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ABSTRACT
Early identification of potato diseases is of great significance for 
reducing yield losses. The identification of different types of 
diseases has achieved great success. However, for different 
periods of different disease, it is difficult to distinguish due to 
similar symptoms and fine-grained, so there are few related 
studies. In this study, we proposed a convolutional neural net
work based on contrastive learning to identify fine-grained 
potato diseases. Different from the previous unsupervised con
trastive learning used in pre-training, the proposed model adds 
a projection head to the backbone network of Vgg16 to extract 
the contrastive representation features, and then integrates the 
contrastive loss with the classification loss to form a joint loss. 
Finally, an end-to-end supervised contrastive convolutional 
neural network is constructed, which is easier to train while 
reducing the transmission error. Experimental results show 
that the proposed model achieves an average recognition accu
racy of 97.24%, which is higher than 90.28% of Resnet50, 90.62% 
of Resnet101, 93.06% of AlexNet, 94.44% of Inception V3, and 
94.79% of Vgg16. It shows that the model has an obvious effect 
on classification task with similar features, and has practical 
significance for fine-grained potato disease identification.

ARTICLE HISTORY 
Received 11 September 2022  
Revised 9 December 2022  
Accepted 4 January 2023  

Introduction

Potatoes are the fourth largest crop in the world, producing more than 
359 million tons annually and feeding hundreds of millions of people 
(Dongyu 2022). However, potato diseases have a greater impact on yield, 
especially early blight and late blight. Potato early blight is caused by 
Alternaria Sonali Sorauer (Nasr-Esfahani 2022). If the conditions are met 
and the leaves are dried too early, the potato tuber yield will be seriously 
reduced, and even some plots of the whole field cannot be harvested. Potato 
late blight is caused by Phytophthora infestans (Yuen 2021). The disease 
mainly affects the stems, leaves and tubers of potatoes. It can also infect 
buds and berries. In cold and humid conditions, plants die prematurely, 
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resulting in a 40–100% yield loss (Sharma and Lal 2022). Potato early blight 
and late blight have different hazards in different periods. Early disease can be 
prevented by cutting off the diseased leaves or spraying the medicine. But in 
the late stages, all infected plants can only be removed. Therefore, fine-grained 
identification of different stages of potato early blight and late blight is of great 
significance for reducing potato yield loss. But the same kind of potato disease 
in different periods of similar symptoms, difficult to distinguish. And there is 
no clear standard of disease in different periods, can only be judged by crop 
experts or farmers rich experience. If there is no timely observation or omis
sion, the disease will rapidly develop into the late stage and spread to the whole 
field. Therefore, in order to early warn the disease, take corresponding control 
measures as soon as possible, and reduce the yield loss, an automatic, accurate 
and fast fine-grained potato disease identification method is needed.

Over the past decade, image processing technology has been widely used in 
the field of plant disease detection. First, use cameras, infrared spectrometers 
and other mobile devices to take images of normal or diseased plant leaves. 
Then, the color, texture or shape features of plant diseases and insect pests are 
extracted by the feature extractor manually designed by experts, and input into 
classifiers, such as Support Vector Machine (Hao, Chiang, and Chen 2022), 
K-Means clustering algorithm (Sinaga and Yang 2020), Bayesian classifier 
(Geng et al. 2019), etc., to classify and identify plant disease types. However, 
manual design of feature extractors also requires a lot of professional knowl
edge and rich experience in plant pathology, and human resources are expen
sive and cannot be widely promoted. The classifier based on mathematical 
statistics is not ideal for the classification of disease images with complex 
background, large amount of data and large noise. In recent years, with the 
development of computer science and technology, plant disease automatic 
identification technology based on deep learning has made great achieve
ments, and has been widely studied and applied. Using UAV photography 
technology to collect a large number of potato leaf images in time, the trained 
deep neural network model is used to extract and identify the end-to-end 
features of the leaf images to determine whether there is a disease. In parti
cular, convolutional neural networks have shown excellent ability in feature 
extraction and classification (Andreas and Prenafeta-Boldĺš 2018).

