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CFNN-PSO: An Iterative Predictive Model for Generic
Parametric Design of Machining Processes
Tamal Ghosh and Kristian Martinsen

The Department of Manufacturing and Civil Engineering, Norwegian University of Science and
Technology, Gjøvik, Norway

ABSTRACT
Every production process consists of a large number of depen-
dent and independent variables, which substantially influence
the quality of the machined parts. Due to the large impact of
process variabilities, it is difficult to design optimal models for
the machining processes. Mathematical or numerical models
for production processes are resource driven, which are not
cost effective approaches in terms of computation and eco-
nomical production. In this paper, a new artificial neural net-
work (ANN) based predictive model is introduced, which
exploits particle swarm optimization (PSO) algorithm to mini-
mize the root mean square errors (RMSE) for the network
training. This approach can effectively obtain an optimized
predictive model that can calculate precise output responses
for the production processes. In order to verify the proposed
approach, two case studies are considered from literature and
shown to produce significant improvements. Furthermore, the
proposed model is validated on abrasive water jet machining
(AWJM) with industrial garnet abrasives and optimal machin-
ing conditions have been obtained with optimized responses,
which are substantially improved while compared with gray
relational analysis (GRA).

Introduction

Optimal designing of production processes gained tremendous interest from
researchers in recent past. In industrial production scenario, it is not easy to
obtain optimized conditions for production process since a large number of
design variables are involved, which need to be correctly selected for
improved responses. Interdisciplinary collaborative techniques are followed
while producing complex engineering products (Cook and Chiu 1998). These
require complicated design space due to the nonlinearities exist in mutual
relationships among dependent and independent process variables.
Therefore, it is a difficult process to frame these complex relationships in
the form of mathematics (Afazov 2013). Accuracy of certain production
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process is subject to the expensive experimental machining data, which is
correlated with machining costs, tool cost, labor costs, overhead costs, and
scrap costs etc. Therefore, data driven models, machine-learning techniques,
or meta-models could be appropriate in such scenarios (Gröger,
Niedermann, and Mitschang 2012).

The complexities of production of engineering products increase with the
number of dependent and independent process variables. These types of
problems are also termed as NP-Hard or combinatorial problems, which
could have many near optimal solutions (Bruzzone et al. 2012). For an
example, CNC milling machining includes a number of process variables
such as spindle speed, feed rate, depth of cut, tool diameter, surface rough-
ness (Ra), applied cutting forces, tool wear, material removal rate (MRR) etc.
For this type of problems, process specific optimization approaches are
required and universal formulations or models are not prominently available
in literature (Mukherjee and Ray 2006). Optimization of production process
is practically the adjustment of the independent design variables in order to
obtain better scores for performance indicators. The values of machining
variables could be obtained from a predefined design space defined by the
specifications and tolerance values of tools and machines.

Hence, the aim of this paper is to portray some suitable hybrid optimiza-
tion approach, which is process independent and obtains optimal solutions
promptly. To cater the purpose, artificial neural network (ANN) based
predictive model is proposed, which requires a small amount of process
data for the training purpose and a popular bio-inspired algorithm called
particle swarm optimization (PSO) is coupled to fine-tune the proposed
predictive model. The proposed hybrid algorithm takes various design para-
meters as inputs and produces optimally trained predictive model, which is
capable of producing improved process output. Root mean square error
(RMSE) is used as the performance metric for the predictive model. The
proposed algorithm is tested and validated with three cases; out of which two
cases (CNC micro milling and water-in-diesel emulsification processes) are
collected from literature and the remaining one (abrasive water jet machin-
ing, AWJM) has been conducted in laboratory. Rest of the paper is divided as
follows, a detailed literature survey discussed in section #2, proposed pre-
dictive model portrayed in section #3, experimentations and results are
demonstrated in section #4, followed by conclusions in section #5.

Related Works

Automated machining processes have modernized the production compa-
nies drastically since past few decades. Traditional production jobs take the
materials with limited tolerance conditions as inputs; whereas non-
traditional techniques could process raw materials beyond this limitations.
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Due to technological advancement, cutting tool materials have become
harder with higher spindle speed and improved tool drive. Therefore,
high speed and precision based machining has become possible these
days. The result is improved MRRs with reduce Ra for the work piece.
Thus, complex geometry could be achievable in inexpensive ways. Tool life
has been considered as an important performance indicator for high speed
machining. Hard machining is one of such machining processes that
consider relatively hard materials (Velayudham 2007). CNC turning
(Dureja et al. 2016), micro-milling (Beake et al. 2015), cylindrical grinding
(Mitrofanov and Parsheva 2017), hard boring (Ngo, Chu, and Nguyen
2018), AWJM (Patel and Tandon 2015) etc. are examples of hard machin-
ing processes.

Parametric Design of Manufacturing Processes

Mostly the machining process variables are set based on user experience or
guidance provided by process manual, which might not be the optimal
settings to the machining. Consequently, the production volume decreases
with inferior quality and increased waste. Therefore, the optimal level of
parametric settings would be necessary for better production throughput. In
this study, some of the critical machining processes are considered such as
CNC drilling, micro-milling, and AWJM, and parametric designs of the said
processes are discussed. Next few subsections present in-depth discussion on
related works and the need of the predictive modeling for production process
optimization.

