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Refined Admissible Analysis and Design Conditions for 
Discrete Fuzzy Singular Systems with Multiple Difference 
Matrices
Dong-Hwa Lu and Chih-Peng Huang

Department of Computer Science, University of Taipei, Taipei, Taiwan

ABSTRACT
This study mainly discusses extended admissibility and fuzzy 
parallel distributed compensation (PDC) control issues for dis-
crete singular fuzzy systems with multiple difference matrices 
existing in the rules. By the overall system associated with the 
discrete singular models with multiple difference matrices, we 
first propose an extended admissibility analysis criteria, where 
the new results not only involve some slack matrices but also 
have a less number of linear matrix inequalities’ (LMIs) con-
straints. Furthermore, by hiring the fuzzy PDC, explicit design 
criteria are further developed for the regarded system. 
Noticeably, the new design method can cope with controller 
synthesis of the admissibility and D-admissibility issues. Due to 
all the presented criteria are formed by the strict LMIs, we can 
readily evaluate them via some existing LMI solvers. Finally, two 
numerical examples are involved to demonstrate the applicabil-
ity and the feasibility of the developed results.
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Introduction

Many physical systems and industrial processes can be intrinsically formulated 
by nonlinear systems. But, the corresponding control issues are stubborn and 
hard to be treated (see, e.g., Liu, Xia, Wang, and Hao (2021); Wang, Xia, Shen, 
Xing, and Park (2021); Wang, Yang, Xia, Wu, and Shen (2022); and the 
references therein). Based on fuzzy control with T-S fuzzy models (Tanaka 
and Sugeno 1992), we can well approximate nonlinear systems or uncertain 
systems by the extended formulation (Baumann and Rugh 1986; Tanaka and 
Sano 1994; Wang, Tanaka, and Griffin 1996; Chen, Wang, and Lee 2011; 
Askari and Markazi 2012). It can characterize the whole system by a set of 
fuzzy if-then rules with the consequent parts depicted by linear state models. 
Afterward, a lot of studies devoted to the stability analysis and stabilization for 
T-S fuzzy models (see, e.g., Ma, Sun, and He 1998; Chang and Sun 2003; 
Guerra, Kruszewski, Vermeiren, and Tirmant 2006; Hien 2010; Lam and 
Leung 2010; Liu, Gu, Tian, and Yan 2012; and the references therein).
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Singular systems are used to describe complex systems, which can merge 
dynamic behaviors with algebraic dependent restrictions into a single system 
(Dai 1989; Duan 2010). They are also named as descriptor systems or general-
ized state-space systems. They have many comprehensive applications, such as 
electrical networks, chemical industrial processes, aerospace engineering, and 
social economic model (Luenberger 1977; Lewis 1986; Dai 1989; Jódar and 
Merello 2010; Duan 2010), and so on. However, the study of singular systems 
is more complicated than regular state-space ones, because besides the stabi-
lity, we have to extra take the regularity and the causality (impulse-free for 
continue ones) into account (Xu and Yang 1999; Xu and Lam 2004). 
Furthermore, poles’ location in a specific region can directly dominate the 
systems’ states temporary responses and system’s performance (Juang, Hong, 
and Wang 1989; Chilali and Gahinet 1996; Chilali, Gahinet, and Apkarian  
1999). Recently, some works had dealt with the D-admissibility issues for the 
singular systems, and proposed many applicable analysis and synthesis results 
(Bavafa-Toosi, Ohmori, and Labibi 2006; Rejichi, Bachelier, Chaabane, and 
Mehdi 2008; Huang 2011; Zhang 2013).

