dz , with learnable parameters θ, can be represented as a
parameterized MRF or Markov network. Based on the Hammersley–Clifford theorem [60, 61], a positive
distribution p(z)> 0 satisfies the conditional independent properties of an undirected graph G iff p can be
represented as a product of potential functions ψ, one permaximal clique, i.e.

p(z|θ) = 1

Z(θ)

∏
c∈C

ψc(zc|θc), (9)

where C is the set of all the (maximal) cliques of G, and Z(θ) is the partition function to ensure the overall
distribution sums to 1, and given by

Z(θ) =
∑
z

∏
c∈C

ψc(zc|θc).

Equation (9) can be further written down as

p(z|θ)∝
∏
v∈V

ψv(zv|θ)
∏

(s,t)∈E

ψst(zst|θ) · · ·
∏

c=(i1,..,ik)∈Ck

ψc(zc|θ),

where ψv, ψst , and ψc are the first order, second order and kth order outputs of the encoder, corresponding to
every vertex in V , every edge in E and every clique of size k in Ck, respectively. However, factorizing a graph

8
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into set of maximal cliques has an exponential time complexity, since the problem of determining if there is a
clique of size k in a graph is known as an NP-complete problem. Thus, the factorization based on
Hammersley–Clifford theorem is intractable. The second order encoder relaxes the restriction of maximal
clique into edges, that is called as pairwiseMRF:

p(z|θ)∝
∏
s∼t

ψst(zs,zt).

Our second order encoder inherits Gaussian MRF introduced by [62] as pairwiseMRF of the following form

p(z|θ)∝
∏
s∼t

ψst(zs,zt)
∏
t

ψt(zt),

where ψst(zs,zt) = exp
(
− 1

2 zsΛstzt
)
is the edge potential, and ψt(zt) = exp

(
− 1

2Λttz2t + ηtzt
)
is the vertex

potential. The joint distribution can be written in the information form of a multivariate Gaussian in which

Λ=Σ−1,

η =Λµ,

p(z|θ)∝ exp

(
ηTz− 1

2
zTΛz

)
. (10)

Sampling z from p(z|θ) in equation (10) is the same as sampling from the multivariate GaussianN (µ,Σ).
To ensure end-to-end equivariance, we set the latent layer to be two tensors µ ∈ Rn×dz andΣ ∈ Rn×n×dz that
corresponds to dz multivariate Gaussians, whose first index, and second index are first order and second
order equivariant with permutations. Computation of Σ is trickier than µ, simply becauseΣmust be
invertible to be a covariance matrix. Thus, our second order encoder produces tensor L as the second order
activation, and setΣ= LLT. The reparameterization trick from Kingma and Welling [54] is changed to

z= µ+ Lϵ, ϵ∼N (0,1).

4.4. Equivariant learnable prior
The original VAE published by [54] limits each covariance matrixΣ to be diagonal and the prior to be
N (0,1). Our second order encoder removes the diagonal restriction on the covariance matrix. Furthermore,
we allow the priorN (µ̂,Σ̂) to be learnable in which µ̂ and Σ̂ are parameters optimized by back propagation
in a data driven manner. Importantly, Σ̂ cannot be learned directly due to the invertibility restriction.
Instead, similarly to the second order encoder, a matrix L̂ is optimized, and the prior covariance matrix is

constructed by setting Σ̂= L̂L̂
T
. The Kullback–Leibler divergence between the two distributionsN (µ,Σ)

andN (µ̂,Σ̂) is as follows:

DKL(N (µ,Σ)||N (µ̂,Σ̂)) =
1

2

(
tr
(
Σ̂

−1
Σ
)
+(µ̂−µ)TΣ̂

−1
(µ̂−µ)− n+ ln

(
detΣ̂

detΣ

))
. (11)

Even thoughΣ is invertible, but gradient computation through the KL-divergence loss can be numerical
instable because of Cholesky decomposition procedure in matrix inversion. Thus, we add neglectable noise
ϵ= 10−4 to the diagonal of both covariance matrices.