Drilling Process
Drilling is a traditional cutting process of materials using drill bit as a cutting
tool, which makes circular holes on the workpiece. The chosen tool rotates
along the axis and often used as a multi-point tool, which put force against
the work-piece while in rotation (100–10000 rpm). This phenomenon
removes material as chips with certain rate while generating the desired
shape. Drilling operation could create some low residual stresses around
the cut hole and accumulate highly deformed material on the generated
surface. Hence, a finish operation could be required after drilling operation
to avoid corrosions (Anand et al. 2018). In general spindle speed, feed rate,
and drill diameter are considered as important process parameters for dril-
ling process, whereas Ra, MRR, thrust force, and torque generated during
drilling process are most important performance indicators. Various design
of experiments (DOE) methods such as factorial design, Taguchi’s method,
response surface method (RSM), and gray relational analysis (GRA) are
applied yet for optimization of the drilling process (Anand et al. 2018;
Onwubolu and Kumar 2006).
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Micro-milling Process
Micro-milling process is exclusively developed to make tiny components
with greater geometric complexities and highest level of precisions.
Application of micro-milling could be seen in aerospace, electronics,
biomedical, and robotics fields (Lu et al. 2018). This process considers
end mill tool (diameter in the range of 90–450 µm) and edge radius
(0–5 µm). In micro-milling, the overall machining is reduced from
100 µm/tooth feed rates and 1 mm depth of cut to 1 µm/tooth feed
rates and 100 µm depth of cut due to the miniature models. Primarily
the micro-milling and traditional milling follow similar physics however,
they differ in the operational sizes (Wu et al. 2013). Optimization of
micro-milling process is an important area of study that helps finding
optimal performance indicators. Achieving minimum Ra in micro-milling
is an essential objective. To attain optimal set of values for process para-
meters, different DOE methods such as RSM, full factorial design and
Taguchi methods were practiced in past literature (Kuram and Ozcelik
2013; Vázquez et al. 2010; Wang, Kweon, and Yang 2005). Recently,
Khalilpourazari and Khalilpourazary (2018) developed a hybrid algorithm
called sine-cosine whale optimization algorithm (SCWOA), for parameter
optimization problem of multi-pass milling process which minimizes total
production time. The SCWOA utilizes local and global search abilities to
achieve optimality. Analysis of cutting force signal is critical for micro-
milling since smaller cutting force signals could be affected by moderately
larger noise. Therefore, filtration of the force signal is required (Zhu et al.
2008). A large number of process parameters of micro-milling machining
could influence tool wear, cutting force and Ra greatly, which are spindle
speed, depth of cut (radial and axial), tool diameter, composition of
workpieces, feed per tooth etc. (La Fe et al. 2018).

AWJM Process
AWJM is a rapidly growing technology, which could be practiced in industry
for a large number of applications such as plate profile cutting and machin-
ing of various materials including glasses, ceramics, metals etc. Cutting of
glasses generates surfaces and shapes that could be unattainable with other
techniques. This type of machined glass material could be used in different
glass works such as aesthetic design of tabletop insets, tainted glass designs,
looking glasses, glass based jewelries, etc. (Momber and Kovacevic 2012).
Due to the natural fragility of glass materials, the primary grooves are
fabricated with low pressure (450–780 bars). This pressure is increased
gradually with the cutting speed. Therefore, proportional pressure control
mechanism is required, which is obtained using the intensifier pump .
Armağan and Arici (2017) demonstrated the benefits of the AWJM process,
which are as follows:
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● molten or solidified material does not accumulate on the cutting surface
due to the absence of the heat-affected zones

● assembly fixtures are unnecessary for holding of the material since
cutting forces have no impact on the cutting tools

● due to the use of pressurized water and abrasive material mix it is fairly
easy to obtain complex geometry with lesser efforts

● it is an eco-friendly process and the cutting surface has a two-step
mechanism, which includes cutting wear and deformation wear zones.

As in the case of every machining process, the quality of AWJM cut is
significantly affected by the process parameters. There are several process
parameters such as size of abrasive (AS), abrasive concentration (AC), feed
rate (FR), standoff distance (SOD), and water pressure (WP) are of great
importance. The main performance indicators are MRR, kerf width (KW), Ra
etc. In order to effectively control and optimize any of the machining
processes discussed above, specially designed tools and techniques are
required. In next subsection, works related to optimization methods for
machining processes are discussed.

Optimization of Machining Process Parameters

In order to optimize the machining process parameters without having actual
knowledge of solid mechanics, exact mathematical models or data driven
models are practiced in past literature (Mukherjee and Ray 2006). These type
of optimization problems are classified as NP-Hard problems in the theory of
computer science as these problems could have many objectives and multiple
near optimal solutions in polynomial time (Woeginger 2003). Statistical and
soft computing based techniques are well suited for these type of problems
and primarily classified as regression based response surface techniques,
Taguchi’s method based GRA, ANN-based algorithms and evolutionary bio-
inspired methods etc. (Chandrasekaran et al. 2010).

Regression Based Technique
Regression-based methods successfully approximate the correlation among
variables and performance indicators related to production processes. With
the help of probability distribution function, it is possible to portray the varia-
tions of the design variables in close neighborhood of the state space for output
variables. Regression based modeling of machining processes, is a heavily
explored area (Srivastava and Garg 2017; Tosun and Ozlar 2002). Various DOE-
based approaches are considered while designing the input space such as
Taguchi’s method, RSM, factorial design, etc. (Armağan and Arici 2017;
Baligidad et al. 2018; Vellaiyan and Amirthagadeswaran 2016; Verma and
Sahu 2017). Tangjitsitcharoen, Thesniyom, and Ratanakuakangwan (2017)

APPLIED ARTIFICIAL INTELLIGENCE 955



proposed a multiple regression analysis model to estimate the surface quality for
the ball-end milling machining, which exploits the ratio of cutting forces.

