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Abstract
This paper describes a method for the identification of valves’ failure, with the final aim of
creating a predictive maintenance architecture. After revising the scientific literature, we
selected the electric current, the acoustic emission and the vibration signals as the most
promising monitoring techniques. The processes of feature extraction and data fusion have been
optimized to detect early symptoms of a failure. Performances of five different machine learning
algorithms have been compared. Results, obtained in a specific case study, evidenced that a data
fusion process based on vibration and current data, paired with a random forest model allowed a
prediction accuracy and a Jaccard index close to 99%.

Keywords: data fusion, vibration measurement, current measurement, predictive maintenance,
industry 4.0, fault detection

(Some figures may appear in colour only in the online journal)

1. Introduction

Industrial machineries’ faults limit the production efficiency,
decrease the goods’ quality and may lead to stop the
production [1]. It is therefore important to predict incipient
faults by identifying physical phenomena that are related to
the behavior of the machinery under inspection [2]. These
phenomena are usually complex and the earlier the effect of
the fault, the harder is the identification. According to the
Industry 4.0 paradigms, all the data that can be extracted from
the machinery must be used to assess the condition status of
the monitored components [3–5]. In this context, data coming
from different sources can be used to improve the detection of
fault and schedule maintenance accordingly [6].
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1.1. Valves monitoring overview

Control valves are important components in all processes
involving fluids (i.e. pure gas, mixture of gases, water, oil).
Valve failure represents a serious issue in many industrial
fields: nuclear power plants, transport of corrosive fluid, con-
trolling of water, oil and gas pipelines [7]. The industrial prob-
lem that originated our work is related to aluminum extrusion,
in which the desired ram speed is controlled by the pump-
ing of oil in the extrusion cylinder; the quality of the product
depends on the combination between the ram speed and the
aluminum temperature [8]. Regardless of the task, valves are
opened and closed frequently, resulting in different kinds of
wear and therefore in oil leakage [9].

Hydraulic blocks used in the die-cast aluminum process are
usually equipped with 4/3-way flow directional control valves
and are usually connected to hydraulic circuits for primary and
auxiliary actuations. A simplified scheme of the hydraulic cir-
cuit is shown in figure 1.

A review of the existing literature evidenced that the most
common valve failures are related to the leakage generated by
the spool wear and to the solenoid burnout [10–13].
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Figure 1. Simplified hydraulic circuit for the main cylinder
actuation, a 4/3-way flow directional control valve is used to change
the piston position.

1.2. Condition monitoring techniques

Different methods have been proposed to monitor the valves’
condition; the main ones are acoustic emission (AE), vibra-
tion monitoring, thermography, current analysis, corrosion
monitoring, shock pulse method and gas detection [14–18].
Among these, AE, vibration, thermography and current
analysis are the ones most commonly used in industrial
environments.

AE signals (with bandwidths often exceeding 50 kHz)
acquired in presence and absence of leakage show that the
amplitude of the dominant leak-related frequency compon-
ents increase with the leakage rate [19]. Seong and colleagues
investigated the correlation of AE features with the occurrence
of leakage, the failure entity and the failure mode [20]. Two
failure modes were investigated: the disk wear and the obstruc-
tion due to a foreign object for different failure sizes (mm)
at different inlet pressures. Experiments showed that the peak
frequency patterns in the healthy valve cases were random
and variable with low amplitude while specific peaks were
present in case of failure.Moreover, the characteristic frequen-
cies were independent of the size of the failure, but they were
strongly dependent on the types of the failure modes, and that
the PSD amplitudes and the AE root mean square (RMS) had
a strong relationship with the size of the failure.

AE signals are good indicators of valve wear condition [21]
and their variation allow identifying different leakage condi-
tions. However, the equipment needed for the identification
of the fault has seldom been used as continuous monitoring
system in industrial plants, where hundreds of valves require
monitoring.