Accordingly, by comprising T-S fuzzy model and singular system, fuzzy 
singular systems are aroused in miscellaneous fields and reveal the appreciat-
ing advantage over past few years, where their consequent parts are replaced 
by singular systems’ models. They afford to represent an larger class of 
physical systems and engineering processes (Taniguchi, Tanaka, and Wang  
2000). For discrete-time fuzzy singular systems (DFSs), many studies have 
achievements of admissibility analysis and controller synthesis. The DFSs with 
common E is firstly presented (Huang 2005), and less conservative result is 
then developed (Xu, Song, Lu, and Lam 2007). But, both the results need to 
impose a restriction ETPE � 0 in the criteria, where it usually is a nonstrict 
linear matrix inequality (LMI) constraint with insufficient rank and cannot be 
directly treated via current LMI solvers (Gahinet, Nemirovski, Jaub, and 
Chilali 1995). And, some works further addressed the DFSs subject to state 
delays and/or uncertainties (Li, Shi, Wu, and Zhang 2014; Kchaou and El- 
Hajjaji 2017; Chen and Yu 2021; Chen, Yu, and Jam, 2022). For the DFSs with 
multiple difference term matrices Ei, some results (Estrada-Manzo, Lendek, 
Guerra, and Pudlo 2015; Lendek, Nagy, and Lauber 2018; Gonzalez and 
Guerra 2019; Qiao, Li, and Lu 2021) needed to beforehand transfer the original 
systems into augmented systems’ forms with a common difference term 
matrix with enlarged dimensions. By imposing assumption on Ei to satisfy 
some prescribed forms, the proposed augmented systems thus could be 
equivalent to the original ones for admissibility issues. However, it needs to 
stress that the more restriction on difference term matrices may reduce the 
applicability for system modeling from physical systems. Furthermore, the 
past work (Huang 2014) could directly deal with the original DFSs with 
multiple difference term matrices Ei in the rules. But, the proposed admissible 
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and design criteria needed to involve a considerable number of LMIs’ con-
straints, where there may bring on the conservatism for numerical evaluation.

Motivated from the above analytic contentions, this work mainly addresses 
extended admissibility analysis and parallel distributed compensation (PDC) 
control law (Tanaka and Sugeno 1992) for DFSs subjected to distinct differ-
ence matrices. Based on matrix algebraic and LMI approach (Boyd et al.,  
1994), we first propose extended admissibility analysis criteria for the unforced 
system. The proposed new results not only involve some slack matrices but 
also can sharply reduce the number of LMIs’ constraints, where they both are 
helpful to reduce the conservatism of the analysis criteria. Furthermore, by 
employing the fuzzy PDC, design criteria for the resulting closed-loop system 
are further investigated. Prominently, the proposed design approach can 
conduct the controller design associated with the admissible and 
D-admissible assurance. Due to all the developed criteria can be formulated 
by strict LMIs, they can readily be verified via existing LMI solvers. Two 
illustrative examples are involved to demonstrate the efficiency and feasibility 
of the presented method.

Compared with previous works, the main contribution of this work is 
highlighted as follows:

(i) This work mainly proposes a fuzzy descriptor system with the per-
turbed derivative matrices in the rules. It can suitably transfers non-
linear and/or uncertain systems into fuzzy inference control framework.

(ii) All the presented admissibility analysis and controller design criteria 
can be explicitly expressed in terms of LMIs or parametric LMIs. 
Accordingly, we can handily verify them by current LMI solvers for 
the admissibility analysis or implement a fuzzy PDC control for closed- 
loop systems associated with the admissible assurance or the admissi-
bility with specific decay rate of states’ responses.

The rest of this work is arranged as follows. Systems formulation and some 
preliminaries are described in Section 2. In Section 3, the admissibility analysis 
for the regarded systems is addressed. And, the PDC control with admissible 
and D-admissible assurance are studied in Section 4. Two numerical example 
are given in Section 5 to verify the validity and the applicability. Finally, we 
give some concluding remarks in Section 6.

Notations: The notations used in this work are fairly standard. Rn denotes 
the n-dimensional real Euclidean space. Rm×n denotes the sets of the m×n 
matrices. For a matrix MT (M-1) represents the transpose (inverse) of the 
matrix M. For a symmetric matrix P, P > 0 (P ≥0) represents the positive 
definite matrix (positive semi-definite matrix), P < 0 (P ≤0) represents the 
negative definite matrix (negative semi-definite matrix). det(P) means the 
determinant of P . deg(f(x)) means the degree of the polynomial f(x).
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Systems Formulation and Preliminaries

Consider DFSs embracing multiple difference matrices Ei in the rules. The 
regarded fuzzy system can be represented by a set of fuzzy rules with T-S fuzzy 
singular systems, and the consequent parts of rules can characterize the local 
behaviors from a physical system. An overall system can be expressed by fuzzy 
reasoning with integrating all the individual models. The r rules of the fuzzy 
inference system can be denoted by 

Rule i: If φ1 kð Þ is Fi
1 and φ2 kð Þ is Fi

2 and . . . φn kð Þ is Fi
n 

Then Eixðkþ 1Þ ¼ AixðkÞ þ BiuðkÞ, i = 1, 2, . . . , r, 

where xðkÞ 2 Rn stands for the state vector, uðkÞ 2 Rm stands for the control 
input, and φjðkÞ, j = 1, 2, . . ., n, is the jth premise variable, Fi

j is a fuzzy set, 
Ei 2 Rn�n is a difference term matrix and may be singular, that is, 
rankðEiÞ ¼ m � n, Ai 2 Rn�n and Bi 2 Rn�m stand for the individual system 
and input matrices in each rule.

