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A Pheromonal Artificial Bee Colony (pABC) Algorithm for
Discrete Optimization Problems
Dursun Ekmekci

Engineering Faculty, Computer Engineering Department, Karabuk University, Karabuk, Turkey

ABSTRACT
The Artificial Bee Colony (ABC) algorithm, which simulates the
intelligent foraging behavior of the honeybee colony, is one of
the most preferred swarm intelligence-based metaheuristic
methods for combinatorial optimization problems. In this study,
the local search ability of the ABC algorithm, which can be spread
to different regions of the solution space, is developed with the
pheromone approach of ant colony optimization (ACO). The
effects of the method, named pheromonal ABC (pABC), to the
standard ABC and its competitiveness with other metaheuristic
methods was presented with testing with popular benchmark
problems in the NP-hard problem class. For 40 different bench-
mark problems, while 15 results with ABC have reached the most
successful results were obtained in the literature, 25 results
obtained with pABC have reached to literature. While ABC best
results were behind literature with a percentage of up to 1.12%,
pABC best results were behind the percentage of up to 0.63%

Introduction

Optimization in terms of artificial intelligence can be interpreted, the process of
finding the optimum solution, that meets the desired constraints, of a problem.
Optimization problems are generally complex problems that require long com-
putation time. Metaheuristic algorithms have been developed to obtain valid
solutions for such problems in the NP-Hard class in a reasonable time. These
methods which are frequently preferred for combinatorial optimization pro-
blems, because they can make evolutionary calculations, often imitate the beha-
vior of living beings in natural life (Karaboga and Gorkemli 2014). Ant colony
optimization (ACO) (Dorigo, Maniezzo, and Colorni 1991) that imitates the
foraging behavior of ant colonies, firefly algorithm (FA) (Yang 2013) that devel-
oped by addressing brightness sensitive social behavior of fireflies, particle swarm
optimization (PSO) (Kennedy and Eberhart 1995) that imitates the social beha-
vior of birds swarm and fish swarm, cuckoo search algorithm (CSA) (Yang and
Deb 2014) based on the nature of cuckoo parasitism of cuckoo, and artificial bee
colony (ABC) algorithm developed by Karaboga, (Karaboga 2005) that imitates
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the foraging behavior of honey bees, are some of them. Many hybrid methods
have been developed by using a combination of emphasizing features of these
optimization algorithms (Kiran et al. 2012) (Tuba and Bacanin 2014) (Rizk-Allah,
Zaki, and El-Sawy 2013).

The ABC algorithm is a swarm-intelligence-based algorithm that can generate
acceptable solutions for many different types of optimization problems
(Karaboga et al. 2014), and compete with other population-based metaheuristic
methods in numerical comparison with few algorithm parameters (Karaboga
and Basturk 2007) (Karaboga and Akay 2009). The researchers have successfully
implemented the ABC algorithm in numerous applications, numerical function
optimization, scheduling problems, clustering, program generation (Li and
Yang 2016). The algorithm used for modeling and optimization of process
parameters of wire electrical discharge machining (Rao and Pawar 2009).
Researchers also applied ABC algorithm to neural network training (Karaboga
and Akay Bilgisayar 2007) and ANFIS training (Karaboga and Kaya 2016).

Studies to improve the performance of the ABC algorithm are still in
today. Especially, the studies focus on improving control parameters
(Karaboga and Gorkemli 2012) and creating new hybrid metaheuristic meth-
ods. Rosenbrock ABC was developed by combining ABC with Rosenbrock’s
rotational direction method (Kang, Li, and Ma 2011). In another study, ABC
was improved with the Gaussian distribution (Dos Santos Coelho and Alotto
2011). In some of the studies, to improve the ability of ABC, the algorithm
was hybridized with particle swarm optimization (Qiu et al. 2013), with
differential evolution (Rubio-Largo et al. 2012), with simulated annealing
(Chen, Sarosh, and Dong 2012), with firefly algorithm (Tuba and Bacanin
2014), with monarch butterfly optimization (Ghanem and Jantan 2018), and
local search algorithms (Fister et al. 2012).