Importantly, during training, the KL-divergence loss breaks the permutation equivariance. Suppose the
set of vertices are permuted by a permutation matrix Pσ for σ ∈ Sn. Since µ andΣ are the first order and
second order equivariant outputs of the encoder, they are changed to Pσµ and PσΣPT

σ accordingly. But

DKL(N (µ,Σ)||N (µ̂,Σ̂)) ̸=DKL(N (Pσµ,PσΣPT
σ)||N (µ̂,Σ̂)).

To address the equivariance issue, we want to solve the following convex optimization problem that is our
new equivariant loss function

min
σ∈Sn

DKL(N (Pσµ,PσΣPT
σ)||N (µ̂,Σ̂)). (12)

However, solving the optimization based on equation (12) is computationally expensive. One solution is to
solve the minimum-cost maximum-matching in a bipartite graph (Hungarian matching) with the cost

9
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matrix Cij = ||µi − µ̂j|| by O(n4) algorithm published by Edmonds and Karp [63], that can be still improved
further into O(n3). The Hungarian matching preserves equivariance, but is still computationally expensive.
In practice, instead of finding a optimal permutation, we apply a free-matching scheme to find an
assignment matrixΠ such that:Πij∗ = 1 if and only if j∗ = argminj ||µi − µ̂j||, for each i ∈ [1,n]. The
free-matching scheme preserves equivariance and can be done efficiently in a simple O(n2) algorithm that is
also suitable for GPU computation.

5. Experiments

5.1. Molecular graph generation
We examine the generative power of MGN and MGVAE in the challenging task of molecule generation, in
which the graphs are highly structured. We demonstrate that MGVAE is the first hierarchical graph VAE
model generating graphs in a permutation-equivariant manner that is competitive against autoregressive
results. We train on two datasets that are standard in the field:

1. QM9 [64, 65]: contains 134K organic molecules with up to nine atoms (C, H, O, N, and F) out of the
GDB-17 Universe of molecules.

2. ZINC [66]: contains 250K purchasable drug-like chemical compounds with up to twenty-three heavy
atoms.

We only use the graph features as the input, including the adjacency matrix, the one-hot vector of atom
types (e.g. carbon, hydrogen, etc) and the bond types (single bond, double bond, etc) without any further
domain knowledge from chemistry or physics. First, we train autoencoding task of reconstructing the
adjacency matrix and node features. We use a learnable equivariant prior (see section 4.4) instead of the
conventionalN (0,1). Then, we generate 5000 different samples from the prior, and decode each sample into
a generated graph (see figure 3). We implement our graph construction (decoding) in two approaches:

1. All-at-once: We reconstruct the whole adjacency matrix by running the probabilistic decoder (see
section 4). MGVAE enables us to generate a graph at any given resolution level ℓ. In this particular case,
we select the highest resolution ℓ= L. Furthermore, we apply learnable equivariant prior as in section 4.4.
Our second order encoders are interpreted as MRFs (see section 4.3). This approach preserves permutation
equivariance. In addition, we implement a correcting process: the decoder network of the highest resolution
level returns a probability for each edge, we sort these probabilities in a descending order and gradually add
the edges in that order to satisfy all chemical constraints. Furthermore, we investigate the expressive power
of the second order Sn-equivariant decoder by replacing it by an MLP decoder with two hidden layers of
size 512 and sigmoid nonlinearity. We find that the higher order decoder outperforms the MLP decoder
given the same encoding architecture. Table 1 shows the comparison between the two decoding models.

2. Autoregressive: This decoding process is constructed in an autoregressive manner similarly to [67]. First,
we sample each vertex latent z independently. We randomly select a starting node v0, then we apply breadth
first search to determine a particular node ordering from the node v0, however that breaks the permutation
equivariance. Then iteratively we add/sample new edge to the existing graph Gt at the tth iteration (given a
randomly selected node v0 as the start graph G0) until completion.We apply second-orderMGNwith gated
recurrent architecture to produce the probability of edge (u, v) where one vertex u is in the existing graph
Gt and the another one is outside; and also the probability of its label. Intuitively, the decoding process is a
sequential classification.