An whole system can thus be integrated by 

Xr

i¼1
hiðφðkÞÞEixðkþ 1Þ ¼

Pr

i¼1
ωiðφðkÞÞðAixðkÞ þ BiuðkÞÞ

Pr

i¼1
ωiðφðkÞÞ

¼
Xr

i¼1
hiðφðkÞÞðAixðkÞ þ BiuðkÞÞ

(1) 

where 

ωiðφðkÞÞ ¼
Qn

j¼1
Fi

jðφjðkÞÞ � 0

Pr

i¼1
ωiðφðkÞÞ > 0

i ¼ 1; 2 ; � � � ; r

8
>><

>>:

;

hiðφðkÞÞ ¼ ωiðφðkÞÞ
Pr

i¼1
ωiðφðkÞÞ

� 0

Pr

i¼1
hiðφðkÞÞ ¼ 1

i ¼ 1; 2 ; � � � ; r

8
>>><

>>>:

and Fi
jðφjðkÞÞ is the firing rate of φjðkÞ inFi

j .
To cope with the analysis and controller design issues for DFSs (1), we must 

beforehand involve some necessary definitions for the nominal system Exðkþ
1Þ ¼ AxðkÞ in the following.
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Definition 2.1

(Dai, 1989, Huang, 2011):

(a) The matrices pair E; Að Þ is referred to be regular such that detðsE �
AÞ�0 holds.

(b) The matrices pair E; Að Þ is referred to be causal, if it is regular and deg 
[det(zE � A)]=rankðEÞ.

(c) The nominal system Exðkþ 1Þ ¼ AxðkÞ is referred to be admissible, if it 
is regular, causal, and all of its finite poles are within the unit disk 
Dð0; 1Þ.

(d) The nominal system Exðkþ 1Þ ¼ AxðkÞ is referred to be D-admissible, 
if it is regular, causal, and all of its finite poles are within a disk 
Dð0; αÞ � Dð0; 1Þ, α< 1.

Some previous works are involved for deriving the main results as follows.

Lemma 1 (Xu and Yang, 1999): The nominal singular system Exðkþ 1Þ ¼
AxðkÞ is asserted to be admissible iff there exist a positive definite matrix P and 
a compatible matrix Q satisfying 

ATPA � ETPEþ QSTAþ ATSQT < 0; (2) 

where S 2 Rn�ðn� mÞ satisfying ETS ¼ 0 is of full-column rank.

Based on Lemma 2 associated with the previous symmetric equivalent issues 
of singular system (Sun, Zhang, Yang, and Su 2011), a symmetric form can be 
presented in the following.

Corollary 1: The nominal singular system Exðkþ 1Þ ¼ AxðkÞ is asserted to 
be admissible if there exist a positive definite matrix P and a compatible matrix 
Q satisfying 

APAT � EPET þ ASQT þ QSTAT < 0 (3) 

where S 2 Rn�ðn� mÞ satisfying ES = 0 is of full-column rank.

For the design issues, by the nonsingularity of matrix P, we can replace the 
matrix S by PS and the following result can be directly attained.
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Corollary 2: The nominal singular system Exðkþ 1Þ ¼ AxðkÞ is asserted to 
be admissible iff there exist a positive definite matrix P and a compatible 
matrix Q satisfying 

APAT � EPET þ APSQT þ QPSTAT < 0 (4) 

where S 2 Rn�ðn� mÞ satisfying EPS ¼ 0 is of full-column rank.

The following result is introduced for the D-admissibility issues. 

Lemma 2: (Huang 2011): The nominal singular system Exðkþ 1Þ ¼ AxðkÞ is 
asserted to be D-admissible iff there exist a positive definite matrix P and a 
compatible matrix Q satisfying 

1
α2 ATPA � ETPEþ QSTAþ ATSQT < 0; (5) 

where S 2 Rn�ðn� mÞ satisfying ETS ¼ 0 is of full-column rank.

Admissibility Analysis

For the unforced DFSs (1), that is, uðkÞ;0 in (1), the admissibility analysis 
condition is first derived in the following.