However, the existing plant disease identification research mainly focuses 
on the following three directions:

• Classification of different diseases in different plants.
• Classification of different diseases in the same plant.
• Classification of different degrees in the same plant with the same disease.
Among them, the research of classification of different degrees in the same 

plant with the same disease is few, and the number of categories is small. In 
practice, the same plant is often planted together, but different diseases and 
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different degrees are coexisting. It is more difficult to accurately identify. 
Therefore, our research object of fine-grained potato disease identification is:

• Classification of different degrees in the same plant with different diseases.
The more important significance of plant disease identification lies in the 

early detection of diseases. Only by finding the disease as early as possible can 
we take corresponding control measures in time, and it is often too late in the 
middle and late stages. It is even more important than determining which 
disease. However, the same disease has similar characteristics in different 
periods, so it is more difficult to distinguish the period of disease than the 
type. It is necessary to find a deep learning method suitable for fine-grained 
potato disease identification to better distinguish the characteristics of differ
ent diseases in different periods. In the past two years, contrastive learning has 
set off a wave in the field of computer vision. MoCo (Kaiming et al. 2020), 
SimCLR (Chen et al. 2020), BYOL (Grill et al. 2020), SimSiam (Chen and 
Kaiming 2021) and other model methods based on contrastive learning ideas 
emerge in endlessly. They are superior to other models in some tasks in the 
field of computer vision. The idea of contrastive learning is to shorten the 
distance between similar samples in the potential space and push the distance 
between different types of samples by calculating the similarity of sample data 
features, so as to distinguish different types of samples more easily. Therefore, 
in theory, the model method based on contrastive learning can achieve better 
results in tasks such as classification and similarity calculation.

In summary, unlike conventional plant disease identification, fine-grained 
disease identification divides different diseases into different degrees. Because 
the characteristics of the same disease are similar in different degrees, and the 
classification number is greatly increased, it is more difficult to identify fine- 
grained diseases, and there are few related researches in this area. We divided 
the early blight and late blight of potato leaves into 4 degrees and 8 categories. 
We study the deep convolutional neural network model CLCNN based on 
contrastive learning. The fine-grained characteristics of potato diseases can be 
better extracted through the contrastive representation of different disease 
characteristics, and the accuracy of potato disease degree identification can be 
improved. The contributions of this paper are summarized as follows: 

(1) A convolutional neural network model based on contrastive learning 
was proposed, which improved the accuracy of identifying different 
degrees of potato diseases, and had practical significance for reducing 
the loss of potato yield.

(2) The image data sets of early blight and late blight of potato leaves were 
collected, and four periods of early blight and late blight were defined, 
including 8 categories, which were used for the training of fine-grained 
potato disease identification model.
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(3) Proved that the end-to-end supervised contrast learning model has 
obvious effect on the classification tasks with similar features, which 
provided a reference for subsequent related research.

Related Work

Traditional potato disease identification relies on the experience of plant 
experts and farmers. Inexperienced farmers often cannot correctly identify 
the types and stages of potato diseases, resulting in serious yield losses. With 
the development of image processing technology, scientists and technicians 
can identify potato diseases by extracting image features of potato leaves or 
tubers. Hossai et al. designed a feature extraction system. Firstly, the leaf image 
was normalized and the color space was converted. Then, 11 features such as 
skewness and kurtosis of the image were extracted. Finally, these features were 
input into the support vector machine to identify the tea brown leaf spot, tea 
algae spot and health image. The recognition rates are 90%, 92% and 98% 
respectively (Hossain et al. 2018). Kiani et al. proposed two algorithms for 
identifying strawberry diseases. The first algorithm is a color-based detection 
algorithm, which is used to distinguish between healthy areas and disease- 
infected areas of plants. The second algorithm is strawberry health and disease 
classification algorithm based on fuzzy logic. The results showed that the 
identification accuracy of diseased strawberry was 97% (Kiani and Mamedov  
2017). Yang et al. proposed a distance transform-Gaussian filtering-watershed 
algorithm to separate rice blast spores attached to microscopic images, and 
then selected four shape features (area, diameter, ovality, complexity) and 
three texture features (entropy, uniformity, contrast) for decision tree models 
classification. Finally, the confusion matrix algorithm was used to calculate the 
classification accuracy, and the detection accuracy of rice blast reached 94% 
(Ning et al. 2019).