In our setting for small molecules, L= 3 and K= 2ℓ−1 for the ℓth level. On each resolution level, the local
encoders and local decoders are second-order Sn-equivariant networks with up to four equivariant layers.
The number of channels for each node latent dz is set to 256. We compare our methods with other
graph-based generative models including GraphVAE [22], CGVAE [67], MolGAN [23], and JT-VAE [24]. We
evaluate the quality of generated molecules in three metrics: (i) validity, (ii) novelty and (iii) uniqueness as
the percentage of the generated molecules that are chemically valid, different from all molecules in the
training set, and not redundant, respectively.

We randomly select 10 000 training examples for QM9; and 1000 (autoregressive) and 10 000
(all-at-once) training examples for ZINC. It is important to note that our training sets are much smaller
comparing to other methods. For all of our generation experiments, we only use graph features as the input
for the encoder such as one-hot atomic types and bond types. Since ZINC molecules are larger then QM9
ones, it is more difficult to train with the second order Sn-equivariant decoders (e.g. the number of
bond/non-bond predictions or the number of entries in the adjacency matrices are proportional to
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Figure 3.MGVAE generates molecules on QM9 (four on the left) and ZINC (the rest) equivariantly. Both equivariant MGVAE
and autoregressive MGN generate high-quality molecules with complicated structures such as rings.

Table 1. All-at-once MGVAE with MLP decoder vs. second order decoder.

Dataset Method Validity Novelty Uniqueness

QM9 MLP decoder 100% 99.98% 77.62%
Sn decoder 100% 100% 95.16%

Table 2. The list of chemical/atomic features used for the all-at-once MGVAE on ZINC. We denote each feature by its API in RDKit.

Feature Type Number Description

GetAtomicNum Integer 1 Atomic number
IsInRing Boolean 1 Belongs to a ring?
IsInRingSize Boolean 9 Belongs to a ring of size k ∈ {1, ..,9}?
GetIsAromatic Boolean 1 Aromaticity?
GetDegree Integer 1 Vertex degree
GetExplicitValance Integer 1 Explicit valance
GetFormalCharge Integer 1 Formal charge
GetIsotope Integer 1 Isotope
GetMass Double 1 Atomic mass
GetNoImplicit Boolean 1 Allowed to have implicit Hs?
GetNumExplicitHs Integer 1 Number of explicit Hs
GetNumImplicitHs Integer 1 Number of implicit Hs
GetNumRadicalElectrons Integer 1 Number of radical electrons
GetTotalDegree Integer 1 Total degree
GetTotalNumHs Integer 1 Total number of Hs
GetTotalValence Integer 1 Total valance

squared number of nodes). Therefore, we input several chemical/atomic features computed from RDKit for
the all-at-once MGVAE on ZINC (see table 2). We concatenate all these features into a vector of size 24 for
each atom.

We train our models with Adam optimization method [68] with the initial learning rate of 10−3.
Figures 4 and 5 show some selected examples out of 5000 generated molecules on QM9 by all-at-once
MGVAE, while figure 6 shows the molecules generated by autoregressive MGN. Qualitatively, both the
decoding approaches capture similar molecular substructures (bond structures). Figure 7 shows an example
of interpolation on the latent space on ZINC with the all-at-once MGVAE. Figure 8 shows some generated
molecules on ZINC by the all-at-once MGVAE. Figure 9 and table 3 show some generated molecules by the
autoregressive MGN on ZINC dataset with high quantitative estimate of drug-likeness (QED) computed by
RDKit and their SMILES strings. On ZINC, the average QED score of the generated molecules is 0.45 with
standard deviation 0.21. On QM9, the QED score is 0.44± 0.07.

Our models are equivalent with the state-of-the-art, even with a limited training set (see table 4). Figure 3
shows some randomly selected examples out of 5000 generated molecules. Admittedly, molecule generation
is a somewhat subject task that can only be evaluated with objective numerical measures up to a certain
point. Qualitatively, however the molecules that MGVAE generates are as good as the state of the art, in some
cases better in terms of producing several high-quality drug-like molecules with complicated functional
groups and structures.