In this study, a hybrid solution model developed for optimization pro-
blems, by combining the ABC algorithm with ACO, is introduced, and its
usage for discrete problems is presented. The ability of the ABC algorithm,
which can be spread to different regions of the solution space, in local search
is strengthened by the pheromone approach, which analyzes the correlation
between the solution elements. The method, called pheromonal ABC (shortly
pABC), differs from standard ABC, in terms of the concept of ‘food’ and
foraging behavior of onlookers. Food consists of pollen collected from
different types of flowers. Employed bees diffuse pheromone between flowers
while collecting pollen. Onlooker bees consider the amount of pheromone
while they choose the flowers to go toward. Proposed method was tested on
the capacitied vehicle routing problem one of the most popular combinator-
ial problems in the discrete structure NP-hard class. The results of ABC and
pABC were compared with each other in detail and their best results com-
pared with the best results of the literature obtained to date.
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Standard ABC Algorithm

In the standard ABC, the bee colony consists of three groups of honeybees: scout
bees, employed bees, and onlooker bees. In the concept of the algorithm, half of the
colony consists of employed bees and the other half consists of onlooker bees. For
each food source, only one employed bee is assigned. (Karaboga and Akay
Bilgisayar 0000). Therefore, the number of food sources is equal to the number
of employed bees and the number of onlooker bees. In other words, the colony size
is twice the number of sources. The basic steps of the algorithmcan be summarized
as follows:
Initialization phase
Repeat

Employed bees phase
Onlooker bees phase
Scout bees phase
Memorized the best solution achieved so far

Until (requirements are met)
In the first step of the algorithm, the initial food sources around the hive

are defined. Then in each cycle; employed bees and onlooker bees try to find
better quality food sources about initial food sources. When the food source
whose nectar was exhausted, has been abandoned, scout bees seek new
sources. In the context of the algorithm, food sources correspond to the
possible solutions of the problem whose optimal solution is investigated. The
success of the respective solution is represented by the quality of the food
source. Scout bees select the food source to be directed, according to the
roulette wheel (Razali and Geraghty 2011). The scout bees seek a random
food source, independent of the employed and onlooker bees. Within the
scope of ABC, if any solution cannot be developed after “limit” number of
attempts, a random solution is derived instead.

Initialization Phase

In the algorithm that starts with scout bees’ random foraging in nature, the
food sources are randomly placed, as shown in (1).

sm;i ¼ li þ rand 0; 1ð Þ � li � uið Þ (1)

In Equation (1), S is the set of solutions and sm;i is the value of dimension i of
solution m. m represents the lower bound and ui represents the upper bound of
the solution.

After the initial solutions are created, the f sð Þ value of each solution is
calculated according to the objective function of the problem.
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Employed Bees Phase

Employed bees try to find the best quality food source in the area by
examining other neighbor sources of the food source they were directed to.
The new food source found is expressed by Equation (2).

tm;i ¼ sm;i þ ϕm;i sm;i � sr;i
� �

(2)

In Equation (2), sr is a randomly selected solution, i is a randomly selected
dimension and ϕm;i is a randomly selected coefficient in the range [−1, 1].

The fitness value of the new solution is calculated and compared with the
fitness value of the old solution; the more successful solution is preferred.
fit smð Þ (fitness value of solution sm) is determined by the Equation (3) using
f smð Þ value calculated according to the objective function of the problem.

fit smð Þ ¼ 1= 1þf ðsmÞð Þ
1= 1þabsðsmÞð Þ

n if ðf ðsmÞÞ�0

if ðf ðsmÞÞ< 0
(3)

Onlooker Bees Phase

After each employed bee returns to the hive, she describes the position of the
food source she has found, to the onlooker bees in the hive. Each onlooker
bee following all employed bees prefers the food source she will head toward
according to their nectar quality.

In the ABC algorithm, the selecting probability of each solution is calcu-
lated based on the fitness values of the solutions. Accordingly, rm the prob-
ability of selecting the solution sm, is calculated by Equation (4).

rm ¼ fit smð ÞPSN
m¼1 fit smð Þ (4)

Once onlooker bees have selected the food source they will head toward, just
like the employed bees, they will control the new food sources about the
source they go to and they will head toward higher quality one. In the
onlooker bees phase, deriving a new solution using the existing solution is
expressed by Equation (2). The fitness value of the new solution is calculated
by Equation (3) and a more successful solution is preferred by comparing it
to the existing solution.