García et al. (2018) portrays regression models to approximate physical
quality indicators in a tube extrusion process based on data collected
from a manufacturing company. This model utilized k nearest-neighbor
and support vector machine (SVM) regression technique, which accu-
rately estimates the internal and external diameter of an extruded tube.
Hadad (2015) demonstrates a predictive model for minimization of Ra
and grinding force based on a new semi-analytical regression model. Full-
factorial design is used as the DOE tool and regression equations were
obtained successfully using RSM. The major drawback of regression-
based techniques is, it is not suitable when non-linearity increases in
the considered machining process. If the number of process parameters,
is large and many objectives are considered, it is difficult to assume the
functional relationships among objectives and design variables before-
hand. Due to the limitations of DOE design space and increased costs
of running pre-defined sets of experiments, other approaches such as
GRA, evolutionary algorithms and deep learning techniques are preferred
over these.

Gray Relational Analysis (GRA)
To overcome the shortcomings of regression-based techniques various
other methods are considered in literature. DOE coupled GRA is one
such technique. DOE tools such as Taguchi’s method, Latin hypercube
sampling, Box–Behnken design, etc., are essential for optimization of
process parameters or experimental design variables, which holds the
practice under control with some trade-off between process variation and
product quality (Taguchi 1990). These approaches are being used in
selection of machining parameters heavily since past few decades. These
also reduce the number of experimental runs substantially. For that matter,
a quality loss function could be employed, which controls the digression
between the experimental and desired values of variables. This loss func-
tion is then converted into a signal-to-noise (S/N) ratio. These tools are
suitable for single response or single objective design. For multi-objective
design approach, the GRA has been developed, which has the ability to
exploit the DOE design space (Deng 1989) and approximate the degree of
the correlation between experimental runs using gray relational grade
(GRG) (Lin 2004). Steps of GRA are as follows:

Step1: The data are normalized to reduce inconsistency, which transforms
the data values to be restricted in the range {0, 1}. When the performance
objective is to be minimized, smaller-the-better (equation 1) rule is applied,
else larger-the-better (equation 2) rule is applied
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y�i xð Þ ¼ y0i xð Þmax � y0i xð Þ
y0i xð Þmax � y0i xð Þmin

(1)

y�i xð Þ ¼ y0i xð Þ � y0i xð Þmin

y0i xð Þmax � y0i xð Þmin
(2)

where i ∈ [1, m] and x ∈ [1, N], m is the number of experimental runs and
N is the number of response objectives. yi°(x)max and yi°(x)min are the
largest and smallest values of yi°(x), normalized data and y�i xð Þ is the
original data.

Step2: Compute gray relational coefficient (GRC) using the following
equation:

εi xð Þ ¼ δmin � ε� δmax

δ0i xð Þ � ε� δmax
(3)

where δ0i xð Þ ¼ y0i xð Þ � y�i xð Þ, δi°(x) is the deviation coefficient, yi°(x) is the nor-
malized data and y�i xð Þ is the original data.

Step3: Calculate GRG using the following equation:

γi ¼
1
N
�
XN
k¼1

εi xð Þ (4)

GRG depicts the overall quality index and the degree of correlation between
the normalized data and the original data. The values of GRG determine the
ranking of experimental runs and obtain optimal set of variables.

Step4: Calculate the analysis of variance to find out the sensitivity of the
variables to the design process at 95% confidence level and obtain the
response table. This includes ranks based on delta statistics, which compare
the relative magnitude of effects. The delta statistic shows the difference
between the largest and the smallest average for each variables. It finally
indicates the most sensitive variables to the design process.

Jeyapaul, Shahabudeen, and Krishnaiah (2005) and Ghan, Hashmi, and
Dhobe (2017) have presented exhaustive reviews on multi-response process
optimization based on Taguchi’s method. It is shown that the amount of
research works done on multi-response process optimizations are not many
till that time. Recently Deepanraj, Sivasubramanian, and Jayaraj (2017),
Angappan, Thangiah, and Subbarayan (2017), Wojciechowski el al. (2018),
Anand et al. (2018), and many other researchers are focusing on multi-
response process optimizations using Taguchi’s design coupled GRA
approaches, which are proved to be very efficient tools.

In this paper, this approach is adopted to find the optimal set of design
parameters for the industrial AWJM process optimization.
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ANN-based Deep Learning Algorithms
ANN is considered as a highly capable computing system that provides
a framework for various deep learning techniques to interact with each
other while processing big data. Training can be delivered to the system for
‘learning’ or acquiring knowledge based on previous experience about the
process. This ability of ANN is sufficient to ‘learn’ the nonlinearity of the
machining processes and interactions among the design variables and pro-
cess responses with precision. The simplest form of ANN consists of inter-
connections among an input layer of neurons that processes data or design
variables to the network and output layer of neurons that produces
responses, with one or more hidden layers in between for training. ANNs
are illustrated using their topology functions, weight vectors, and activation
functions among the hidden and output layer of neurons (Zurada 1992). In
every iteration or epoch of learning, the ANN could be trained with a subset
of data and validated with another subset of data while trying to minimize
the mean square error (MSE) calculated using target responses and obtained
responses. ANN is an ideal deep learning tool for predictive analysis or
functional approximation (Zhang, Patuwo, and Hu 1998). A large number
of ANN models have been developed since decades. Out of these, mostly
explored models are the multi-layer perceptron (MLP) and redial basis
function (RBF) for machining process modeling. The outputs obtained
from any network need not be the functions of the process variables. More
precisely, these are approximation toward target values. MLPs have sequence
of interconnected layers consisting of a number of neurons in each layer.
MLPs could be simple feed forward or cascading type. Sometimes MLPs use
back propagation (BP) training algorithm (these often known as BPNNs).
The RBF network consists of three layers: an input layer, a single hidden
layer with nonlinear processing neurons, and an output layer. During train-
ing process, ANNs adjust their weights to minimize the MSE between the
target and obtained outputs. ANNs are capable of handling complex non-
linear relationships among the process parameters and responses with higher
precision. As a computing tool, ANNs are quick and easy to model.