5.2. General graph generation byMGVAE
We further examine the expressive power of hierarchical latent structure of MGVAE in the task of general
graph generation. We choose two datasets from GraphRNN paper [16]:

1. Community-small: A synthetic dataset of 100 two-community graphs where 12⩽ |V|⩽ 20.
2. Ego-small: 200 three-hop ego networks extracted from the Citeseer network [69] where 4⩽ |V|⩽ 18.
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Figure 4. Some generated examples on QM9 by the all-at-once MGVAE with second order Sn-equivariant decoders.

Figure 5. Some generated examples on QM9 by the all-at-once MGVAE with an MLP decoder instead of the second order
Sn-equivariant one. It generates more tree-like structures.

Figure 6. Some generated examples on QM9 by the autoregressive MGN.
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Figure 7. Interpolation on the latent space: we randomly select two molecules from ZINC and we reconstruct the corresponding
molecular graphs on the interpolation line between the two latents.

Figure 8. Some generated examples on ZINC by the all-at-once MGVAE with second order Sn-equivariant decoders. In addition
of graph features such as one-hot atomic types, we include several chemical features computed from RDKit (as in table 2) as the
input for the encoders. A generated example can contain more than one connected components, each of them is a valid molecule.

The datasets are generated by the scripts from the GraphRNN codebase [70]. We keep 80% of the data for
training and the rest for testing. We evaluate our generated graphs by computing maximum mean
discrepancy (MMD) distance between the distributions of graph statistics on the test set and the generated
set as proposed by [16]. The graph statistics are node degrees, clustering coefficients, and orbit counts. As
suggested by [19], we execute 15 runs with different random seeds, and we generate 1024 graphs for each
run, then we average the results over 15 runs. We compare MGVAE against GraphVAE [22], DeepGMG [17],
GraphRNN [16], GNF [19], and GraphAF [71]. The baselines are taken from GNF paper [19] and GraphAF
paper [71]. In our setting of (all-at-once) MGVAE, we implement only L= 2 levels of resolution and K= 2ℓ

clusters for each level. Our encoders have ten layers of message passing. Instead of using a high order
equivariant network as the global decoder for the bottom resolution, we only implement a simple fully
connected network that maps the latent Z(L) ∈ R|V|×dz into an adjacency matrix of size |V|× |V|. For the
ego dataset in particular, we implement the learnable equivariant prior as in sections 4.3 and 4.4. Table 5
includes our quantitative results in comparison with other methods. MGVAE outperforms all competing
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Figure 9. Some generated molecules on ZINC by the autoregressive MGN with high QED (drug-likeness score).

methods. Figures 10 and 11 show some generated examples and training examples on the two-community
and ego datasets.

5.3. Link prediction on citation graphs byMGVAE
We demonstrate the ability of the MGVAE models to learn meaningful latent embeddings on a link
prediction task on popular citation network datasets Sen et al [69]. At training time, 15% of the citation links
(edges) were removed while all node features are kept, the models are trained on an incomplete graph
Laplacian constructed from the remaining 85% of the edges. From previously removed edges, we sample the
same number of pairs of unconnected nodes (non-edges). We form the validation and test sets that contain
5% and 10% of edges with an equal amount of non-edges, respectively.
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Table 3. SMILES of the generated molecules included in figure 9. Online drawing tool: https://pubchem.ncbi.nlm.nih.gov//edit3/index.
html.

Row Column SMILES

1 1 O=C1NC(CCCF)c2[nH]nnc21
2 OCC(OSBr)c1ccc(-c2cccc(Cl)c2Cl)[nH]1
3 C=CC1=CC=c2c(cc(=C3ONC(Cl)=C3Cl)[nH]c2=O)O1
4 COC(=CN1NC=CN1)C=C1C=CC(Cl)=CO1

2 1 [NH-]C(CNS1(=O)=NNc2c(F)cccc21)C1CC1
2 CS(=O)N1CC[SH](C)C(CNCc2ccccc2)C1
3 C=C(Cl)[SH](=O)(NC)C1c2ccc(Cl)c(n2)CC1O
4 CC(F)C(=C1C[NH2+]C([O-])N1)S(=O)Cc1ccccc1