Vibration analysis is usually more applicable to a larger
number of components thanks to the lower sensor cost, albeit
the limited bandwidthwith respect toAE. Ji et al [15] proposed
to identify the presence of six different valve wear conditions

using six accelerometers (three on the valve spool and three
on the valve internal body). The signals were acquired with
a sampling frequency of 6 kHz and the analyzed features
were the spectral peaks at frequencies of 248.9 Hz, 494.8 Hz,
743.6 Hz and 992.5 Hz, that corresponds to the fluid pulsation
frequency and its 2nd, 3rd and 4th harmonics. Tests were per-
formed in laboratory condition but are not hardly applicable in
an industrial environment with multiple valves. Vibration ana-
lysis was also used by Thompson and colleagues [14] to detect
gas leakage. The vibration was analyzed in the 0–20 kHz fre-
quency band; also in this case, the spectral amplitudes were
used to detect the presence of leakage. As a general rule, vibra-
tion signals can be used to predict the leakage, although spuri-
ous components produced by other industrial facilities could
interfere with the signal generated by the fault.

Thermography has been used to monitor machinery and
structures by assessing the thermal state of the plant and of the
hydraulic fluid [22]. Infra-red cameras were used to locate the
hot spots in a fluid power system [23]. When leakage occurs,
an increase of temperature was detected since a high-pressure
fluid was flowing through a small orifice. Takahashi applied
this method for internal leakage detection [16]. This heat gen-
eration could be detected bymeasuring different critical points
on the solenoid-operated directional control valve. A rarer case
is the solenoid burnout fault, which can be detected by monit-
oring the solenoid temperature. When a solenoid burnout hap-
pens, the temperature increases in short time periods [24]. The
temperature increase is usually detectable when the leakage
reaches critical conditions for the plant and cannot be used to
identify early symptoms of the fault, which can be mistakenly
associated to daily valve temperature variations.

The electrical current is also widely used for the dia-
gnosis of electrical motors and solenoid-operated valves,
where the current absorbed by the solenoid allows detect-
ing the armature’s movement. Kulkarni et al [25] showed
that leakage affects current absorption curve of the solenoid,
since unwanted flow may either decrease the differential pres-
sure between front and back opening of the valve. Moreover,
if the solenoid is de-energized and the leakage occurs, the
valve potentially opens. The solenoid excitation current has
a prominent dip during power-up due to the back electro-
motive force (EMF) generated by plunger movement [17].
Tansel and colleagues [26] monitored the current waveform
through a Hall sensor, obtaining a reliable indication of the
damage. Ngbede and colleagues [27] proposed a Deep Learn-
ing approach for classifying faulty solenoid operated valves.
As in the temperature case, it is possible to detect solenoid
burnouts by monitoring the valve’s current. In a very similar
way as for the temperature case, a fast current peak bigger than
the nominal current occurs when solenoid burnouts [24].

The existing literature studies evidence that AE, vibration,
thermography and current signals can be successfully used to
detect the main valves’ faults; the works are mainly based on
laboratory experiments and use single signals for the discrim-
ination of healthy and faulty equipment conditions. In order to
simultaneously use different signals and features to increase
the robustness of the classification problem, we decided to
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explore the effectiveness of machine learning (ML) techniques
for the feature selection and weighting.

1.3. ML for predictive maintenance

Leak detection can be considered as a two-class problem,
because the objective is to determine whether the valve is
healthy or not [28]. When identifying the leakage level [29]
and/or the failure mode [24], the problem becomes a multi-
class one: the class zero is the nominal situation, in which leak-
age has not occurred, while the other classes correspond to dif-
ferent leakage rates and/or failuremodes. In order to reduce the
task complexity, the problem can also be decomposed in dif-
ferent target layers through a hierarchical ML model: i.e. the
failure condition is first identified and then the failure size
is recognized [23]. In this context the binary classification is
considered and Hyperparameters are chosen accordingly to
the task and through multiple runs of optimization [30, 31].
Balanced dataset is another aspect that must be considered,
since allows the creation of better prediction models [32]. As
example, random forest (RF) aims to minimize the overall
error rate, this tends to lower the attention to the data related
to the minority cases [33]. Despite there exist some techniques
to solve and correct data imbalances [32, 33], the possibility
of harvesting equally size of data for different cases must be
exploited whenever it is available, as it is in our laboratory
conditions.