ANN-based techniques are being used in machining process modeling
since decades. Dagli (1994) has elaborated a comprehensive study on
ANN-based intelligent process designs. Yarlagadda (2000) has proposed
an ANN model to approximate the process parameters for the pressurized
die casting process. This is an alternative way to replace expensive, time
taking experimental approach to obtain the process parameters by exam-
ining a physical model of the pressurized die casting process. Recently,
Shakeri et al. (2016) portrayed a regression-based process model and
BPNN-based predictive model for wire electro-discharge machining
(WEDM) to obtain better Ra and MRR. Process variables considered are
pulse current, frequency of pulse, wire and servo speed. ANN-based
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method shows better performance. Arnaiz-González et al. (2016) demon-
strated the ball-end milling process models using MLP and RBF. RBF is
shown to obtain better predictive model than MLP achieving higher pre-
cision. Khorasani and Yazdi (2017) proposed a Ra monitoring system for
milling process considering following input variables, cutting speed, rate of
feed, cut depth, type of materials, and coolant fluid; and mechanical
vibrations, white noise, and Ra as process responses. Thereafter testing
and recall/verification procedures are utilized to achieve higher accuracy.
Pfrommer et al. (2018) developed a surrogate-based optimization model
and finite-element (FE) model for composite textile draping process. The
ANN-based surrogate model is used as a prediction tool of the shear angle
of textile elements. Xiang and Zhang (2016) depicted a prediction model
based on BPNN and support vector machine (SVM) for milling process
modeling, and proposed an optimization technique using SVM and
NSGA-II. D’Addona, Sharif Ullah and Matarazzo (2017) developed appli-
cations of ANN and DNA-based computing (DBC) to model tool-wear.
Tool-wear images are processed as data to train the ANN. The DBC can
distinguish the image similarity or dissimilar. Recent research trend shows
that the ANN-based methods are very popular and useful for predictive
modeling and being used heavily by the researchers. However, very few
studies are proposed on the development of predictive metamodels, or
surrogate models that can be used as a replacement of empirical or
mathematical functions for optimization.

Evolutionary and Bio-inspired Methods
In recent past, a number of review articles have appeared based on the
evolutionary and bio-inspired techniques applied in production or machin-
ing process optimization (Chandrasekaran et al. 2010; Mukherjee and Ray
2006; Yusup, Zain, and Hashim 2012). These are exclusively genetic algo-
rithms (GAs) (Cook, Ragsdale, and Major 2000; Dereli, Filiz, and Baykasoglu
2001; Sangwan and Kant 2017; Xiang and Zhang 2016; Zhou and Turng
2007), Tabu search (TS) (Kolahan and Liang 2000), simulated annealing (SA)
(Asokan, Saravanan, and Vijayakumar 2003; Chen et al. 2010), ant colony
optimization (ACO) (Kadirgama, Noor, and Alla 2010; Vijayakumar et al.
2003), PSO (Ciurana, Arias, and Ozel., 2009; Farahnakian et al. 2011; Zhou,
Ren, and Yao 2017), artificial bee’s colony (ABC) (Pawar, Vidhate, and
Khalkar 2018), etc. These techniques are proven methods and particularly
capable of attaining global best solutions within limited time frame.
Evolutionary algorithms or bio-inspired techniques coupled with ANN-
based approaches are substantially robust tools while achieving optimal
predictive process models. Nevertheless, these type of approaches are seldom
practiced for manufacturing process optimization except some (Farahnakian
et al. 2011).
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Hence, in this study, the multi-response machining process-based generic
predictive model is developed, which utilizes MLP network. It has the ability
to approximate outputs (performance indicators) from given inputs (process
variables). It also uses a PSO-based optimization technique to fine-tune the
obtained predictive model by minimizing the root mean square values
(RMSE) (the error between target values and obtained values). Finally, the
proposed optimal predictive model is analyzed based on three distinct cases,
out of which, two are collected from past literature to training and testing.
The third one is collected from industry, which is used for validation of the
proposed iterative predictive model and successfully compared with GRA.

Research Approach

In this study, the focus is put on the MLP. The MLP networks are suitable for
predictive modeling because of their natural ability of finding correlations
among random inputs and outputs (Arnaiz-González et al. 2016). The default
MLP architecture is also known as feedforward MLP ANN (FFNN) as
depicted in Figure 1(a). It has n input neurons, m hidden layers neurons,
and two output neurons.

The output equation of FFNN is

yi ¼ Zoa
i

Xm
j¼1

woa
ji � Zha

k

Xn
k¼1

wha
jk xk

 ! !
(5)

where Zoa
i is denoted as activation function for ith output yi,woa

ji is the weight from
jth hidden layer neuron to ith output node, Zk

ha is the activation function for jth

hidden layer neuron, wjk
ha is the weight from kth input to jth hidden layer neuron,

and xk is the k
th input signal. Furthermore, if some bias is added to input layer,

Equation (5) can be written as

(a) Feed Forward ANN (FFNN) (b) Cascade Forward ANN (CFNN)

Figure 1. MLP architecture.
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yi ¼ Zoa
i βi þ

Xm
j¼1

woa
ji � Zha

k βj þ
Xn
k¼1

wha
jk xk

 ! !
(6)

where βi is the weight from bias to the ith output layer neuron and βj is the weight
from bias to jth hidden layer neuron.