Using various image processing techniques and traditional machine learn
ing algorithms to identify plant diseases has been well studied and applied in 
the past. However, this method requires experts to design feature extractors 
manually, and it can’t be widely used in the absence of professionals and 
a large amount of data. In addition, due to the complexity and diversity of 
plant diseases, these methods are only effective in some cases, and can’t get 
good results on complex and diverse data.

Due to the rapid development of image processor in recent years, the speed 
of matrix calculation has been greatly improved, which greatly reduces the 
calculation time of deep neural networks. It creates conditions for related 
scientific research, and makes deep learning technology make great progress in 
recent years. Deep learning uses deep neural networks to automatically extract 
image features and adaptively train data sets. It doesn’t need technicians to 
design specific feature extraction methods, but only needs to adjust the 
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network structure to get better results. Chen et al. applied the improved 
convolution neural network LeftNet to the identification of tea pests and 
diseases, and the identification accuracy reached 90.16%. It is significantly 
superior to 60.62% of SVM and 70.77% of MLP, which proves the powerful 
effect of deep convolution neural network in the field of plant disease identi
fication (Chen, Liu, and Gao 2019). In order to enhance the imbalanced data of 
nine tomato diseases, Nazki et al. proposed a new deep generative adversarial 
network AR-GAN based on GAN (Goodfellow et al. 2014). It made the 
accuracy of tomato disease identification increased from 80.9% to 86.1% 
(Nazki et al. 2020). Chen et al. pre-trained the VGGNet (Simonyan and 
Zisserman 2014) model on the large scale image tagging dataset ImageNet. 
The proposed model has significant performance improvements. Under com
plex background conditions, the average accuracy of rice disease identification 
reached 92%, which proved the important role of transfer learning in plant 
disease identification (Junde et al. 2020). Lu et al. designed a deep convolution 
neural network model to identify 10 common diseases on 500 images of 
diseased leaves and healthy stems of rice taken in experimental fields. Under 
the strategy of 10 times cross validation, the accuracy rate is much higher than 
that of traditional machine learning methods (Yang et al. 2017). Li et al. 
classified ginkgo leaf diseases into three levels: healthy, middle and severe. 
They were trained in laboratory and field conditions by using VGG16 and 
Inception V3 models, and finally the recognition accuracy reached 93.2% in 
field conditions (Li et al. 2020).

With the increasing amount and complexity of plant disease image data, the 
plant disease identification methods based on image processing technology 
and traditional machine learning can no longer meet the task requirements. 
The plant disease identification method based on deep learning has the 
advantages of automation, rapidness, accuracy and strong adaptability. It has 
become the mainstream research object of modern plant disease identification. 
However, deep learning methods are mostly used to solve the classification 
problems of different diseases, and there are few studies on the identification 
of different disease with different degrees.