1.4. Aim of the work

Our study aims at the definition of the possible methods to
combine features coming from a set of sensors chosen on the
basis of physical principles for the detection of valves’ leak-
age. The paper is structured as follows: section 2 presents
the background of the proposed method, that is described in
section 3. A case study is presented in section 4 and exper-
imental results are discussed in section 5. Paper conclusions
are drawn in Section 6.

2. Background

Due to the different characteristics of hydraulic blocks and
valves manufactured by different producers, a data driven
approach is the favored one with respect to an analytical
one. The analytical identification of a model for the hydraulic
block-valve system, indeed, cannot be representative of all
the possible electro-actuated systems in an industrial environ-
ment. The identification of an analytical relationship between
the behavior of the AE and the leakage, on the other hand, can
be useful to identify the most generic features to be used in the
ML process. The model describing the relationship between
the emitted acoustic power and the flow turbulence is based on
Lighthill’s theory and it is valid in presence of turbulent flow,
which typically occurs for Reynolds numbers greater than
1000 [34]. Reynolds number (Re) is defined in equation (1):

Re=
ρvL
µ

(1)

where ρ is the fluid density, v is the average velocity of fluid
through the leak, L is the characteristic length and µ is the fluid
dynamic viscosity. According to Lighthill’s theory, the sound
emission is produced by the net density fluctuation and the
net momentum transferred to the turbulence flow region and it
must be the result of quadrupole and high order sources. The
sound power from turbulence flow is expressed in the Light-
hill’s equation [35], which follows:

Ps =
ρv8D2

α5
(2)

where Ps is the sound power, D is the valve size and α is the
sound velocity in the fluid. Since Ps ∝ v8, the sound power
depends on leakage velocity and an increase in leakage rate
causes a clear change in AE signal amplitude. The sound
power Ps had been derived in terms of the fluid parameters
in [36] and it can be expressed as:

Ps = C0
P4
1d

16

α5ρ3D14
(3)

where P1 is the inlet pressure, d is the leakage orifice diameter
and C0 is the proportionality constant. According to Parseval’s
theorem, the energy measured in time and frequency domain
are equivalent [37]. The sound power of liquid valve leakage
Ps is directly proportional to the average signal power AE2

rms:

AE2
rms = βPs (4)

where β is a ratio coefficient whose value is lower than 1, as
the signal detected by the AE sensor is a part of the energy of
the AE signal. Consequently:

AE2
rms = C0q

P4
1d

16

α5ρ3D14
. (5)

Kaewwaewnoi et al [36] used a quadrupole relationship to
describe leakage, but a more complete model was explored
by El-Shorbagy [38]. A more complex model was proposed
to model the control valve noise, according to Curle’s theory
about the influence of solid boundaries [39]. The addition of a
dipole source turns equation (5) into:

AE2
rms =

(C0qP1 +C0d)P4
1d

16

α5ρ3D14
. (6)

The equations show the dependence between the leakage
hole dimensions and the emitted sound power Ps (and con-
sequently with AE2

rms). The substitution of d into equations (5)
or (6) allows to identify the direct relationship between leakage
and AE and the dominant quantities. Referring to a four-way
directional control valve, the orifice flow relationship can be
expressed as follows [40]:

Q= KvX
√
∆P (7)
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where Kv is an overall constant coefficient for a particular
valve orifice referred to the spool land circumference, X is the
axial opening caused by the displacement of the spool in the
valve body from its initial position and∆P is the pressure drop
across the valve. Therefore, equation (7) can be regarded as a
resistance equation, in which the control valve orifice acts as
a variable non-linear resistor:

Q=
1
R
∆P (8)

R=
1

KvX∆P−1/2
. (9)

The equivalent resistance R varies with valve opening X:
the larger the X, the lower the R factor becomes and the
larger the flowrate that passes through the orifice, and vice
versa. Consequently, the internal leakage of a 4/3-way direc-
tional control valve, figure 1, is computed using the following
equations [40]:

QleakP−A = GleakdPP−A (10)

QleakB−T = GleakdPB−T (11)

QleakP−B = GleakdPP−B (12)

QleakB−A = GleakdPB−A. (13)

Q is the leakage flowrate, Gleak is the equivalent con-
ductance of leakage flow and dP is the pressure differential
between two valve ports. In case of liquid valve leakage, the
volume flow rate of liquid through a valve was given by [41]:

Q= 29.81cvd
2

√
∆P
S

(14)

where Q is the volume flow rate, cv is the valve flow coeffi-
cient,∆P is the pressure drop across the valve and S is the spe-
cific gravity. The equation (14) may be rearranged as follows:

d=

(
Q

29.81cv

)1/2( S
∆P

)1/4

(15)

Hence, equations (5) and (6) become:

AE2
rms = C1

1
α5ρ3D14

(
Q
cv

)8(P1S
∆P

)4

(16)

AE2
rms =

(C1P1 +C2)P3
1

α5ρ3D14

(
Q
cv

)8( S
∆P

)4

. (17)

It follows that the AErms increases with inlet pressure, it is
inversely proportional to the size of the valveD and to the flow
coefficient cv. Moreover, the volume flow rate is the domin-
ating factor. Based on the previous information, the AErms is
the first feature candidate. Moreover, the AE signal of valve
leakage is stationary random and its mean is close to zero

[9]; therefore, the correlation between its RMS and variance
is defined as:

AE2
rms = Nσ2. (18)

If the AE variance σ2 is substituted in equations (16)
or (17), it turns out that:

σ2

Q8
= C1

1
Nα5ρ3D14c8v

(
P1S
∆P

)4

= k (19)

where k is constant when the valve and fluid parameters are
determined. Therefore, when the valve leakage is small, there
is a linear relationship between the standard deviation of the
AE signal σ and the leakage rate Q:

σ = k1Q+ k2 (20)

where k1 is related to fluid and valve properties and k2 denotes
various environmental noise in the experiments.

3. Method

The proposed method is based on the fusion of different phys-
ical signals coming from the valve to detect incipient faults
or variations of the working condition. The method is based
on the extraction of features from different signals and on the
classification of the valve state using different algorithms.

3.1. Features

The equations presented in the previous section show that the
severity of the leakage phenomenon affects the energy of the
acoustic signal transferred to the fluid. The fluid energy, in
turn, is transmitted to the valve frame and generates different
phenomena.

The most evident is the body valve vibration, whose fre-
quency depends on the valve characteristics and on the leak-
age entity. The possible features that can be extracted from the
signal are related to its energy (RMS, Peak) and to frequency
domain features (frequencies with dominant spectral compon-
ents, spectral centroid and spectral Kurtosis). These quantities
were selected from the literature studies that are more similar
to our application: the magnitude of the dominant frequen-
cies components and the frequency centroid were chosen in
[20]. Kurtosis evidenced increasing levels of vibration in [42].
While the RMS usefulness is demonstrated by the formulas of
section 2. Frequency-band related RMS is investigated since
it is bound to specific harmonic components, while RMS on
the whole frequency band could be generated by machineries
or vibration sources.