Another variant of MLP network is known as cascade forward MLP ANN
(CFNN) (Figure 1(b)), which has some additional direct connections among
inputs and outputs. Equations (5) and (6) for CFNN can be written as

yi ¼
Xn
k¼1

Zk
i � wk

j xk þ Zoa
i

Xm
j¼1

woa
ji � Zha

k

Xn
k¼1

wha
jk xk

 ! !
(7)

yi ¼
Xn
k¼1

Zk
i � wk

j xk þ Zoa
i βi þ

Xm
j¼1

woa
ji � Zha

k βj þ
Xn
k¼1

wha
jk xk

 ! !
(8)

where Zi
k is the activation function and wj

k is the weight from inputs to outputs.
The network weight in cascade forward network is approximated based on the
neurons in the input layer. In this study, both types of MLP networks are used to
obtain the predictive models.

Performance Metric

RMSE is used as the performance metric for the trained predictive models.
RMSE is an improved metric, which accurately measures regression errors
(Willmott 1981). If the model produces the output response y and the target
response is t, the RMSE score is calculated using Equation (9).

RMSE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

yi � tið Þ2
r

(9)

where i is the sample data point index. These obtained MLP-based predictive
models are further fine-tuned using PSO-based nature-inspired optimization
algorithm, which is demonstrated in the next subsection.

Particle Swarm Optimization (PSO)

Eberhart and Kennedy (1995) first proposed PSO, which is a nature-inspired
population based optimization technique. PSO mimics the behavior of bird
flocking. PSO starts with a population of randomly generated pattern based
solutions or particles (birds) and directs the searching of best solutions in the
region of picks or downs for optima with multiple iterations. In PSO, the
particles follow the best one in the swarm and fly through the problem space
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for convergence. Initially, the particles start flying across the solution space with
randomly generated individual position and velocity. Positions are evaluated by
the fitness function or objective function and objective values are stored. The
velocity and position are updated using the following expressions:

vti ¼ w� vt�1
i þ c1� Pbest � xt�1

i

� �þ c2� Gbest � xt�1
i

� �
(10)

xti ¼ xt�1
i þ vti (11)

In every iteration, each particle is updated by two optimal values: the first
one is the local best solution of the particle termed as Pbest and the other
one is the best value obtained so far by the whole swarm known as the
global best solution or Gbest. In this study, a novel PSO-based approach is
considered, which efficiently obtains optimal predictive model based on
MLP for machining process optimization. The proposed approach works
in the following mode,

Step 1. The MLP-based initial models with fixed number of hidden layer
neurons (number = 10) are trained using case data considered separately.
Learning rate is considered as 0.1, Error target goal is set as 0, and number of
epochs is set to 500. Machining process parameters are provided as inputs to
the models. 70% test data are used for training purposes. The process responses
are considered as outputs. Once the models are trained, remaining 30% data are
used for testing and validation. This 70–30 rule for training, testing and
validation is recommended by ANN researchers. The error between target
and obtained responses are computed using RMSE (Equation 9).

Step 2. The proposed MLP-based predictive models are used as input
solutions (particles) to the PSO. Initially an entire population of MLP-
based predictive models are generated and trained. For every solution
(MLP model), random velocity is generated. Each MLP-based model in
swarm is utilized for testing and validation and obtained RMSE scores are
stored against respective predictive models. Thereafter the model with lowest
RMSE is selected from the swarm and marked as local best (Pbest) and global
best solution (Gbest).

Step 3. In each iteration of the proposed PSO-based technique, the ANN
models are modified using Equations (10) and (11). The velocity associated
with each ANN model is updated using Equation (10). Thereafter the
modifications to the ANN models are done in MLP training function with
small change in the number of neurons in the hidden layers of the MLPs.
RMSE scores are updated according to the modifications in the networks and
the new smallest RMSE score is compared with previous Pbest. If the new
RMSE score is better than Pbest, the associated ANN model with new RMSE
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score is stored as Pbest. The Gbest is updated in the similar way after each
iteration. This update module is illustrated in the following pseudocode:

for h1 = 1: population_size
Velocity = networks (h1).velocity + c1*rand*(localbestrmse – networks

(h1).rmse) + c2*rand*(globalbestrmse – networks (h1).rmse);
if velocity holds negative value
net = cascadeforwardnet(5,’trainlm’);
net.trainParam.epochs = 500;
net.trainParam.goal = 0;
net.trainParam.lr = 0.1;
net.trainParam.showWindow = false;
[net, tr] = train(net,x’,t’);
y11 = net(xt’);
t1 = tt’;
e1 = t1-y11;
rmse_NN = sqrt(mse(e1));
networks (h1).network = net;
networks (h1).rmse = rmse_NN;

else
net = cascadeforwardnet(15,’trainlm’);
net.trainParam.epochs = 500;
net.trainParam.goal = 0;
net.trainParam.lr = 0.1;
net.trainParam.showWindow = false;
[net, tr] = train(net,x’,t’);
y11 = net(xt’);
t1 = tt’;
e1 = t1-y11;
rmse_NN = sqrt(mse(e1));
networks (h1).network = net;
networks(h1).rmse = rmse_NN;

end
if networks(h1).rmse ≤ localbestrmse
localbestrmse = networks(h1).rmse;
localbestnetwork = networks(h1).network;

end
end

Step 4. The algorithm stops once the maximum number of iterations is
reached. The final Gbest ANN model is the best ANN model selected with
lowest RMSE score.
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ANN Coupled PSO Pseudocode

(1) START
(2) Set values to maxIT = 50, w = 0.5, c1 = c2 = 0.25, Psize = 50,
(3) Initial solution is obtained as described in step 1 of subsection #3.2

and provided as an input to PSO
(4) The initial solution is the seed of the initial population called P of size

Psize
(5) Along with initial solution, its velocity v is also generated randomly
(6) Fitness value of initial solution is computed using equation (9)
(7) Set Gbest = Fitness (initial solution)
(8) Set BestIndiv = initial solution
(9) Generate initial population Pinit in the neighborhood of BestIndiv
(10) i = 0
(11) While (i ≠ Psize)
(12) i = i + 1
(13) Do