Contrastive learning originated in 1990s, but it has gained great success in 
the field of computer vision in recent two years. Therefore, it has been widely 
concerned and become a research hotspot in the field of artificial intelligence. 
Kaiming He et al. proposed an efficient contrastive learning model, 
Momentum Contrast, MoCo), by constructing a dynamic dictionary with 
queue and moving average encoder from the perspective of dictionary search. 
In seven downstream tasks, the representation learned by MoCo is even better 
than other supervised pre-training models (Kaiming et al. 2020). Ting Chen 
et al. proposed a simple and efficient contrastive learning framework for image 
feature extraction. First, the positive samples are expanded by data enhance
ment, and other data of the same training batch are used as the negative 
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samples. By calculating the similarity between positive samples and negative 
samples, a reasonable loss function is constructed. The goal is to increase the 
similarity between positive samples and decrease the similarity between nega
tive samples. The model improves the accuracy of top-1 by 7% on ImageNet 
data set. This simple and efficient contrastive learning framework has become 
the basis of many subsequent contrastive learning models (Chen et al. 2020). 
Prannay Khosla et al. put forward a supervised contrastive learning frame
work, which uses labeled data sets for pre-training. It takes the same kind of 
data as positive samples, and takes different kinds of data as negative samples 
to further distinguish the same training batch. Positive and negative samples 
can be effectively labeled, while improving the accuracy of identification 
(Khosla et al. 2020). Although contrastive learning appears in the field of 
computer vision, it has also achieved good results in the field of natural 
language processing. The ConSERT model was put forward by Yan et al. 
referring to SimCLR model, but Bert (Devlin et al. 2018) was used instead of 
ResNet and the projection head was removed. Compared with the previous 
model, using ConSERT model on STS data set is improved by 8% (Yan et al.  
2021). It proves that the idea of contrastive learning is universally applicable 
and can achieve better results in various tasks in various fields.

Contrastive learning is a discriminative representation learning framework 
based on contrast idea, which is mainly used for feature extraction in pre- 
training process. The features extracted by contrastive learning can achieve 
better performance in downstream tasks, which has been proved in many 
studies. However, training feature extractors based on contrastive learning 
requires a lot of labeled or unlabeled data, and it is difficult to obtain a large 
amount of data for a new task. Through the literature survey of related work, 
we found that contrastive representation learning can be applied to the 
identification of potato fine-grained diseases. Therefore, our idea is to study 
an end-to-end contrastive convolutional neural network suitable for small 
sample data sets to improve the recognition accuracy.

Materials and Methods

In this paper, we add projection head and contrastive loss function on the basis 
of Vgg16, and propose a supervised end-to-end contrastive learning-based 
deep convolutional neural network named CLCNN. CLCNN has three mod
ules, encoder, classifier and projection head. The network structure of each 
module is shown in Figure 1. The data after data enhancement is input into the 
encoder, and the general image features of potato diseased leaves are extracted. 
The classifier is used to further abstract the high-level characteristics of potato 
diseases and classify the diseases of potato in different periods. Using the 
concept of contrastive learning, the projection head and contrastive loss 
functions are employed to further limit the representation learned by the 
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encoder. As a result, fine-grained potato disease identification accuracy has 
improved.

Data Source

Potato Research Institute of Yunnan Normal University is the first potato 
research institute in China. Combined with the excellent potato planting 
conditions and industrial support in Yunnan Province, great achievements 
have been made in potato research. The images of potato diseased leaves used 
in this paper are collected from Internet and the potato plantation of the 
Potato Research Institute of Yunnan Normal University, a total of 169. They 
are all taken by different people with mobile phones in the natural environ
ment. The requirements for shooting technology and equipment are not high. 
The shooting distance, angle, lighting conditions, and camera equipment are 
not the same. They have different complex backgrounds and are very close to 
the actual application environment. The training set and the test set are 
divided in a ratio of 6 : 2. In this paper, two diseases of potato early blight 
and late blight were selected. The degree of potato early blight and late blight 
was subdivided into 8 categories, and each degree was clearly defined, see 
Table 1 and Figure 2. Early_1 to Early_4 represent the initial, early, middle and 
late stages of potato early blight. Late_1 to Late_4 represent the initial, early, 
middle and late stages of potato late blight.

Figure 1. CLCNN’s model architecture.

Table 1. Definition of disease period of potato early blight and late blight.
Early_1 Early_2 Early_3 Early_4 Late_1 Late_2 Late_3 Late_4

number of lesions 0-3 4-10 10-20 >20 1 1-2 3-5 >5
total lesion area <5% 5%-15% 15%-30% >30% <5% 5%-10% 10%-20% >20%
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Data Augmentation

Data augmentation is necessary to improve the results of small data sets. The 
data of potato disease images were augmented by left and right flip, up and 
down flip, contrast transformation, Gaussian noise (Camuto et al. 2020), 
brightness transformation, Gaussian noise plus brightness transformation. 
Compared with the original images, a total of 7 times of positive and negative 
samples were obtained, allowing contrastive learning to learn additional data 
consistency features. Data augmentation process is defined in Equation 1, 
Equation 2 and Equation 3.