The second group of features is related to the absorbed cur-
rent, for the detection of the solenoid burnout. In the literat-
ure there are no specific studies related to the current signal
features allowing to detect the main hydraulic valves’ defects.
Consequently, features were derived from the analysis of the
current signal time history as described in the next section.
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3.2. Algorithms

Current and vibration features can be analyzed with RF, sup-
port vector machine (SVM) and k-nearest neighbors (k-NN)
algorithms. These approaches allow merging current and
vibration information at feature level to detect possible defects
of hydraulic blocks. Each of the three algorithms’ classes have
specific tuning parameters, that have to be carefully selected
in order to obtain the best classification performances.

The first algorithm to be trained is the RF one, exploiting its
features importance parameter. The features importance para-
meter is computed as themean of accumulation of the impurity
function within each tree of the RF model [43]. Implying that
these features are keener to be chosen with respect to others. It
can be used to reduce the number of features considered during
the training phase of the other algorithms, since it identifies the
features with higher correlations to the class variation, redu-
cing the computational load of the algorithms and eventually
the feature extraction phase.

The tuning parameters of RF algorithms are the number of
trees and the random state parameter. The former parameter
can be used to tune the voting classifier population, while
the latter controls the randomness of the feature selection
used during the training phase. In RF, a sub-optimal greedy
algorithm is repeated several times while training using ran-
dom selections of features and samples. Therefore, the num-
ber of trees was selected as the limit above which the benefits
in classification performances are negligible.

SVM has three main tuning parameters, that are the Ker-
nel type, the Regularization Factor (C factor) and the Gamma
parameter. Different types of kernels exist, such as linear,
sigmoid, radial basis function (RBS). RBS was chosen for
his high accuracy and training velocity, which could also fit
well in low computational power devices. However, linear
and sigmoid kernels were also included in our study. The C
parameter represents the penalty parameter for the misclas-
sification errors. The gamma parameter defines how far the
influence of a single training sample affects the calculation of
a plausible line of separation.

k-NN estimates the likelihood that a sample is a member of
a class (for instance, faulty valve) rather than another (healthy)
based on what group of the training data points that sample is
nearest to. The choice is made considering a certain number
k of training samples close to the sample that must be eval-
uated. This algorithm tries to generalize the output if a high
value of training samples is used. Conversely, considering a
small neighborhood of data (small k) could lead to overfitting
(i.e. the model has a good behavior during the training, but has
poor performance in real conditions).

Performances of ML models are compared on the basis of
three different metrics: the computational time, the confusion
matrix and the Jaccard index.

(a) Computational time is evaluated both during the learning
phase and during the prediction of the valve state.

(b) The confusion matrix is used to show the model’s ability
to correctly predict or separate the classes. The confusion

Figure 2. Pictorial view of the simulated defect of the spool.

matrix provides information about the correctly classified
cases (faulty when faulty, healthy when healthy) and about
the errors (faulty when healthy or healthy when faulty).
Diagonal elements of the confusion matrix indicate the
correct predictions, while off-diagonal elements are the
ones mislabeled by the classifier. The higher the number of
elements on the diagonal, the better, stating more accurate
predictions.

(c) The Jaccard index is a measure of similarity between two
sample sets. It is computed as the ratio between the size of
the intersection and the size of the union of the two labeled
sets. The index ranges from 0% to 100% and the higher the
percentage, the more similar the two populations.

3.3. Case study

The case-study for the validation of the proposed data fusion
approach is a hydraulic manifold used to control an aluminum
extrusion press. Two 4/3-way flow directional control valves
model D1VW by Parker (Ohio, USA) were used in the exper-
iment. One to be considered healthy, while the other one was
damaged through an incision on the spool’s valve. The leak
diameter produced was 0.1 mm hole, figure 2, representative
of a condition that is surely faulty in real operations.