→ Fitness_Pinit(i) = Fitness (Pinit(i))
→ Pbest(i) = Pinit(i)
→ If Fitness (Pinit(i))< Gbest
→ Set BestIndiv = Pinit(i)

(14) Initialize fitnessVals array
(15) Set iter = 0
(16) While (iter ≠ maxIT)
(17) iter = iter+1
(18) Do

→ i = 0
→ While (i ≠ Psize)
→ i = i + 1
→ Do

⇒ fitnessVals(i) = Fitness (P(i))
⇒ if min(fitnessVals) < Gbest
⇒ set Gbest = min(fitnessVals)
⇒ set BestIndiv = ANN model x of min(fitnessVals)

→ i = 0
→ While (i ≠ Psize)
→ i = i + 1
→ Do

⇒ v(i) =w × v(i) + c1 ×w× (pbest(i) – P(i)) + c2 ×w× (BestIndiv – P(i))
⇒ update ANN model using step 3 in subsection #3.2

→ NewP = P
⇒ fitnessVals(i) = Fitness (NewP(i))
⇒ if min(fitnessVals) < Gbest
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⇒ set Gbest = min(fitnessVals)
⇒ set BestIndiv = ANN model x of min(fitnessVals)

(19) STOP with Gbest and BestIndiv as output

Results and Discussion

In this study, three different cases are considered for training, testing and
validation of the proposed predictive models: (1) CNC micro-milling opera-
tion on Al7075 material with ball nose end mill (Kuram and Ozcelik 2013),
(2) CNC drilling operation on CFRP composite (Krishnamoorthy et al.
2012), and (3) AWJM of commercial soda–lime–silica glass (experiments
carried out in industry). All the cases are briefly described in the next
subsections.

Micro-milling Operation

The experiments were carried out using a DECKEL MAHO DMU 60 PCNC
milling machine. Al7075 material is used (Vickers hard-ness of 139) as
a work piece material, which had a dimension of 15 × 10 × 20 mm3.

The chemical compositions of material are given as Li < 0.0002 wt%, Si
0.92 wt %, Mn 0.348 wt%, P < .001 wt%, Sr <0.0001 wt%, Cr 0.093 wt%, Ni
0.057 wt%, Na 0.003 wt%, Al 89.0 wt%, Cu 1.71 wt%, Co <0.001 wt%, Ti
0.048 wt%, Be 0.0003 wt%, V 0.009 wt%, Fe 0.55, Pb wt%, 0.018 wt%, Mg
2.00 wt%, B 0.0017 wt%, Sn 0.008 wt%, Zn 5.22wt%, Ag 0.0022 wt %, Bi
0.0018 wt%, Ca 0.0027 wt%, Cd 0.0031 wt%, and Zr 0.0078 wt%. Spindle
speed (SS) (5000–15000 rpm), feed per tooth (FPT) (0.5–1.5 µm/tooth) and
depth of cut (DC) (50–100 µm) were considered as design parameters and
tool wear (TW), cutting forces (Fx and Fy), and Ra were selected as process
responses. For experimental design, Taguchi’s L9 orthogonal array is chosen
and is displayed in Table 1.

Table 1. Input parameters and the performance characteristics for micro-milling (Kuram and
Ozcelik 2013).
SS FPT DC TW Fx Fy Ra

10000 0.5 50 5.41 1.33 0.71 0.33
10000 1.0 75 13.51 1.63 0.86 0.47
10000 1.5 100 16.22 2.02 1.02 0.71
11000 0.5 75 27.02 1.62 1.08 0.32
11000 1.0 100 32.43 2.03 1.49 0.59
11000 1.5 50 14.86 2.65 1.52 0.58
12000 0.5 100 45.95 2.10 1.36 0.27
12000 1.0 50 27.03 2.99 1.66 0.35
12000 1.5 75 32.43 3.55 1.81 0.58
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CNC Drilling Operation

The material used for experimentation is CFRP plates manufactured through
hand layup process using carbon fiber and resin. The properties are described
as follows: thickness of carbon fiber in the form of filaments is 0.050 mm,
tensile strength (GPa) – 3.5, tensile modulus (GPa) – 230, density (g/ccm) –
1.75, and specific strength (GPa) – 2.00. Properties of the material EPON
resin 8132 are described as follows: viscosity (poise) 5–7, weight per epoxide –
192–215, and density (lb/gal) – 9.2. The thickness of the plate is 3 mm and
the holes to be drilled were all of a uniform diameter of 6 mm. The drilling
tool used in experimentation was made of high-speed steel (HSS). The
process parameters used here are as follows: spindle speed (SS) (rpm),
point angle (PA) (°), and feed rate, (FR) (mm/min) chosen for this experi-
mentation. The following five performance characteristics are chosen: thrust
force (TF) (N), torque (Nm), entry-delamination factor (EnDF), exit-
delamination factor (ExDF) and eccentricity (Ecc) (mm). For experimental
design, Taguchi’s L27 orthogonal array is chosen and displayed in Table 2.

Abrasive Water Jet Machining (AWJM)

Soda–lime–silica glass is the most prevalent type of glass used for window-
panes, and glass containers for beverages, food, and some commodity items.