Assume that the input data has the following sample space: 

X ¼ fx1; . . . ; xi; . . . ; xng (1) 

Γ denotes data augmentation method, each of the samples is augmented 
into: 

fa7i� 6; . . . ; a7ig ¼ ΓðxiÞ (2) 

The enhanced sample space becomes: 

A ¼ ΓðXÞ ¼ fa1; . . . ; ai; . . . ; a7ng (3) 

Network Structure

Encoder
Convolutional layers (Gu et al. 2018), ReLU activation functions (Agarap  
2018), and max pooling layers (Brutzkus and Globerson 2021) are the primary 
components of the encoder. The receptive field and weight sharing methods 
employed by CNN reduce the amount of network training parameters, 
improve the optimization effectiveness of network parameters, and keep the 
picture well, which is why it was chosen as the encoder’s main backbone. 

Figure 2. Examples of potato early blight and late blight in each period.
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CLCNN’s encoder is pre-trained with VGG16’s weights, and its purpose is to 
extract common features of potato disease leaves via transfer learning. Let Hi 
represent the feature representation of the i-th encoder network layer, then Hi 
can be generated as follows Equation 4: 

Hi ¼ ðHi� 1κiÞυν� (4) 

Where Hi� 1 represents the feature of the previous network layer, (H0 
represents the original input), κi represents the convolution kernel of the 
current convolutional layer, υ represents the ReLU function, ν represents the 
max pooling function, and � represents quantity is not fixed, please refer to 
Figure 1 for the specific quantity. The feature E encoded by the encoder is 
expressed as Equation 5: 

E ¼ EncoderðAÞ (5) 

The network structure and input and output parameters of the encoder are 
shown in Table 2.

Classifier
To lower the dimension of the characteristics learned by the encoder and 
gradually abstract the high level aspects of potato illness photos, the classifier 
employs four layers of fully connected neural networks (Ding et al. 2021), two 
ReLU functions, one Dropout function (Liang et al. 2021), and one Softmax 
function (Niklaus and Liu 2020). The relationship of present network layer 
feature Si and the preceding network layer feature relationship Si� 1 is written 
as Equation 6: 

Si ¼ ðSi� 1Wi
0 þ Bi

0Þυ�δ��� (6) 

Where S0 denotes the input of Classifier. Wi is the weight of the fully 
connected neural network in the i-th layer. Bi is the offset vector of the fully 
connected neural network in the i-th layer. υ is the ReLU function. δ is the 
Dropout function. � is the Softmax function, and � represents quantity is not 
fixed, please refer to Figure 1 for the specific quantity.

The diseased image features extracted by the encoder code are passed 
through the classifier, and finally a 1-dimensional vector (Y) of size 8 is 
obtained as Equation 7: 

Table 2. Network structure of CLCNN’s encoder. Vgg16� represents 
the feature extractor and max pooling layer of Vgg16. Please refer 
to (Simonyan and Zisserman 2014) for the specific network struc
ture of Vgg16.

Module Network Input size Output size

Encoder Vgg16� 650*65 25088
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Y ¼ ClassifierðEÞ (7) 

Where Y represents the probability of each disease period identified by the 
model, and the largest probability is the degree of potato disease predicted by 
CLCNN.

The network structure and input and output parameters of the classifier are 
shown in Table 3.