3.4. Experiments

Experiments were performed with different circuit operating
pressures at the same flow rate. Operating pressures were 5,
12 and 20 MPa. The flow rate was 10 l min-1. This small
flow rate aims to simulate the resistance imposed by the pres-
ence of a working hydraulic press at the valve output. All
the six combinations of operating pressure and flow rate were
tested. A total number of 5850working cycles (14 s each) were
acquired, 975 working cycles for each condition to obtain an
equally distributed dataset. For each working cycle, case ‘a’ is
the actuation of the spool valve in the damaged direction, while
case ‘b’ is related to the actuation in the opposite direction.

Tests were performed in different days to limit the
effect of uncontrolled external disturbances (spurious vibra-
tion, temperature increase). Faulty and healthy states were
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Figure 3. Short-time Fourier Transform of the healthy and faulty
valves (10 l min-1, 5 MPa). Specific harmonic components that are
present in the Faulty case are highlighted with red arrows.

acquired on the same days to reproduce the same experimental
conditions.

The valve vibration was measured by a single-axis accel-
erometer manufactured by Brüel & Kjær (Nærum, Denmark),
model DeltaTron Type 4397. The vibration pick-up was posi-
tioned on the valve body with sensing axes aligned with the
spool axis.

In order to select the features to be extracted from the
vibration signal, a time-frequency analysis was performed
(figure 3), with the aim of identifying the frequency compon-
ents that, at specific times, allow distinguishing between the
healthy and faulty states.

In the proposed case-study, the larger differences between
the two states occur 0.02 s after the spool switch. Signals’
spectra (figure 4) were analyzed in order to identify the
frequency bands presenting larger differences between the
healthy and faulty states (0–10 kHz and 20–25 kHz). The fre-
quency band 15–20 kHz, although characterized by large spec-
tral components, has not been considered, since the variation
between the healthy and faulty state was limited. The vibra-
tion features included in our analyses were therefore the Kur-
tosis and the spectral peaks around the frequencies of 2.6, 5.2,
9.2 and 22.5 kHz. The spectral peak is related with the signal
RMS at a specific frequency, and was chosen instead of the
narrow-band RMS for the easiness of implementation in the
final (real-time) application.

The currents absorbed by the two solenoids were measured
by high-side, unipolar, current shunt monitors manufactured
by Texas Instrument (Dallas, Texas) model INA169. Current
signals are shown in figure 5. I1 and I2 are the currents feeding
the solenoids (being I1 the one of the solenoids closer to the
damage and recorded on actuation ‘a’).

Current features were derived from the time domain, at a
time close to the spool switch inside the valve body, as indic-
ated in [21]. The push pin in fault condition stops for 0.006 s at
the middle of its run, and a local minimum point is observed.
Figure 5 shows that, at 0.032 s, the pushpin suddenly stops, to
resume its execution at 0.038 s. This is observed by the current
sensor; the current suddenly increases for 0.006 s because

Figure 4. FFT of the vibration signal at 20, 12 and 5 MPa. The
selected harmonic components are highlighted with arrows. The
choice of the 22.5 kHz harmonic is representative of the whole
20−25 kHz frequency band.

no back EMF is generated, to then decrease again until the
pushpin reaches the end of the stroke. As a feature selection
analysis, the focus was mainly related to extracting the push-
pin behavior just described. Therefore, seven current features
were selected:

(a) the current amplitudes for I1 and I2 (in the 0.032 s–
0.038 s time interval) when the current derivative is null
(2 features).

(b) the maxima andminima values for both the currents I1 and
I2 (4 features).

(c) the difference between the two currents in the highlighted
interval of time (1 feature).

Overall, 17 features were selected, 7 related to current and
10 related to acceleration.
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Figure 5. Time history of the currents feeding the solenoids in
nominal condition (upper plot) and in faulty condition (lower plot).

4. Results

The relative importance of the 17 different features (figure 6)
is one of the results of the RF model. The best features for
the classification are the RMS of the vibration in the 22.5 kHz
band and the difference of currents of the two solenoids.