Scout Bees Phase

The nutrients in each food source will decrease over time and will become
insufficient after a while. In such a process, the employed and the onlooker bee
visiting the food source and the neighborhood of it turns into a scout bee when she
cannot find the nutrients she needs and turns to the search for different food
sources in nature.
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In the ABC algorithm, in each cycle, existing solutions that fail to produce
better solutions are considered unsuccessful. The solutions whose failure counter
reaches the limit are abandoned and instead of them, new solutions are randomly
generated with equation (1). Owing to this step, the algorithm can overcome the
local optimal solution.

Proposed Method: pABC Algorithm

The pABC algorithm is a hybrid metaheuristic method developed by combining
the ABC algorithm with the pheromone approach of ACO to strengthen ABC’s
success in local search. In the context of pABC, honeybees try to collect the best
quality food. “Food” consists of pollen collected from different flowers. In other
words, each part of the solution is defined as “flower”. Employed bees obtain food
by collecting pollen from the flowers and diffuse pheromones between the flowers
in this process. Onlooker bees choose the flowers to head toward, considering the
amount of pheromone. The general structure of pABC is designed as follows:
Initialization phase
Repeat

Employed bees phase
Updating pheromone values

Onlooker bees phase
Scout bees phase

Memorized the best solution achieved so far
Until (requirements are met)

In the initialization phase, first, the amount of pheromone between flowers is
set. The initial pheromone level between any two flowers is set to be a small
positive constant (Dorigo and Di Caro 1999). Other operations in the initializa-
tion phase, employed bees phase, and scout bees phase are similar to standard
ABC. The flowchart of the pABC algorithm is shown in Figure 1.

Updating Pheromone Values

After each employed bee returns to the hive, the pheromone trail between all
flowers is updated. Pheromone values are updated in two ways. These are
local pheromone update and global pheromone update. Equation (5) is used
for local pheromone update.

τ i; jð Þ ¼ 1� ρð Þτ i; jð Þ þ
XS
k¼1

Δτ i; jð Þ (5)

In local pheromone update, first, the pheromones are evaporated in the specified
proportions. In equation (5), ρ 0 � ρ � 1ð Þ determined as the evaporation coeffi-
cient is used for reducing the amount of pheromone. Then, the pheromone trails
diffused by employed bees between the flowers during pollen collection are
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Figure 1. Flowchart of pABC algorithm.
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increased. In equation (5), k represents the employed bee and S represents the
number of solutions, and the increase of pheromone value between flowers is
related to the quality of the food source found by employed bee k. The increase of
pheromone value between flowers is shown in (6).

Δ τ i; jð Þ ¼
1

f skð Þ
0

�
if i; jð Þ 2 tour done by employed bee kð Þ

otherwise
(6)

In equation (6), f skð Þ is the solution cost of k.
In the global pheromone update, the pheromone value among the flowers

visited by the employed bee, who finds the best quality food in the current step, is
increased. In the global pheromone update, the operations in Equations (5) and
(6) are repeated only for the employed bee who finds the most successful solution.

Onlooker Bees Phase in pABC

For an onlooker bee visited i number flowers, there are two alternative situations
when choosing the next flower (j) to go to. In the first alternative, the flower with
the maximum pheromone value and has not visited yet is selected. The like-
lihood of choosing this way is represented by q0 (0≤ q0 ≤ 1) in (7).

j ¼ maxu2V τ i; uð Þ½ �α � η i; uð Þ½ �β
n o

if q � q0 (7)

In Equation (7): q is a randomly selected value between [0,1]. u represents the
alternative flower that can be visited and δ i; uð Þ represents the distance (cost)
between flower i and flower u. In this context, the “closeness value” is
calculated with η i; uð Þ ¼ 1=δ i; uð Þ. α and β are heuristic parameters that
determine the importance of the existing pheromone and the distance.