Theorem 1: The unforced DFSs (1), uðkÞ ¼ 0 in (1), is asserted to be admis-
sible, if there exists a positive definite matrix P > 0 and compatible matrices Qi , 
"i, satisfying 

AT
i PAj þ AT

j PAi � ET
i PEj � ET

j PEi þ AT
i SQT

j þ QjSTAi þ AT
j SQT

i þ QiSTAj < 0
"i � j; i; j ¼ 1; 2; . . . ; r

(6) 

where S 2 Rn�ðn� mÞ satisfying ET
i S ¼ 0, "i, is of full-column rank.

Proof: Deducing from Lemma 1 for the unforced DFSs (1) with 

�A;
P

i
hiAi

� �

and �E;
P

i
hiEi

� �

, and letting matrices P > 0 and �Q;
P

i
hiQi 

lead to 

e2167261-6 D.-H. LU AND C.-P. HUANG



�ATP�A � �ETP�Eþ �ATS�QT
þ �QST �A

X

i
hiAT

i

 !

P
X

i
hiAi

 !

�
X

i
hiET

i

 !

P
X

i
hiEi

 !

þ
X

i
hiAT

i

 !

S
X

i
hiQT

i

 !

þ
X

i
hiQi

 !

ST
X

i
hiAi

 !

¼
X

i
h2

i AT
i PAi � ET

i PEi þ AT
i SQT

i þ QiSTAi
� �

þ
X

i< j
hihjðAT

i PAj þ AT
j PAi � ET

i PEj � ET
j PEi þ AT

i SQT
j þ QjSAi þ AT

j SQT
i þ QiSTAjÞ

By Eq (6), we can attain that the above is negative definite and the regarded 
unforced DFSs (1) is thus ensured to be admissible from Lemma 1.

Based on Theorem 1 associated with Corollary 1, we present a symmetric 
form of ET; AT� �

in the following.

Corollary 3: The unforced DFSs (1), uðkÞ ¼ 0 in (1), is asserted to be admis-
sible, if there exist a positive definite matrix P > 0 and compatible matrices Qi , 
"i, satisfying 

AiPAT
j þ AjPAT

i � EiPET
j � EjPET

i þ AiSQT
j þ QjSTAT

i þ AjSQT
i þ QiSTAT

j < 0;
"i � j; i; j ¼ 1; 2; . . . ; r

(7) 

where S 2 Rn�ðn� mÞ satisfyingEiS ¼ 0, "i, is of full-column rank.

Based on Theorem 1 associated with Lemma 2, the D-admissible criteria can 
be presented as follows.

Corollary 4: The unforced DFSs (1), uðkÞ ¼ 0 in (1), is asserted to be D- 
admissible, if there exist a positive definite matrix P and compatible matrices 
Qi , "i, satisfying 

1
α2 AiPAT

j þ
1
α2 AjPAT

i � EiPET
j � EjPET

i þ AiSQT
j þ QjSTAT

i þ AjSQT
i þ QiSTAT

j < 0;

"i � j; i; j ¼ 1; 2; . . . ; r
(8) 

where S 2 Rn�ðn� mÞ satisfying EiS ¼ 0, "i, is of full-column rank.

Remark 1 In contraction to the previous results (Huang 2014; Qiao, Li, and 
Lu 2021), the LMIs numbers constraints are r � ðr þ C2

r Þ (Huang 2014) and 
r þ 2r2 þ ðr þ 1ÞC2

r (Qiao, Li, and Lu 2021), respectively. However, the new 
method in Theorem 1 not only has less LMIs, where the LMIs’ constraints 
number severely reduce down toðr þ C2

r Þ, but also introduces multiple slack 
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matrices Qi in the conditions, where there both are beneficial to reduce the 
conservatism of admissibility conditions.

PDC Controller Design

By involving fuzzy PDC control law (Tanaka and Sugeno 1992), the same 
fuzzy sets in system (1) are employed in the PDC rules and can be repre-
sented as
Rule i: If φ1 kð Þ is Fi

1 and φ2 kð Þ is Fi
2 and . . . φj kð Þ is Fi

j
If φ1ðkÞ is Fi

1 and φ2ðkÞ is Fi
2 and . . . φjðkÞ isFi

j ,
Then uðkÞ ¼ KixðkÞ, i = 1, 2, . . . , r,
and the overall controller is integrated as 

uðkÞ ¼

Pr

i¼1
ωiðφðkÞÞKixðkÞ

ωiðφðkÞÞ
¼
Xr

i¼1
hiðφðkÞÞKixðkÞ: (9) 

Substituting (9) into (1) leads to 

Xr

i¼1
hiðφðkÞÞEixðkþ 1Þ ¼

Xr

i¼1

Xr

j¼1
hiðφðkÞÞhjðφðkÞÞ Ai þ BiKj

� �
xðkÞ: (10) 

Deducing from Theorem 1, the design criteria can be presented for the 
resulting closed-loop fuzzy singular system (10) in the sequel.