3 1 CC1(NC2=CONN2c2ccccc2)C=C(C=O)N[N-]1
2 CC(=O)NN1N=C(C(O)c2cccc3ccoc23)C(=O)C1=O
3 C=CC(C)=C1C(F)=CC(C=C2ONN=NS2=O)=C1SCl
4 CCN1ON=C(C=C(Cl)c2ccco2)C(F)(F)C1=O

4 1 O=C(CCN(c1[nH+]cc(S)s1)c1ccc2cc1SC2)C1=NCC=C1Cl
2 CC=CNC1=C2Oc3ccccc3C(C)S2=S=N1
3 O=C(SC1=CC=NS1(=O)=O)c1ccc(Cl)cc1S1=NN=NN=N1
4 COCCNCc1cc2ccccc2[nH]1

5 1 ClC=C1CON=C(c2ncno2)N1CC(Cl)(Br)Br
2 CS(=O)(=O)c1ccc[nH+]c1SNCc1ccccc1Cl
3 O=S1(=O)CNS(=O)(N(c2ccccc2F)c2ccccc2Cl)=N1
4 O=C1NS(c2ccccc2Cl)=S2(=NSN=N2)O1

Table 4.Molecular graph generation results. GraphVAE results are taken from [67].

Dataset Method Train size Features Validity Novelty Uniqueness

QM9 GraphVAE ∼100K Graph 61.00% 85.00% 40.90%
CGVAE 100% 94.35% 98.57%
MolGAN 98.1% 94.2% 10.4%
Autoregressive MGN 10K 100% 95.01% 97.44%
All-at-onceMGVAE 100% 100% 95.16%

ZINC GraphVAE ∼200K Graph 14.00% 100% 31.60%
CGVAE 100% 100% 99.82%
JT-VAE 100% — —
Autoregressive MGN 1K 100% 99.89% 99.69%
All-at-onceMGVAE 10K Chemical 99.92% 100% 99.34%

We compare our model MGVAE against popular methods in the field:

1. Spectral clustering (SC) [72]
2. Deep walks (DW) [73]
3. Variational graph autoencoder (VGAE) [59]

on the ability to correctly classify edges and non-edges using two metrics: area under the ROC curve (AUC)
and average precision (AP). Numerical results of SC and DW are experimental settings are taken from [59].
We reran the implementation of VGAE as in [59].

For MGVAE, we initialize weights by Glorot initialization [74]. We repeat the experiments with five
different random seeds and calculate the average AUC and AP along with their standard deviations. The
number of message passing layers ranges from 1 to 4. The size of latent representation is 128. The number of
coarsening levels is L ∈ {3,7}. In the ℓth coarsening level, we partition the graph G(ℓ) into 2ℓ (for L= 7) or 4ℓ

(for L= 3) clusters. We train for 2048 epochs using Adam optimization [68] with a starting learning rate of
0.01. Hyperparameters optimization (e.g. number of layers, dimension of the latent representation, etc) is
done on the validation set. MGVAE outperforms all other methods (see table 6).

We propose our learning to cluster algorithm to achieve the balanced K-cut at every resolution level.
Besides, we also implement two fixed clustering algorithms:

1. Spectral: It is similar to the one implemented in [10].
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Table 5. Graph generation results depicting MMD for various graph statistics between the test set and generated graphs. MGVAE
outperforms all competing methods.

COMMUNITY-SMALL EGO-SMALL

MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02
GRAPHRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF 0.20 0.20 0.11 0.03 0.10 0.001
GRAPHAF 0.06 0.10 0.015 0.04 0.04 0.008
MGVAE 0.002 0.01 0.01 1.74× 10−5 0.0006 6.53× 10−5

Figure 10. The top row includes generated examples and the bottom row includes training examples on the synthetic
two-community dataset.

• First, we embed each node i ∈ V into Rnmax as (ξ1(i)/λ1(i), .., ξnmax(i)/λnmax(i)), where {λn, ξn}
nmax
n=0 are

the eigen-pairs of the graph LaplacianL=D−1(D−A)whereDii =
∑

jAij. We assume that λ0 ⩽ · · ·⩽
λnmax . In this case, nmax = 10.

• At the ℓth resolution level, we apply the K-Means clustering algorithm based on the above node embed-
ding to partition graph G(ℓ).