Table 2. Input parameters and the performance characteristics for CNC drilling (Krishnamoorthy
et al. 2012).
SS PA FR TF Torque EnDF ExDF Ecc

1000 100 100 99.69 0.73 1.3418 1.4378 0.0728
1000 100 300 165.2033 0.84 1.3759 1.6373 0.0619
1000 100 500 198.3633 1.12 1.4368 1.541 0.0609
1000 118 100 156.25 0.99 1.3921 1.2628 0.0517
1000 118 300 253.2933 1.34 1.44 1.4658 0.0431
1000 118 500 310.4667 1.37 1.5211 1.4137 0.0619
1000 135 100 155.4333 1.37 1.3398 1.1851 0.0437
1000 135 300 261.23 1.52 1.3587 1.3692 0.0302
1000 135 500 310.06 1.87 1.4756 1.2739 0.0251
2000 100 100 92.3667 0.48 1.39 1.4455 0.0623
2000 100 300 154.01 0.68 1.3439 1.51 0.0815
2000 100 500 192.8733 0.87 1.3817 1.3607 0.1113
2000 118 100 140.1767 0.57 1.4287 1.4 0.0652
2000 118 300 231.5233 0.92 1.43 1.4562 0.0821
2000 118 500 271.81 0.93 1.4474 1.3794 0.0799
2000 135 100 150.7533 0.64 1.4021 1.3296 0.0671
2000 135 300 234.78 0.94 1.3798 1.3585 0.0655
2000 135 500 299.1833 0.95 1.411 1.45 0.0671
3000 100 100 84.23 0.39 1.4287 1.41 0.0156
3000 100 300 152.3867 0.47 1.3974 1.3807 0.0322
3000 100 500 165.8133 0.6 1.36 1.1688 0.0588
3000 118 100 130.6167 0.4 1.4347 1.3534 0.0308
3000 118 300 191.8567 0.54 1.4098 1.51 0.0342
3000 118 500 270.3867 0.7 1.4224 1.4 0.0411
3000 135 100 143.6367 0.48 1.4601 1.44 0.0448
3000 135 300 226.0333 0.55 1.4264 1.51 0.0601
3000 135 500 283 0.78 1.4018 1.4774 0.077
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Glass bake ware is often made of tempered soda lime glass. Soda lime glass
accounts for about 90% of manufactured glass. Soda lime glass is relatively
inexpensive, chemically stable, reasonably hard, and extremely workable.
Since it is capable of being re-softened and re-melted numerous times, it is
ideal for glass recycling. Soda–lime glass is prepared by melting the raw
material, such as sodium carbonate (soda), lime, dolomite, silicon dioxide
(silica), aluminum oxide (alumina) and small quantities of fining agents (e.g.,
sodium sulfate, sodium chloride) in a glass furnace at temperature locally up
to 1650°C.

The temperature is only limited by the quality of the furnace superstruc-
ture material and by the glass composition. In this study, the experiments are
carried out in industrial set up with AWJM Nanojet . A 60-HP pump was
used to generate the required water pressure. The machining process was
numerically controlled by Siemens controller (802D SL), garnet sand have
been used as abrasive materials. In these experiments, AS, AC, FR, and SOD
are considered as input process parameters. The Ra was measured by a non-
contact profiler (Contour GT-I). The main performance indicators consid-
ered are MRR, top kerf width (TKW), bottom kerf width (BKW), and Ra. For
experimental design, Taguchi’s L9 orthogonal array is selected and is dis-
played in Table 3.

Computational Experimentations

To analyze the proposed MLP-based PSO approach, abovementioned cases
are considered. The proposed algorithm is programmed in MATLAB R2018a
on Intel 8650U @1.90 GHz laptop. PSO parameters are set with the following
values: maxIT = 50; Psize = 20; c1 = 0.15; c2 = 0.25; w = 0.5. Since two types of
ANN models are used based on FFNN and CFNN, the results obtained are
compared with each other and the best predictive model is elected. The
results obtained using CFNN are shown to outperform the FFNN. Due to
the NP-Hardn nature of the problem, attaining solution is not an easy task.
Therefore, computational time is an important factor in this research.
Computing time increases drastically with the size of population and number

Table 3. Input parameters and the performance characteristics for AWJM.
AS SOD AC FR MRR TKW BKW Ra

100 2 120 80 2.09 1.94 0.89 9.11
100 5 180 120 2.29 1.81 0.85 9.42
100 8 240 160 2.35 1.79 0.85 9.48
150 2 180 160 1.54 1.69 0.76 9.86
150 5 240 80 2.11 1.95 0.90 9.09
150 8 120 120 2.19 1.91 0.86 9.54
200 2 240 120 1.52 1.89 0.79 9.54
200 5 120 160 1.75 1.77 0.80 10.05
200 8 180 80 1.95 2.05 0.90 9.17
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of iterations in PSO. Figure (2a,2b) demonstrates that computing time is
exponentially related to the size of population and has some interesting
relation with iteration numbers.

The complexity of the predictive models could increase with the number
of design variables and responses of the machining processes. Table 4 pre-
sents the comparison among two predictive models and reveals that the
CFNN-PSO is an improved model on the basis of RMSE scores. Based on
computing time both the models exploit more or less equal time. It is hard to
point out the fastest one.

Both the predictive models follow strict convergence properties as por-
trayed in Figure 3. Convergence plots also confirm that the CFNN-PSO
model performed better than FFNN-PSO.

Therefore, the most near optimal ANN model, which is obtained using
CFNN-PSO, is used further to obtain the optimal sets of parameters and
responses for the considered cases. Fitted curves obtained using the CFNN
model are portrayed in Figure 4–6 for each of the case studies. These curves
visually portray the approximation capability of CFNN-PSO model. The new
experimental design space is obtained using random function and predefined
range for the process parameters.

For micro milling, the optimal published result is experimental run# 1 in
Table 1. In this study, the most promising solutions, obtained using CFNN-PSO
are as follows: (1) SS = 9373.596, FPT = 1.219, DC = 57.163, TW = 4.040,
Fx = 2.799, Fy = 1.723, Ra = 0.198 and (2) SS = 11257.000, FPT = 0.153,
DC = 86.430, TW = 4.494, Fx = 2.047, Fy = 1.863, and Ra = 0.181.