In the second alternative (q> q0) for the next flower selection, the selection is
made based on the probability distribution calculated considering pheromone
values. Selection is made randomly depending on the amount of pheromone. The
probability of selecting the flower to be determined is calculated by Equation (8).

pi;j ¼
τ i;uð Þ½ �α� η i;uð Þ½ �βP
u2V τ i;uð Þ½ �α� η i;uð Þ½ �β if j 2 Fð Þ

0 otherwise

(
(8)

When each onlooker bee returns to the hive, the food she brings to the hive is
controlled with other existing food and “the food most similar to the food
brought” is determined. Comparing the quality of both foods, the higher quality
is preferred. In other words, each derived new solution is controlled to existing
solutions to determine “the current solution that most similar to the derived
solution”. Costs of the two solutions are compared with each other and the one
has a lower cost is preferred. This process is repeated for all onlooker bees.

New solutions obtained in the initialize solution, employed bees, onlooker
bees, and scout bees phases, are controlled by the validity check function
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given in Figure 2. The solution routes are completed or redesigned according
to the suitability response from this function. This function can also calculate
the status of the carried load according to the vehicle capacity after the load
update on each node, and the total cost of the route.

Computational Study

The developed algorithm pABC is coded in the C# programming language at
.NET platform. The prepared application ran on a computer having i7-
4710MQ 2.50 processor, 8 GB of RAM, and Windows 7 operating system.
The application has been tested on 40 different benchmark problems that
have complex, wide and fluctuating search space, designed for capacitied
vehicle routing problems as discrete optimization problems.

Figure 2. Algorithm for fitness control and cost calculation of the generated solution.
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Parameter Settings

When creating the parameter set, ACO parameters were designed as the values
which ACO has the most successful results in capacitied vehicle routing pro-
blems (Sayyah, Larki, and Yousefikhoshbakht 2016). Accordingly, in all trials;
α = 1, β = 1, ρ = 0.5 and q0 = 0.9 were used. For the control parameters of ABC,
values were set as in standard ABC.

Capacitied Vehicle Routing Problems

The basic approach in capacitied vehicle routing problems is that all materials to
be delivered to nodes are distributed from a depot and all materials to be collected
from nodes are also collected in the depot (Baker and Ayechew 2003). Vehicle
routing problem with simultaneous pickup and delivery (VRPSPD) is one of the
most popular examples of capacited vehicle routing problems, and it is a closed
graphmodelG ¼ V; Eð Þ as a general acceptance. In this graph,V ¼ 0; 1; ::::; nf g
is the set of nodes that depot is represented by node 0 and the customers to be
visited are expressed in other numbers. E ¼ i; jð Þ : i; j 2 Vf g is a set of edges and
the cost (distance) of each edge is about cij. All vehicles in the vehicle fleet have
a homogeneous capacity (Q) and can be used in any number of vehicles for
transportation. Each node (i 2 V) can be only visited by one vehicle and only
once. In the visited node, the load di is delivered, while the demand value pi is
collected from that node. Since the solution space of VRPSPD expands exponen-
tially with the number of nodes, the problem is included in the NP-hard problems
class (Zachariadis, Tarantilis, and Kiranoudis 2009).

Benchmarks

Many researchers who developed solutions for discrete optimization pro-
blems considered Dethloff benchmarks (Dethloff 2001) as important and
tested the methods they developed on these samples (Baker and Ayechew
2003). Algorithms that can produce successful solutions for Dethloff samples
have also been successful in larger volume benchmarks (Yousefikhoshbakht,
Didehvar, and Rahmati 2014). Dethloff benchmark problems consist of 40
different samples, each with a warehouse center and 50 nodes to visit (Ai and
Kachitvichyanukul 2009). The vehicles starting the route from the warehouse
center, return to the same center and complete their route. These benchmark
problems are divided into four groups as CON3, CON8, SCA3, and SCA8.
They are due to the differences in pickup/delivery demands, distances
between the nodes, and vehicle capacities, they have solution spaces in
different characters. In the SCA samples, all the customer nodes are ran-
domly distributed over an area of [100x100]. In CON samples, half of the
customers are distributed randomly in the [100x100] area, while the other
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half is randomly distributed in the [(100/3) x (200/3)] area. While the
amount of load to be delivered to each customer is determined randomly
between [0–100], the amount of load to be picked up is calculated as
pi ¼ di � 0:5þ rið Þ. In the formula, ri is a randomly derived value of [0–1].
Vehicle capacity in each sample was determined by Equation (9).