2. K-Means:
• First, we apply PCA to compress the sparse word frequency vectors (of size 1433 on Cora and 3703 on
Citeseer) associating with each node into ten dimensions.

• We use the compressed node embedding for the K-Means clustering.

Tables 7 and 8 show that our learning to cluster algorithm returns a much more balanced cut on the
highest resolution level comparing to both Spectral and K-Means clusterings. For instance, we have L= 7
resolution levels and we partition the ℓth resolution into K= 2ℓ clusters. Thus, on the bottom levels, we have
128 clusters. If we distribute nodes into clusters uniformly, the expected number of nodes in a cluster is 21.15
and 25.99 on Cora (2708 nodes) and Citeseer (3327 nodes), respectively. We measure the minimum,
maximum, standard deviation of the numbers of nodes in 128 clusters. Furthermore, we measure the
Kullback–Leibler divergence between the distribution of nodes into clusters and the uniform distribution.
Our learning to cluster algorithm achieves low KL losses of 0.02 and 0.01 on Cora and Citeseer, respectively.

5.4. Graph-based image generation byMGVAE
In this additional experiment, we apply MGVAE into the task of image generation. Instead of matrix
representation, an image I ∈ RH×W is represented by a grid graph of H ·W nodes in which each node
represents a pixel, each edge is between two neighboring pixels, and each node feature is the corresponding
pixel’s color (e.g. R1 in gray scale, and R3 in RGB scale). Figure 12 demonstrates an example of graph
representation for images. Since images have natural spatial clustering, instead of learning to cluster, we
implement a fixed clustering procedure as follows:

• For the ℓth resolution level, we divide the grid graph of sizeH(ℓ) ×W(ℓ) into clusters of size h×w that results

into a grid graph of size H(ℓ)

h × W(ℓ)

w , supposingly h and w are divisible by H(ℓ) andW(ℓ), respectively. Each
resolution is associated with an image I(ℓ) that is a zoomed out version of I(ℓ+1).
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Figure 11. Generated examples by MGVAE (top) and training examples (bottom) from the EGO-SMALL dataset which contains
randomly-sampled subgraphs of the Citeseer citation network.

• The global encoder e(ℓ) is implemented with ten layers of message passing that operates on the wholeH(ℓ) ×
W(ℓ) grid graph. We sum up all the node latents into a single latent vector Z(ℓ) ∈ Rdz . The global decoder
d(ℓ) is implemented by the convolutional neural network architecture of the generator of DCGAN model
[75] to map Z(ℓ) into an approximated image Î(ℓ). The Sn-invariant pooler p(ℓ) is a network operating on
each small h×w grid graph to produce the corresponding node feature for the next level ℓ+ 1. MGVAE is
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Table 6. Citation graph link prediction results (AUC & AP).

Dataset Cora Citeseer

Method AUC (ROC) AP AUC (ROC) AP

SC 84.6± 0.01 88.5± 0.00 80.5± 0.01 85.0± 0.01
DW 83.1± 0.01 85.0± 0.00 80.5± 0.02 83.6± 0.01
VGAE 90.97± 0.77 91.88± 0.83 89.63± 1.04 91.10± 1.02
MGVAE (Spectral) 91.19± 0.76 92.27± 0.73 90.55± 1.17 91.89± 1.27
MGVAE (K-Means) 93.07± 5.61 92.49± 5.77 90.81± 1.19 91.98± 1.02
MGVAE 95.67± 3.11 95.02± 3.36 93.93± 5.87 93.06± 6.33

Table 7. Learning to cluster algorithm returns balanced cuts on Cora.

Method Min Max STD KL divergence

Spectral 1 2020 177.52 3.14
K-Means 1 364 40.17 0.84
Learn to cluster 10 36 4.77 0.02

Table 8. Learning to cluster algorithm returns balanced cuts on Citeseer.

Method Min Max STD KL divergence

Spectral 1 3320 292.21 4.51
K-Means 1 326 41.69 0.74
Learn to cluster 11 38 4.93 0.01

Figure 12. An image of digit 8 from MNIST (left) and its grid graph representation at 16× 16 resolution level (right).

trained to reconstruct all resolution images. Figure 13 shows an example of reconstruction at each resolution
on a test image of MNIST (after the network converged).