Theorem 2: The discrete fuzzy closed-loop system (10) with the PDC control 
(9) is asserted to be admissible, if there exist a positive definite matrix P, and 
matrices Q, Xj , "j, with appropriate dimensions satisfying 

Ψ1 AiPþ BiXi
PAT

i þ XT
i BT

i � P

� �

< 0; "i; (11) 

Ψ2 ðAi þ AjÞP þ BiXj þ BjXi

PðAi þ AjÞ
T
þ XT

j BT
i þ XT

i BT
j � P

� �

< 0; "i< j;

(12) 

where 

Ψ1 ¼ AiPSQT þ QSTPAT
i þ BiXiSQT þ QSTXT

i BT
i � EiPET

i ;

Ψ2 ¼ ðAi þ AjÞPSQT þ QSTPðAi þ AjÞ
T
þ ðBiXj þ BjXiÞSQT

þ QSTðBiXj þ BjXiÞ
T
� EiPET

j � EjPET
i ;
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the matrix S 2 Rn�ðn� mÞ satisfying EiPS ¼ 0, "i, is of full-column rank. Then, 
a set of admissibilizing state feedback gains in (9) can be determined 
as Kj ¼ XjP� 1,"j.

Proof: Deducing from Corollary 2 for the fuzzy control system (10) with 
AC;

P

i;j
hihjðAi þ BiKjÞ and EC;

P

i
hiEi, we can ensure the admissibility for 

the resulting closed-loop system by that there exist matrices P > 0, Q, and S 
with compatible dimensions satisfying 

ACPAT
C � ECPET

C þ ACPSQT þ QSTPAT
C < 0 

By Schur complement, the above is identical to 

ACPSQT þ QPSTAT
C � ECPET

C ACP
PAT

C � P

� �

< 0:

By AC ¼
P

i;j
hihjðAi þ BiKjÞ and EC ¼

P

i
hiEi, the above leads to 

P

i;j
hihjðAi þ BiKjÞPSQT þ QST P

P

i;j
hihjðAi þ BiKjÞ

T
�

P

i
hiEi

� �

P
P

i
hiET

i

� �
P

i;j
hihjðAi þ BiKjÞP

P
P

i;j
hihjðAi þ BiKjÞ

T � P

2

6
6
4

3

7
7
5

¼
X

i
h2

i
ðAi þ BiKjÞPSQT þ QSTPðAi þ BiKjÞ

T
� EiPET

i ðAi þ BiKiÞP

PðAi þ BiKiÞ
T

� P

" # !

þ
X

i< j
hihj

ðAi þ BiKjÞPSQT þ ðAj þ BjKiÞPSQT

þQST PðAi þ BiKjÞ
T
þ QSTPðAj þ BjKiÞ

T
� EiPET

j � EjPET
i
ðAi þ BiKjÞPþ ðAj þ BjKiÞP

PðAi þ BiKjÞ
T
þ PðAj þ BjKiÞ

T
� 2P

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A

< 0 

By letting Xj;KjP, if the inequalities (11) and (12) is hold, the fuzzy control 
system (10) is ensured to be admissible from Corollary 2.

Furthermore, the PDC control law associated with D-admissibility is intro-
duced in the sequel.

Theorem 3: The discrete fuzzy closed-loop system (10) with PDC control (9) is 
asserted to be D-admissible, if there exist positive definite matrix P, and matrices 
Q, Xj , "j, with appropriate dimensions satisfying 

Ψ1 AiPþ BiXi
PAT

i þ XT
i BT

i � α2P

� �

< 0; "i; (13) 
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Ψ2 ðAi þ AjÞP þ BiXj þ BjXi

PðAi þ AjÞ
T
þ XT

j BT
i þ XT

i BT
j � 2α2P

� �

< 0; "i< j;

(14) 

where 

Ψ1 ¼ AiPSQT þ QSTPAT
i þ BiXiSQT þ QSTXT

i BT
i � EiPET

i ;

Ψ2 ¼ ðAi þ AjÞPSQT þ QSTPðAi þ AjÞ
T
þ ðBiXj þ BjXiÞSQT

þ QSTðBiXj þ BjXiÞ
T
� EiPET

j � EjPET
i ;

the matrix S 2 Rn�ðn� mÞ satisfying EiPS ¼ 0, "i, is of full-column rank. Then, 
a set of admissibilizing state feedback gains with D-admissibility α< 1 in (9) 
can be determined as Kj ¼ XjP� 1, "j.