Q ¼
XM
i¼1

di=μ (9)

The value of µ, which is used to determine vehicle capacity, is set to 3 for
SCA3 and CON3 samples, and 8 for SCA8 and CON8 samples.

Studies in Literature and Results

In the literature, many methods developed for combinatorial optimization
problems have been tested on Dethloff benchmark problems. Some of these
methods and the hardware specifications of the machine in which they ran
are listed in Table 1. The best results obtained from the algorithms shown in
Table 1 taken from (Goksal, Karaoglan, and Altiparmak 2013).

Computational Results

In all 40 benchmark problems, pABC was able to achieve more successful solu-
tions with less iteration than ABC. For example, in the SCA3-1 problem which
ABC and pABC reached the most successful result in the literature, ABC reached
the result in 6981 iterations but pABC reached this result in 434 iterations. The
results of these two algorithms in the first 1000 iterations are shown in Figure 3.

Table 1. Methods tested on Dethloff benchmarks and the machine equipment to which they are
applied.
Algorithm Computer

LNS (Large Neighborhood Search) (Ropke and Pisinger 2006) Intel Pentium IV 1.5 GHz
ACS (Ant Colony System) (Gajpal and Abad 2009) Intel Xeon 2.4 GHz
PILS (Parallel Iterative Local Search) (Subramanian et al. 2010) Intel Pentium IV 2.4 GHz
AMM (Adaptive Memory Methodology) (Goksal, Karaoglan, and
Altiparmak 2013)

Intel Xeon 2.66 GHz

h_PSO (hybrid Particle Swarm Optimization) (Goksal, Karaoglan, and
Altiparmak 2013)

Intel Xeon 3.16 GHz and 1 GB
RAM

MTSEAS (Modified Tabu Search and Elite Ant System)
(Yousefikhoshbakht, Didehvar, and Rahmati 2014)

Intel Pentium IV 2.4 GHZ and 2
GB RAM

ACSEVNS (Ant Colony System Empowered Variable Neighborhood
Search) (Kalayci and Kaya 2016)

Intel Xeon E5-2650 2.0 GHz and
32 GB RAM

ALS (Adaptive Local Search) (Avci and Topaloglu 2015) Intel Pentium IV 3.00 GHz
MILP (Mixed-Integer Linear Programming) (Rieck and Zimmermann
2013)

Intel 6-core processor, 3.46 GHz,
24 GB RAM

MN_GLS (Multiple Neighborhood Guided Local Search) (Zhu, Feng,
and Li 2017)

Intel Core i3-4150 3.5 GHz and 4
GB RAM

EACO (Effective Ant Colony Optimization) (Sayyah, Larki, and
Yousefikhoshbakht 2016)

Intel Pentium IV 3500 MHz; Core
i3 and 8 GB RAM
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Table 2 presents the average values (AVG) and standard deviation (SD)
obtained by ABC and pABC in each problem solution, the CPU time spent for
the best result, and the average CPU time spent for each problem solution. When
these data are analyzed, it is seen that the pABC resolution time is 8 minutes
longer than standard ABC, but it has reached more successful results in all the
problems. When the average results (pABC≈766,21 ABC≈785,19) and standard
deviation values (pABC≈6,99 ABC≈13,10) of the solutions obtained by ABC and
pABC are examined, it is seen that pABC can produce more successful solutions
with a more stable approach. When the most successful results are compared;
pABC results are up to 1.09% and 0.32% more successful than ABC results.

In Table 2, the best results of the algorithms developed for combinatorial
optimization problems in CON and SCA problems are also compared with
the best results obtained with standard ABC and pABC. Referring to Table 2,
it can be said that the standard ABC and pABC algorithms are much more
successful than Dethloff and can produce solutions close to the results
obtained in the literature until recently. For 40 different benchmark pro-
blems, while 15 results with ABC have reached the most successful results
were obtained in the literature, 25 results obtained with pABC have reached
to literature. While ABC best results were behind literature with a percentage
of up to 1.12%, pABC best results were behind the percentage of up to 0.63%.