We evaluate our MGVAE architecture on the MNIST dataset [76] with 60 000 training examples and
10 000 testing examples. The original image size is 28× 28. We pad zero pixels to get the image size of 25 × 25

(e.g. H(5) =W(5) = 32). Each cluster is a small grid graph of size 2× 2 (e.g. h= w= 2). Accordingly, the
image sizes for all resolutions are 32× 32, 16× 16, 8× 8, etc. In this case, the whole network architecture is a
two-dimensional quadtree. The latent size dz is selected as 256. We train our model for 256 epochs by Adam
optimizer [68] with the initial learning rate 10−3. In the testing process, for the ℓth resolution, we sample a
random vector of size dz from priorN (0,1) and use the decoder d(ℓ) to decode the corresponding image. We
generate 10 000 examples for each resolution. We compute the Frechet inception distance (FID) proposed by
[77] between the testing set and the generated set as the metric to evaluate the quality of our generated
examples. We use the FID implementation from [78]. We compare our MGVAE against variants of GANs
[42] including DCGAN [75], VEEGAN [79], PacGAN [80], and PresGAN [81]. Table 9 shows our
quantitative results in comparison with other competing generative models. The baseline results are taken
from Prescribed Generative Adversarial Networks paper [81]. MGVAE outperforms all the baselines for the
highest resolution generation. Figures 14 and 15 show some generated examples of the 32× 32 and 16× 16
resolution, respectively.
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Figure 13. An example of reconstruction on each resolution level for a test image in MNIST.

Table 9. Quantitative evaluation of the generated set by FID metric for each resolution level on MNIST. It is important to note that the
generation for each resolution is done separately: for the ℓth resolution, we sample a random vector of size dz = 256 fromN (0,1), and

use the global decoder d(ℓ) to decode into the corresponding image size. The baselines are taken from [81].

Method FID↓ (32× 32) FID↓ (16× 16) FID↓ (8× 8)

DCGAN 113.129 N/A N/A
VEEGAN 68.749
PACGAN 58.535
PresGAN 42.019
MGVAE 39.474 64.289 39.038

5.5. Unsupervised molecular properties prediction on QM9
Density function theory (DFT) is the most successful and widely used approach of modern quantum
chemistry to compute the electronic structure of matter, and to calculate many properties of molecular
systems with high accuracy [82]. However, DFT is computationally expensive [7], that leads to the use of
machine learning to estimate the properties of compounds from their chemical structure rather than
computing them explicitly with DFT [8]. To demonstrate that MGVAE can learn a useful molecular
representations and capture important molecular structures in an unsupervised and variational
autoencoding manner, we extract the highest resolution latents (at ℓ= L) and use them as the molecular
representations for the downstream tasks of predicting DFT’s molecular properties on QM9 including 13
learning targets. For the training, we normalize all learning targets to have mean 0 and standard deviation 1.
The name, physical unit, and statistics of these learning targets are detailed in table 10.

The implementation of MGVAE is the same as detailed in section 5.1. MGVAE is trained to reconstruct
the highest resolution (input) adjacency, its coarsening adjacencies and the node atomic features. In this case,
we do not use any chemical features: the node atomic features are just one-hot atomic types. After MGVAE is
converged, to obtain the Sn-invariant molecular representation, we average the node latents at the Lth level
into a vector of size 256. Finally, we apply a simple MLP with two hidden layers of size 512, sigmoid
nonlinearity and a linear layer on top to predict the molecular properties based on the extracted molecular
representation. We compare the results in mean average error (MAE) in the corresponding physical units
with four methods on the same split of training and testing from [8]:

1. Support vector machine on optimal-assignment Weisfeiler–Lehman (WL) graph kernel [83, 84]
2. Neural graph fingerprint (NGF) [5]
3. PATCHY-SAN (PSCN) [2]
4. Second order Sn-equivariant covariant compositional networks (CCN 2D) [8, 28].
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Figure 14. Generated examples at the highest 32× 32 resolution level.