Proof: Based on Lemma 2 and following the same line in Theorem 2, the 
proof can be similarly attained.

Remark 2: In contraction to the previous result in (Huang, 2014), the pro-
posed new design approach in Theorem 2 can provide more searchable 
parameters’ dimensions in Xj , "j, which is helpful to attain a set of feasible 
gains of Kj ¼ XjP� 1 for the closed-loop DFSs (10). Furthermore, the new 
result can severely reduce the LMIs’ constraints from ðr þ C2

r Þ
2 to ðr þ C2

r Þ.

Remark 3: For coping with the multiple difference term Ei, the previous work 
(Qiao, Li, and Lu 2021) has to transfer the primitive system to an augment 
system model with a common E with extended dimensions, where the aug-
ment system not only may loose some physical behaviors in connection with 
the original system but also need to satisfy some extra constraints. 
Furthermore, the LMIs’ constraints reach a large number 
r þ 2r2 þ ðr þ 1ÞC2

r , which may cause the handicap to implement a feasible 
controller for the considered system with numerous rules.

Remark 4. For comparing with some other works (Huang 2005; Xu, Song, Lu, 
and Lam 2007; Li, Shi, Wu, and Zhang 2014; Kchaou and El-Hajjaji 2017; Chen 
and Yu 2021; Chen, Yu, and Jam 2022), they cannot directly deal with the 
considered systems embracing multiple difference matrices, or need to put some 
extra restriction on Ei and transfer the original system to a new system with a 
common E. However, by the developed design method in Theorem 2 and 
Theorem 3, we not only can directly cope the considered system with multiple 
difference terms Ei but also competently cope with the controller design with 
admissibility and D-admissibility issues. Furthermore, the proposed design 
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conditions in Eq (11)-(14) all are formulated by the strict LMIs, where we can 
facilitate evaluating them via the existing LMI solvers for implementing the fuzzy 
systems with PDC control.

Illustrative Examples

For Verifying the Applicability of the Developed Results, We Give Two 
Illustrative Examples in the Following.

Example 1: Consider the DFSs (1) with free input with a five fuzzy rules and 
three order singular models. The systems’ matrices are denoted as 

E1 ¼

1 0 1
0 1 0
0 0 0

2

6
4

3

7
5 ; E2 ¼

1 0 1
1 1 0
0 0 0

2

6
4

3

7
5 ; E3 ¼

1 0 2
0 1 0
0 0 0

2

6
4

3

7
5; E4 ¼

1 0 1
2 1 0
0 0 0

2

6
4

3

7
5 ; E5 ¼

1 0 2
0 2 0
0 0 0

2

6
4

3

7
5

A1 ¼

� 1 1 0
� 1 � 0:4 0:3
0 � 0:3 0:2

2

6
4

3

7
5 ; A2 ¼

0:7 � 0:5 0
1 0:8 1

0:4 0:3 0:6

2

6
4

3

7
5; A3 ¼

0:8 0:6 � 1
� 0:2 0:4 0:6
� 0:7 0:5 0:5

2

6
4

3

7
5

A4 ¼

0:4 � 0:3 0:2
0:5 0:3 1
0:3 0:4 0:5

2

6
4

3

7
5 ; A5 ¼

1 � 0:5 0
� 0:4 � 1 0:5
0:3 � 1 0:6

2

6
4

3

7
5:

Due to the considered DFSs embraces the distinct difference terms Ei in the 
rules, some previous results with common difference terms are inapplicable 
(Huang 2005; Xu, Song, Lu, and Lam 2007; Li, Shi, Wu, and Zhang 2014; 
Kchaou and El-Hajjaji 2017; Chen and Yu 2021; Chen, Yu, and Jam 2022). 
Since the integrating difference matrices’ term is insufficient rank and cannot 
satisfy the prescribed form Ei ¼ QiE, the previous result (Qiao, Li, and Lu  
2021) also cannot be applicable. Furthermore, by the previous result in 
Theorem 1 (Huang 2014), we denote a matrix S ¼ 0 0 1½ �

T satisfying 
ET

i S ¼ 0, "i, and construct a set of LMIs according to Theorem 1. By hiring 
the current LMI solver (Gahinet, Nemirovski, Jaub, and Chilali 1995) for 
verification, we cannot attain a set of feasible solutions.