Conclusion

In this study, a novel algorithm (pABC) that was developed by combining ABC
with the ACO is introduced. The ability of the ABC algorithm in local search is
consolidated by ACO’s pheromone approach. The introducedmethod is tested

Figure 3. The results of ABC and pABC algorithms in the first 1000 iterations for SCA3-1 solution.
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on discrete optimization problems and the results are compared with the best
results obtained in the literature. When the results are examined, it can be said
that the standard ABC and pABC can produce valid solutions for combinator-
ial optimization problems. Besides, it has been observed that pABC can be
spread to solution space as much as ABC and with its ability in local search, it
can produce more successful and more stable solutions.

In the next study, pABC will be designed for continuous optimization
problems and its performance will examine in detail by testing on benchmark
functions prepared for numerical optimization problems.

ORCID

Dursun Ekmekci http://orcid.org/0000-0002-9830-7793

References

Ai, T. J., and V. Kachitvichyanukul. 2009. A particle swarm optimization for the vehicle
routing problem with simultaneous pickup and delivery. Computers & Operations Research
36 (5):1693–702. doi:10.1016/j.cor.2008.04.003.

Avci, M., and S. Topaloglu. 2015. An adaptive local search algorithm for vehicle routing
problem with simultaneous and mixed pickups and deliveries. Computers & Industrial
Engineering 83:15–29. doi:10.1016/j.cie.2015.02.002.

Baker, B. M., and M. A. Ayechew. 2003. A genetic algorithm for the vehicle routing problem.
Computers & Operations Research 30 (5):787–800. doi:10.1016/S0305-0548(02)00051-5.

Chen, S. M., A. Sarosh, and Y. F. Dong. 2012. Simulated annealing based artificial bee colony
algorithm for global numerical optimization. Applied Mathematics and Computation 219
(8):3575–89.

Dethloff, J. 2001. Vehicle routing and reverse logistics: The vehicle routing problem with
simultaneous delivery and pick-up. OR Spektrum 23 (1):79–96. doi:10.1007/PL00013346.

Dorigo, M., and G. Di Caro. 1999. Ant colony optimization: a new meta-heuristic. Proceedings of
the IEEE 1999 Congress on Evolutionary Computation(Cat. No. 99TH8406) 2:1470–77.

Dorigo, M., V. Maniezzo, and A. Colorni. 1991. Positive feedback as a search strategy.
Dos Santos Coelho, L., and P. Alotto. 2011. Gaussian artificial bee colony algorithm approach

applied to Loney’s solenoid benchmark problem. IEEE Transactions on Magnetics 47
(5):1326–29. doi:10.1109/TMAG.20.

Fister, I., I. Fister, J. Brest, and V. Žumer. 2012. Memetic artificial bee colony algorithm for
large-scale global optimization. IEEE Congress on Evolutionary Computation, CEC 2012 10–15.
doi:10.1109/CEC.2012.6252938.

Gajpal, Y., and P. Abad. 2009. An ant colony system (ACS) for vehicle routing problem with
simultaneous delivery and pickup. Computers & Operations Research 36 (12):3215–23.
doi:10.1016/j.cor.2009.02.017.

Ghanem, W. A. H. M., and A. Jantan. 2018. Hybridizing artificial bee colony with monarch
butterfly optimization for numerical optimization problems. Neural Computing and
Applications 30 (1):163–81. doi:10.1007/s00521-016-2665-1.

Goksal, F. P., I. Karaoglan, and F. Altiparmak. 2013. A hybrid discrete particle swarm
optimization for vehicle routing problem with simultaneous pickup and delivery.
Computers & Industrial Engineering 65 (1):39–53. doi:10.1016/j.cie.2012.01.005.