In order to limit the total number of features, we selected
the ones above the threshold of 0.05, i.e. the difference of the
currents absorbed by the two solenoids, the current derivative
for I1, vibrations RMS at 2.6 kHz, 5.2 kHz, 9.2 kHz, 22.5 kHz.

ML algorithms described in section 3 were trained to create
predictive models. Data shown in the followings are related to
ML models trained with 75% of the dataset (4524 samples)
and tested on the remaining 1326. Each condition is there-
fore represented by 754 samples for the training step and 221
samples for the prediction step. An optimizer was executed to
test out different C and gamma parameters and identify the
combinations which perform better for SVM algorithms. At
the end of its computation, the results which maximize the
SVM performances are C = 10 and gamma = 0.00001. RF is
characterized by 16 trees with a maximum depth of 2. In this
case Gini index is selected as split criterium. k-NN is charac-
terized by k = 7, obtained with a trial-and-error optimization.

The chosen algorithms present the computational complex-
ity summarized in table 1. n indicates the number of the train-
ing sample, p the number of features, d depth of tree, ntrees the
number of trees, nsv = 603 the total number of supports vec-
tors through the six cases while k is the number of k-nearest
samples to be used by k-NN algorithm. k-NN Training Time
is comparatively lower than SVM and RF algorithms, given

Figure 6. Features importance ranking for random forest algorithm.
Features importance is computed as the mean of accumulation of
the impurity decrease within each tree.

Table 1. Model Time-complexity for selected algorithms.

Algorithm Training Prediction

Random forest O (n log(n)pntrees)∼ 1× 106 O (ntreesd)∼ 1× 100

SVM (Kernels) O
(
n2
)
∼ 1× 107 O (nsvp)∼ 1× 103

k-NN O (np)∼ 1× 105 O (npk)∼ 1× 105

Figure 7. Confusion matrix plot of the random forest algorithm
trained with current and acceleration features with feature
importance greater than 0.05.

n= 4521, p= 7, ntrees = 16 and k = 7. Prediction Time varies
according to the parameters used to tune the algorithms, in this
case RF has lower computational time than SVM and k-NN.

Performances of the RF model are summarized in the con-
fusion matrix of figure 7. Only two samples out of 1507 are
misclassified during the testing phase. Therefore, the average
classification report shows a Prediction Accuracy of more than
99.8% and a Jaccard index greater than 99%.

The confusion matrix of the SVM-rbf model is shown in
figure 8. The algorithm generates more false positives than
false negatives with a Prediction Accuracy of 95% and a Jac-
card index of 91%.
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Figure 8. Confusion matrix plot of the SVM-rbf algorithm, trained
with current and acceleration features with feature importance
greater than 0.05.

Figure 9. Confusion matrix plot of the SVM-sigmoid algorithm,
trained with current and acceleration features with feature
importance greater than 0.05.

The confusion matrix of the SVM-sigmoid model is shown
in figure 9. The algorithm is not able to correctly classify the
classes and the Jaccard index is 14%.

The confusion matrix of the SVM-linear model is shown in
figure 10. The algorithm generates more false negatives than
false positives with a prediction accuracy of 98% and a Jaccard
index of 96%.

The confusion matrix of the k-NN model is shown in
figure 11. The algorithm has a prediction accuracy of 18% and
a Jaccard index of 10%.

The time required to train the models was comparable
among all the five proposed algorithms (less than 1 s).

The effect of the dataset size on the method perform-
ances has been investigated by comparing the accuracy as
in [15], RF and SVM-linear were chosen given the achieved

Figure 10. Confusion matrix plot of the SVM-linear algorithm,
trained with current and acceleration features with feature
importance greater than 0.05.

Figure 11. Confusion matrix plot of the k-NN algorithm, trained
with current and acceleration features with feature importance
greater than 0.05.

performances. RF Accuracy was larger than SVM accuracy
for any dataset size, as shown in figure 12.