Projection Head
The function of the projection head is to further filter the features extracted by the 
encoder to extract more features related to the contrastive learning task. The 
reason for this is that the encoder using transfer learning extracts the general 
features of the diseased image, which contains many task independent features. 
The projection head consists of 2 layers of fully connected neural network, 1 
BatchNorm function (Sari, Belbahri, and Partovi Nia 2019), and 1 ReLU function. 
The two layer fully connected neural network reduces the 1-dimensional vector 
feature of size 25,088 output by the encoder to a 1-dimensional vector feature of 
size 128. It will be used as input to the contrastive learning loss function, expressed 
as Equation 8: 

Z ¼ ProjectionðEÞ
¼ ðEW00

1 þ B001ÞδυðEW00
2 þ B002Þ

(8) 

Where W1 and W2 represent the weights of the two layer fully connected 
neural network. B1 and B2 represent the offset vector. δ represents the 
BatchNorm function, and υ represents the ReLU function.

The network structure and input and output parameters of the projection 
head are shown in Table 4.

Table 3. Network structure of CLCNN’s classifier. Vgg16** represents the 
classifier of Vgg16 that lacks the last fully connected layer. Please refer to 
(Simonyan and Zisserman 2014) for the specific network structure of Vgg16.

Module Network Input size Output size

Classifier Vgg16�� 25088 1000
Fully connected layer 1000 8
Softmax 8 8

Table 4. Network structure of CLCNN’s projection head.
Module Network Input size Output size

Projection head Fully connected layer 25088 512
BatchNorm 512 512
ReLU 512 512
Fully connected layer 512 128
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Contrastive Representation Learning

Construction of Positive and Negative Examples
Because positive and negative examples are the objects of contrastive learning, 
the selection and construction of positive and negative examples is crucial. As 
previously stated, our goal is to identify fine-grained potato disease and 
research methodologies that are suitable for a small number of datasets and 
can improve classification accuracy over time. According to the dataset’s label, 
we utilize data with the same category label as a positive example and data with 
a different category label as a negative example. Specifically, in the same 
training batch, the category data with the largest number of labels is selected 
as the positive example, and the data of other categories is used as the negative 
example relative to the positive example. The positive sample set P and the 
negative sample set N are then expressed as Equation 9 and Equation 10: 

P ¼ fzijf ðziÞ ¼ gðZÞg (9) 

N ¼ fzijf ðziÞ�gðZÞg (10) 

Where the function f ðziÞ represents the category of data obtained according 
to the existing label in the projection head’s output space Z, while the function 
gðZÞ represents the category with the largest number in the space Z.

Contrastive Loss Function
The loss function is separated into two parts: the classification loss function, which 
employs the cross entropy loss function, and the comparative learning loss func
tion. The final joint loss function is obtained by adding the values of the two loss 
functions. The following section focuses on contrastive learning’s loss function.

Use the quantity product to calculate the similarity between two feature 
vectors. The overall similarity of positive examples is equal to the sum of the 
pairwise products of all elements in the positive example set P, denoted as α. 
The overall similarity of negative examples is equal to the sum of the pairwise 
products of all elements in the negative example set N, denoted as β. α and β 
are expressed as follows Equation 11 and Equation 12: 

α ¼
Xp2P

i�j
pi � pj (11) 

β ¼
Xn2N

i�j
ni � nj (12) 

Because the BatchNorm function is used for normalization in the projection 
head, the result of the quantity product is proportional to the cosine of the 
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angle between the feature vectors. Therefore, the quantity product can be used 
to measure the similarity between two feature vectors.

The goal of contrastive learning is to make the similarity between positive 
example features larger and the similarity between negative example features 
smaller. Therefore, when studying the loss function of contrastive learning, we 
chose the negative logarithmic function. In order to eliminate the influence of the 
logarithmic function on the similarity, the natural base is used as the base of the 
similarity. In addition, a hyperparameter τ is added to adjust the difference in the 
similarity of positive and negative examples, thereby adjusting the distance range 
between positive and negative examples in the latent space. The smaller the τ, the 
larger the distance between positive and negative examples, and the less training is 
required. The larger the τ, the smaller the distance between positive and negative 
examples, and the more training is required. The choice of τ is not as small as 
possible, because the number of training times requires balancing the classifier and 
projection head to make the features they learn as good as possible. The loss 
function formula for contrastive learning is as follows Equation 13: 

,c ¼ � log
expðα=τÞ

expðα=τÞ þ expðβ=τÞ
(13) 

Algorithm 1:CLCNN’s main learning algorithm.