However, from Theorem 1 with a given matrix S ¼ 0 0 1½ �
T satisfying 

ET
i S ¼ 0, "i, we can construct fifteen LMI constraints by Eq (6). By hiring the 

LMI solver for verification, a set of feasible solutions can be attained as 

P ¼
7:4742 9:5031 8:7931
9:5031 18:7877 23:5037
8:7931 23:5037 67:0064

2

4

3

5� 10� 1 > 0;
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Q1 ¼

3:2041
� 1:9406
� 0:9908

2

4

3

5 ; Q2 ¼

3:3649
� 7:9282
� 3:5648

2

4

3

5 ; Q3 ¼

5:8484
� 5:0914
� 3:3251

2

4

3

5 ; Q4 ¼

1:9990
� 8:9949
� 5:3552

2

4

3

5 ; Q5

¼

1:9537
0:9761
� 0:6783

2

4

3

5

Thus, the considered system is ensured to be admissible according to 
Theorem 1.

Example 2: Consider a two rules fuzzy control system together with three 
order singular model as

Rule 1: If x1ðkÞ is F1
Then E1xðkþ 1Þ ¼ A1xðkÞ þ B1uðkÞ,

Rule 2: If x1ðkÞ is F2
Then E2xðkþ 1Þ ¼ A2xðkÞ þ B2uðkÞ,

where F1and F2 are given membership functions, shown in Figure 1. The 
systems’ matrices in each rules can be individual depicted as 

E1 ¼

1 1 0
0 2 0
0 0 0

2

6
4

3

7
5 ; E2 ¼

2 0 0
0 1 0
0 0 0

2

6
4

3

7
5 ;

A1 ¼

1 1 0:5
0:5 1:5 0:4
� 1 0:5 1

2

6
4

3

7
5 ; A2 ¼

� 1 � 1 1
� 1 � 1 0:5
0:5 0:7 1

2

6
4

3

7
5 ; B1 ¼

1
1
0

2

6
4

3

7
5 ; B2 ¼

1
2
0

2

6
4

3

7
5

In this example, the free input system, that is, the system with uðtÞ ¼ 0, is 
unstable. When given an initial condition xð0Þ ¼ ½ � 10 5 � 12:5 �T , we 
firstly simulate the unforced system. The states’ behaviors are depicted in 
Figure 2. It’s show that the original system with free input is unstable, and a 
controller need to be involved. Since the considered system embraces multiple 

F1 F2

1

0

-5 0 5

x1

Figure 1. Membership functions F1 and F2 of example 2.
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difference matrices Ei, some existing results (Huang 2005; Xu, Song, Lu, and 
Lam 2007; Li, Shi, Wu, and Zhang 2014; Kchaou and El-Hajjaji 2017; Chen 
and Yu 2021; Qiao, Li, and Lu 2021; Chen, Yu, and Jam 2022) cannot be 
applicable for systematically conducting the PDC control. Furthermore, by the 
previous result in Theorem 3 (Huang 2014), we can form a set of LMIs with a 
matrix S ¼ 0 0 1½ �

T satisfying EiS ¼ 0. But, from the LMI solver for 
evaluating the parameters’ intervals a1 2 � 10; 10½ � and a2 2 � 10; 10½ �, we 
cannot acquire existing feasible solutions.

However, based on Theorem 2 for controller design object, we then con-
struct three LMIs’ constraints by (11) and (12) and denote S ¼ 0 0 1½ �

T , 
Q ¼ � 1 � 1 � 1½ �

T , and 

P ¼ P1 0
0 P3

� �

;

where LMI variables P with P1 2 R2�2, P3 2 R1�1 satisfying EiPS ¼ 0, "i. By 
the LMI solver for evaluating, a set of feasible solutions thus are obtained as 

P ¼
24:5760 � 0:5987 0
� 0:5987 47:8118 0

0 0 373:7504

2

4

3

5� 10� 2 > 0;

X1 ¼ � 21:4154 � 5:7502 99:4576½ � � 10� 2;