948 D. EKMEKCI

http://dx.doi.org/10.1016/j.cor.2008.04.003
http://dx.doi.org/10.1016/j.cie.2015.02.002
http://dx.doi.org/10.1016/S0305-0548(02)00051-5
http://dx.doi.org/10.1007/PL00013346
http://dx.doi.org/10.1109/TMAG.20
http://dx.doi.org/10.1109/CEC.2012.6252938
http://dx.doi.org/10.1016/j.cor.2009.02.017
http://dx.doi.org/10.1007/s00521-016-2665-1
http://dx.doi.org/10.1016/j.cie.2012.01.005


Kalayci, C. B., and C. Kaya. 2016. An ant colony system empowered variable neighborhood
search algorithm for the vehicle routing problem with simultaneous pickup and delivery.
Expert Systems with Applications 66:163–75. doi:10.1016/j.eswa.2016.09.017.

Kang, F., J. Li, and Z. Ma. 2011. Rosenbrock artificial bee colony algorithm for accurate global
optimization of numerical functions. Information Sciences 181 (16):3508–31. doi:10.1016/j.
ins.2011.04.024.

Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization.
Karaboga, D., and B. Akay. 2009. A comparative study of artificial bee colony algorithm.

Applied Mathematics and Computation 214 (1):108–32.
Karaboga, D., and B. Akay Bilgisayar; Mühendisliği Bölümü Erciyes Üniversitesi. 2007.

Artificial bee colony (ABC) algorithm on training artificial neural networks.
Karaboga, D., and B. Basturk. 2007. A powerful and efficient algorithm for numerical

function optimization: Artificial bee colony (ABC) algorithm. Journal of Global
Optimization 39 (3):459–71. doi:10.1007/s10898-007-9149-x.

Karaboga, D., and B. Gorkemli. 2012. A quick artificial bee colony -qABC- algorithm for
optimization problems. INISTA 2012 : International Symposium on Innovations in
Intelligent Systems and Applications 1–5. doi:10.1109/INISTA.2012.6247010.

Karaboga, D., and B. Gorkemli. 2014. A quick artificial bee colony (qABC) algorithm and its
performance on optimization problems. Applied Soft Computing 23:227–38. doi:10.1016/j.
asoc.2014.06.035.

Karaboga, D., B. Gorkemli, C. Ozturk, and N. Karaboga. 2014. A comprehensive survey:
Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review 42
(1):21–57. doi:10.1007/s10462-012-9328-0.

Karaboga, D., and E. Kaya. 2016. An adaptive and hybrid artificial bee colony algorithm (aABC) for
ANFIS training. Applied Soft Computing 49:423–36. doi:10.1016/j.asoc.2016.07.039.

Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceeding IEEE
International Conference on Neural Networks 4:1942–48. vol.4.

Kiran, M. S., E. Özceylan, M. Gündüz, and T. Paksoy. 2012. A novel hybrid approach based on
particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey.
Energy Conversion and Management 53 (1):75–83. doi:10.1016/j.enconman.2011.08.004.

Li, X., and G. Yang. 2016. Artificial bee colony algorithm with memory. Applied Soft
Computing 41:362–72. doi:10.1016/j.asoc.2015.12.046.

Qiu, J., Y. Shen, J. Xie, and J. Wang. 2013. Pbest-guided artificial bee colony algorithm for
global numerical function optimization. International Journal of Applied Mathematics and
Statistics 43 (13):117–25.

Rao, R. V., and P. J. Pawar. 2009. Modelling and optimization of process parameters of
wire electrical discharge machining. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture 223 (11):1431–40. doi:10.1243/
09544054JEM1559.

Razali, N. M., and J. Geraghty. 2011. Genetic algorithm performance with different selection
strategies in solving TSP. Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, UK.

Rieck, J., and J. Zimmermann. 2013. Exact solutions to the symmetric and asymmetric vehicle
routing problem with simultaneous delivery and pick-up. Business Research. 6 (1):77–92.
doi:10.1007/BF03342743.

Rizk-Allah, R. M., E. M. Zaki, and A. A. El-Sawy. 2013. Hybridizing ant colony optimization
with firefly algorithm for unconstrained optimization problems. Applied Mathematics and
Computation 224:473–83.