Our unsupervised results show that MGVAE is able to learn a universal molecular representation in an
unsupervised manner and outperforms WL in 12, NGF in 10, PSCN in 8, and CCN 2D in 8 out of 13
learning targets, respectively (see table 11). There are other recent methods in the field that use several
chemical and geometric information but comparing to them would be unfair.

5.6. Supervised molecular properties prediction on ZINC
To further demonstrate the comprehensiveness of MGN, we apply our model in a supervised regression task
to predict the solubility (LogP) on the ZINC dataset. We use the same split of 10 K/1K/1K for
training/validation/testing as in [85]. The implementation of MGN is almost the same as detailed in
section 5.1, except we include the latents of all resolution levels into the prediction. In particular, in each
resolution level, we average all the node latents into a vector of size 256; then we concatenate all these vectors
into a long vector of size 256× L and apply a linear layer for the regression task. The baseline results are taken
from [86] including:

1. Multilayer perceptron (MLP),
2. Graph convolution networks (GCN),
3. Graph attention networks (GAT) [87],
4. MoNet [88],
5. Disentangled graph convolutional networks (DisenGCN) [89],
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Figure 15. Generated examples at the 16× 16 resolution level.

Table 10. Description and statistics of 13 learning targets on QM9.

Target Unit Mean STD Description

α bohr3 75.2808 8.1729 Norm of the static polarizability
Cv calmol−1 K−1 31.6204 4.0674 Heat capacity at room temperature
G eV −70.8352 9.4975 Free energy of atomization
gap eV 6.8583 1.2841 Difference between HOMO and LUMO
H eV −77.0167 10.4884 Enthalpy of atomization at room temperature
HOMO eV −6.5362 0.5977 Highest occupied molecular orbital
LUMO eV 0.3220 1.2748 Lowest unoccupied molecular orbital
µ D 2.6729 1.5034 Norm of the dipole moment
ω1 cm−1 3504.1155 266.8982 Highest fundamental vibrational frequency
R2 bohr2 1189.4091 280.4725 Electronic spatial extent
U eV −76.5789 10.4143 Atomization energy at room temperature
U0 eV −76.1145 10.3229 Atomization energy at 0 K
ZPVE eV 4.0568 0.9016 Zero point vibrational energy

Table 11. Unsupervised molecular representation learning by MGVAE to predict molecular properties calculated by DFT on QM9
dataset.

alpha Cv G gap H HOMO LUMO mu omega1 R2 U U0 ZPVE

WL 3.75 2.39 4.84 0.92 5.45 0.38 0.89 1.03 192 154 5.41 5.36 0.51
NGF 3.51 1.91 4.36 0.86 4.92 0.34 0.82 0.94 168 137 4.89 4.85 0.45
PSCN 1.63 1.09 3.13 0.77 3.56 0.30 0.75 0.81 152 61 3.54 3.50 0.38
CCN 2D 1.30 0.93 2.75 0.69 3.14 0.23 0.67 0.72 120 53 3.02 2.99 0.35
MGVAE 2.83 0.91 1.78 0.66 1.87 0.34 0.58 0.95 195 90 1.89 1.90 0.14

6. Factorizable graph convolutional networks (FactorGCN) [86],
7. GatedGCNE [85] that uses additional edge information.

Our supervised result shows that MGN outperforms the state-of-the-art models in the field with a
margin of 20% (see table 12).
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Table 12. Supervised MGN to predict solubility on ZINC dataset.

Method MLP GCN GAT MoNet DiscenGCN FactorGCN GatedGCNE MGN

MAE 0.667 0.503 0.479 0.407 0.538 0.366 0.363 0.290

6. Software

We implemented our models and experiments by PyTorch deep learning framework [90]. We released our
implementation at https://github.com/HyTruongSon/MGVAE.

7. Conclusion

We introduced MGVAE built upon MGN, the first generative model to learn and generate graphs in a
multiresolution and equivariant manner. The key idea of MGVAE is learning to construct a series of
coarsened graphs along with a hierarchy of latent distributions in the encoding process while learning to
decode each latent into the corresponding coarsened graph at every resolution level. MGVAE achieves
state-of-the-art results from link prediction to molecule and graph generation, suggesting that accounting
for the multiscale structure of graphs is a promising way to make GNNs even more powerful.
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