As can be seen in figure 13 it was trained a RF algorithm
with only the accelerometer features, in this case the prediction
accuracy is 98% and the Jaccard index 96%, with a total of 30
misclassified samples out of 1507.

5. Discussion

5.1. Limitations

Themain limitation of this study is the reduced set of configur-
ations in which the method has been tested. Our study would
surely benefit from both additional tests with different dam-
ages of the spool and from testing of the proposed algorithms

8
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Figure 12. Accuracy comparison of the RF and SVM model trained
with different dataset size. Models trained with acceleration and
current features.

Figure 13. Confusion matrix plot of the random forest algorithm
trained with acceleration features with feature importance greater
than 0.05.

during the aluminum extrusion process on a real plant. The
possibility of additional laboratory tests was prevented by the
fact that the hydraulic block had such an high oil capacity
that its testing required stopping all the other machineries of
our department. Consequently, once the tests described in this
workwere completed, it was not possible to perform additional
experiments. Further experiments are ongoing in a real indus-
trial environment, but the time required to obtainwear damage,
at the moment, is unpredictable.

Another limitation arises from the applicability of results
to similar case-studies. In general, the relative importance of
the different features and the numerical values obtained by
the algorithms can be different from case to case, but the
proposed approach based on RF features importance ranking
allows selecting the features in laboratory tests, before the real
application in industrial environment.

5.2. Features extraction

The vibration features to be selected depend on the valve
mechanical characteristics, and in general the signal analysis is
required in order to identify the features for the fault identifica-
tion. In case of valve leakage, a portion of the fluid is forced to
flow through the small orifice, generating structural vibration
[18]. In the presented case-study four bandswere selected, rep-
resenting the valve response to the fluid-induced turbulence
[15]. Parallel investigations performed with a laser Doppler
vibrometer evidenced that the ultrasonic signals in the fre-
quency band from 20 to 25 kHz allows distinguishing between
the healthy and faulty conditions. The higher sampling rate,
however, may be a problem for industrial hardware.

Features extracted from the current signals were particu-
larly meaningful: after 0.1 s from the valve activation, the
reverse electromotive force produced by the push pin’s move-
ment allows identifying the leakage condition. The selected
features provided a good separation between the valve in a
fault condition and the valve in nominal condition.

The size of the damage (0.1 mm) may be larger than the
early damage of the valve and current or vibration signals
alone could not be sufficient to evidence the spool wear. In
these cases, only the sensor fusion can provide information
about damages in the order of hundreds of nanometres.

5.3. Comparison on different data fusion approaches

The RF model ensured superior classification performances
with respect to SVMs and k-NN. The RF complexity is also
smaller than the SVM complexity of at least one order of mag-
nitude. On the other hand, k-NN has a time complexity that
is lower for training time but higher for prediction time. This
difference was not noticeable during training time, due to the
small size of the dataset, but it should be considered for big-
ger datasets in industrial environments. Moreover, RF is less
sensitive to the dataset size. RF evidenced a higher false neg-
ative error, while the SVM-rbf is more balanced in the pre-
dicted errors with a tendency to false positive errors. SVM-
rbf and SVM-linear have similar results, but SVM-linear has
a tendency to obtain false negative errors. Even with higher
prediction accuracy this property is less desirable in an indus-
trial environment since it may lead to underestimate the health
status of the valve and potential safety hazards. As shown in
figure 10, training the RFmodel with only accelerometer’s fea-
tures provides lower Prediction Accuracy, also in this case fea-
tures from different sensors provide better results.

6. Conclusions

Results presented in this paper evidenced that the data fusion
approach allows the identification of the valve leakage phe-
nomenon. Current and vibration data were selected after the
literature review. The proposed method was tested in a specific
case-study, that evidenced excellent capability in detecting
incipient spool faults. Among the tested methods, the Random
Forest model provided better performances; further studies
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are needed to validate the method in a relevant industrial
environment.
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