X2 ¼ 32:0670 36:9098 110:5853½ � � 10� 2:

0 5 10 15
-60

-50

-40

-30

-20

-10

0

10

k

setat
S

x1

x2

x3

x1
x2
x3

Figure 2. States’ responses with free input of example 2.
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And, the admissible PDC gains can be determined by 

K1 ¼ X1P� 1 ¼ � 0:8746 � 0:1312 0:2661½ �;

K2 ¼ X2P� 1 ¼ 1:3240 0:7886 0:2959½ �:

By the identical initial condition xð0Þ ¼ ½ � 10 5 � 12:5 �T , the consid-
ered system equipped with the PDC control with admissible assurance is 
simulated again. The states’ responses xðkÞ and the input signal uðkÞ are 
depicted in Figures 3 and 4, respectively. By observing on Figure 3, it shows 
that all the states’ trajectories have well convergent behaviors. According to 
Theorem 2 and the simulation result, the considered system associated with 
PDC control law are experimentally demonstrated to be admissible.

Furthermore, in practical control system, we need to implement the control 
law to satisfy some specific performance requirements. Based on Theorem 3, 
we can implement the PDC control law with D-admissibility for specific 
stability performance. Thus, by Theorem 3 for PDC control with D-admissi-
bility (α ¼ 0:6), we can construct three LMIs’ constraints by (13) and (14). Let 
S ¼ 0 0 1½ �

T , Q ¼ � 1 � 1 � 1½ �
T
� 101, and 

P ¼ P1 0
0 P3

� �

;

where LMI variables P with P1 2 R2�2, P3 2 R1�1 satisfying EiPS ¼ 0, "i. By 
the LMI solver for evaluating, a set of feasible solutions can be attained as 

0 5 10 15
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

k

setat
S

x1

x2

x3

x1
x2
x3

Figure 3. States’ responses by PDC control with admissibility of example 2.
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P ¼
3:3070 � 1:7737 0
� 1:7737 6:4219 0

0 0 5:4931

2

4

3

5� 104 > 0;

X1 ¼ � 4:7809 1:9445 1:6161½ � � 104;

0 5 10 15
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

)k(u

k

Figure 4. The control input trajectory with admissibility of example 2.

0 5 10 15
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

k

setat
S

x1

x2

x3

x1
x2
x3

Figure 5. States’ responses by PDC control with D-admissibility (α ¼ 0:6) of example 2.
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X2 ¼ 1:7288 4:3142 0:9940½ � � 104:

And, the PDC gains with D-admissible assurance (α ¼ 0:6) can be deter-
mined by 

K1 ¼ X1P� 1 ¼ � 1:5065 � 0:1133 0:2942½ �;

K2 ¼ X2P� 1 ¼ 1:0366 0:9581 0:1810½ �:

For comparison, the considered system equipped with the PDC control 
satisfying the D-admissibility (α ¼ 0:6) is simulated once more. The states’ 
responses xðkÞ and the input signal uðkÞ are individually depicted in Figures 5 
and 6. By observing on Figure 5, it reveals that the states’ trajectories with D- 
admissibility (α ¼ 0:6) have more swiftly convergent behaviors than those 
with admissibility.

Conclusions

In this study, we have coped with the admissible analysis and the PDC control 
for DFSs subjected to multiple difference matrices. Based on the matrix manip-
ulation and the LMI technique, we first proposed the refined admissible analysis 
criteria, where the developed conditions not only involved some slack matrices 
but also severely reduced the number of LMIs’ constraints, where they both may 
be beneficial to reduce the conservatism of the analysis criteria. Moreover, by 
involving the fuzzy PDC control, the explicit design criteria were further pre-
sented for the resulting closed-loop system. Noticeably, the new design method 

0 5 10 15
0

0.5

1

1.5

2

2.5

3

u(
k)

k

Figure 6. The control input trajectory with D-admissibility (α ¼ 0:6) of example 2.

e2167261-16 D.-H. LU AND C.-P. HUANG



can treat controller design with admissibility and D-admissibility for the 
regarded systems. Due to all the presented conditions were formed by the strict 
LMIs, they could directly be evaluated via the LMI solver. Finally, the illustrative 
examples were hired to demonstrate the efficiency and applicability of the 
proposed methods. Nevertheless, in many physical systems, state’s delays are 
inevitably needed to be embraced. Future work will dedicate to the analysis and 
design methods by simultaneously involving the state’s delays and uncertainties.
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