APPLIED ARTIFICIAL INTELLIGENCE 949

http://dx.doi.org/10.1016/j.eswa.2016.09.017
http://dx.doi.org/10.1016/j.ins.2011.04.024
http://dx.doi.org/10.1016/j.ins.2011.04.024
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1109/INISTA.2012.6247010
http://dx.doi.org/10.1016/j.asoc.2014.06.035
http://dx.doi.org/10.1016/j.asoc.2014.06.035
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1016/j.asoc.2016.07.039
http://dx.doi.org/10.1016/j.enconman.2011.08.004
http://dx.doi.org/10.1016/j.asoc.2015.12.046
http://dx.doi.org/10.1243/09544054JEM1559
http://dx.doi.org/10.1243/09544054JEM1559
http://dx.doi.org/10.1007/BF03342743


Ropke, S., and D. Pisinger. 2006. A unified heuristic for a large class of vehicle routing
problems with backhauls. European Journal of Operational Research 171 (3):750–75.
doi:10.1016/j.ejor.2004.09.004.

Rubio-Largo, A., D. L. Gonzalez-Alvarez, M. A. Vega-Rodriguez, J. A. Gomez-Pulido, and
J. M. Sanchez-Perez. 2012. MO-ABC/DE-multiobjective artificial bee colony with differ-
ential evolution for unconstrained multiobjective optimization. CINTI 2012-13th IEEE
International Symposium on Computational Intelligence and Informatics Proceedings
157–62. doi:10.1109/CINTI.2012.6496752.

Sayyah, M., H. Larki, and M. Yousefikhoshbakht. 2016. Solving the vehicle routing problem
with simultaneous pickup and delivery by an effective ant colony optimization. Journal of
Industrial Engineering and Management Studies 3 (1):15–38.

Subramanian, A., L. M. A. Drummond, C. Bentes, L. S. Ochi, and R. Farias. 2010. A parallel
heuristic for the vehicle routing problem with simultaneous pickup and delivery.
Computers & Operations Research 37 (11):1899–911. doi:10.1016/j.cor.2009.10.011.

Tuba, M., and N. Bacanin. 2014. Artificial bee colony algorithm hybridized with firefly
algorithm for cardinality constrained mean-variance portfolio selection problem. Applied
Mathematics & Information Sciences 8 (6):2831–44. doi:10.12785/amis/080619.

Yang, X. S. 2013. Multiobjective firefly algorithm for continuous optimization. Engineering
with Computers 29 (2):175–84. doi:10.1007/s00366-012-0254-1.

Yang, X. S., and S. Deb. 2014. Cuckoo search: Recent advances and applications. Neural
Computing & Applications 24 (1):169–74. doi:10.1007/s00521-013-1367-1.

Yousefikhoshbakht, M., F. Didehvar, and F. Rahmati. 2014. A combination of modified tabu
search and elite ant system to solve the vehicle routing problem with simultaneous pickup
and delivery. Journal of Industrial and Production Engineering 31 (2):65–75.

Zachariadis, E. E., C. D. Tarantilis, and C. T. Kiranoudis. 2009. A hybrid metaheuristic
algorithm for the vehicle routing problem with simultaneous delivery and pick-up
service. Expert Systems with Applications 36 (2 PART 1):1070–81. doi:10.1016/j.
eswa.2007.11.005.

Zhu, H., J. Feng, and H. Li. 2017. MN _ GLS for VRP with Simultaneous delivery and pickup.
Journal of Computers, 28 (6):1–12. doi:10.3966/199115992017122806001.

950 D. EKMEKCI

http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1109/CINTI.2012.6496752
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.12785/amis/080619
http://dx.doi.org/10.1007/s00366-012-0254-1
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1016/j.eswa.2007.11.005
http://dx.doi.org/10.1016/j.eswa.2007.11.005
http://dx.doi.org/10.3966/199115992017122806001

	Abstract
	Introduction
	Standard ABC Algorithm
	Initialization Phase
	Employed Bees Phase
	Onlooker Bees Phase
	Scout Bees Phase

	Proposed Method: pABC Algorithm
	Updating Pheromone Values
	Onlooker Bees Phase in pABC

	Computational Study
	Parameter Settings
	Capacitied Vehicle Routing Problems
	Benchmarks
	Studies in Literature and Results

	Computational Results
	Conclusion
	References