(a) (b)

Figure 2. Computational time curve with respect to PSO parameters (CNC drilling example).

Table 4. Comparison between ANN models.
Cases RMSE Computing time (s)

CFNN-PSO FFNN-PSO CFNN-PSO FFNN-PSO

Micro-Milling Operation 0.4386 0.5622 106.09 94.97
CNC drilling Operation 3.9946 4.3849 86.47 94.49
AWJM Operation 0.0627 0.1271 71.74 81.01

968 T. GHOSH AND K. MARTINSEN



For CNC drilling, the optimal published result is experimental run# 19 in
Table 2. In this study, the most promising solutions, obtained using CFNN-
PSO are as follows: (1) SS = 3834.203892, PA = 144.4841355, FR = 549.88
07477, TF = 314.5818615, Torque = 0.092778617, EnDF = 1.376816667,
ExDF = 1.55836835, Ecc = 0.003916968 and (2) SS = 1663.575273, PA = 141.83
24067, FR = 118.9348359, TF = 163.5448858, Torque = 0.88063403,
EnDF = 1.452188722, ExDF = 1.228260178, and Ecc = 0.010853929.

These results reflect that the CFNN-PSO has the ability to attain better
solutions than the published one. This predictive model is used further to
obtain optimal solutions for AWJM process and compared with the results
obtained using GRA method. Factors (process parameters) and levels

Figure 3. Convergence curves obtained for all the data.

Figure 4. Curve fitting for micro-milling data.
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(values) for AWJM are portrayed in Table 5, where A = size of abrasive (AS),
B = stand-off distance (SOD), C = abrasive concentration (AC), and D = feed
rate (FR). L9 orthogonal array is chosen to apply Taguchi’s design. DOE and
responses are portrayed in Table 3.

Using Equations (1)–(4), the GRA is performed on Ra, MRR, TKW, and
BKW. Then GRC andGRG values are obtained for the trial runs for AWJM. The
results are depicted in Table 6. The GRG response table (Table 7) portrays the

Figure 5. Curve fitting for CNC drilling data.

Figure 6. Curve fitting for AWJM data.
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mean of each response characteristic for each level of the parameters. It also
depicts delta statistical analysis while comparing the relative importance of
outcomes. It portrays the difference between the largest and the smallest
means of the parameters. Ranks are allotted based on the obtained delta values.
Using the level means in the response table, optimal set of levels of the para-
meters could be selected for optimal performance of AWJM.

According to Table 7, AS has the greatest importance and FR is the next most
significant parameter, followed by AC and SOD. Themain effect plot of Figure 7
shows that the optimal set of parameters are as follows: AS = 100, SOD = 2,
AC = 180, and SOD = 160 (λ is prefixed to 0.5), respectively. Therefore, the
optimal values of responses would be Ra = 9.728, MRR = 1.6796, TKW= 1.7372,
and BKW = 0.7731. The proposed CFNN-PSO predictive model obtains at least
two solutions that are better than the result produced by GRA for at least three
objectives. Confirmatory tests were carried out based on the obtained results and
the results are as follows: (1) AS = 127.5329695, SOD = 7.151323334,
AC = 235.9500566, FR = 68.0973149, Ra = 9.090608246, MRR = 2.111026969,
TKW = 1.950732338, BKW = 0.895640667 and (2) AS = 120.0688976,
SOD = 7.802102857, AC = 235.5413261, FR = 58.7592643, Ra = 9.089430108,
MRR = 2.110525813, TKW = 1.951125582, BKW = 0.895787245. Results
obtained by CFNN-PSO have better Ra and MRR scores, which is desirable
and this completes the validation of the proposed CFNN-PSO predictive model
for parameter optimizations of machining processes.

Conclusions

This paper demonstrates an efficient iterative predictive modeling approach
based on PSO and ANN, which has the ability to train itself with a small
amount of experimental data obtained from machining process on shop floor.
An effective PSO-based algorithm is also introduced, which is capable of
optimizing the ANN models further while minimizing the RMSE score for
the ANN models. This hybrid approach obtains a well-trained CFNN-PSO
predictive model with very low RMSE score dedicated to the associated machin-
ing process. To verify the performance of the CFNN-PSO, three multi-response
cases are portrayed. Out of these, two are collected from past literature based on
micro-milling and CNC drilling processes. Training and validation of the

Table 5. Parameters and their levels for L9 design.
Symbols Abbreviation Units Level 1 Level 2 Level 3

A AS Grit 100 150 200
B SOD mm 2 5 8
C AC gram 120 180 240
D FR mm/min 80 120 160
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proposed CFNN-PSO model prove that the model is capable of obtaining better
results than the published one. Thereafter, the third case based on AWJM
cutting of glass materials is collected from industry and the CFNN-PSO pre-
dictive model is tested on it. The results obtained are compared with the results
obtained using GRA method. It is shown that the proposed CFNN-PSO
technique could achieve at least two solutions, which are better than the GRA
result for at least three objectives. This CFNN-PSO predictive model could be
further extended as an objective function for many-objective optimization
techniques such as NSGA III or MOEA/D in future.
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Table 7. Response table for means of GRG.
Level AS SOD AC FR

1 0.6227 0.5881 0.5422 0.5641
2 0.6013 0.5772 0.604 0.5485
3 0.5058 0.5645 0.5837 0.6172
Delta 0.1169 0.0237 0.0618 0.0687
Rank 1 4 3 2

Figure 7. GRG Main effect plot for the parameters of AWJM.
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