Input: Potato disease images X, batch size n, structure of E,C ,P, function of Γ ,f ,g, 
constant τ

1 for sampled minibatch fxig
n
i¼1 do

2 for i 2 f1; . . . ; ng do
3 fa7i� 6; . . . ; a7ig ¼ ΓðxiÞ # Data augmentation
4 define P ¼ fg # Positive examples
5 define N ¼ fg # Negative examples
6 for j 2 f1; . . . ; 7ng do
7 ej ¼ EðajÞ # Encoder
8 yj ¼ CðjÞ # Classifier
9 zj ¼ PðjÞ # Projection head
10 # get category function f
11 # get most category function g
12 if fðziÞ ¼ gðZÞ then
13 push zi to P
14 else
15 push zi to N
16 define α ¼ 0# Positive examples’ similarity
17 define β ¼ 0# Negative examples’ similarity
18 for k 2 f1; . . . ; 7ng do
19 for m 2 f1; . . . ; 7ng do
20 if zk 2 P and zm 2 P and zk�zm then
21 α ¼ αþ zk � zm # Update α
22 if zk 2 N and zm 2 N and zk�zm then
23 β ¼ βþ zk � zm # Update β
24 # CrossEntropy loss
25 define ,ce ¼

P
j27n lableðyjÞ logðyjÞ

26 # Contrastive loss
27 define ,c ¼ � log expðα=τÞ

expðα=τÞþexpðβ=τÞ
28 # Joint loss
29 define L ¼ ,ce þ ,c
30 Update networks’ parameters to minimize L

Output:Predicted potato diseases Y
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The above formula is deformed to obtain: 
,c ¼ � logð1þ expðβ=τÞ=expðα=τÞÞ. It is not difficult to find that ,c decreases 
as α increases and β decreases. Therefore, the contrastive loss function imple
ments the idea of contrastive learning, that is, increasing the similarity 
between positive examples and reducing the similarity between negative 
examples.

Finally, the loss function value ,c of the contrastive learning and the cross 
entropy loss function value ,ce of the classification are added to obtain the 
joint loss function value L, as described in Equation 14. The joint loss function 
is used to update all weight parameters of the entire CLCNN model, thus 
forming a supervised end-to-end contrastive learning-based convolutional 
neural network model. 

L ¼ ,ce þ ,c (14) 

Algorithm 1 summarizes the proposed method.

Experiments

To verify the feasibility of the proposed CLCNN model, we designed and 
completed experiments for fine-grained potato disease identification. The 
experimental process is divided into the following steps. First, the leaf images 
of potato early blight and late blight in different disease periods are collected, 
and then the Mask-RCNN (Kaiming et al. 2017) model is used to segment the 
diseased leaf images. The rest of the background is set to black, and then 6 data 
enhancement methods is used to expand the dataset, and finally the expanded 
dataset is input into the CLCNN model for training and testing, as shown in 
Figure 3. To verify the performance improvement of the CLCNN model, we 
also compare it with Resnet50 (Kaiming et al. 2016), Resnet101 (Zhang 2022), 
AlexNet (Krizhevsky et al. 2012), Inception V3 (Szegedy et al. 2016), Vgg16 

Figure 3. Process of CLCNN’s experiments.
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(Simonyan and Zisserman 2014). Finally, the experimental results of the 
CLCNN model are analyzed and summarized.

Leaf Segmentation

Because the potato disease pictures are taken in the natural environment, 
affected by the light and soil environment, the background is complex, 
which has a great influence on the identification accuracy of potato diseases. 
Therefore, it is necessary to remove the complex background of the image and 
segment the diseased leaves.

This paper uses Mask R-CNN to segment diseased potato leaves. Mask 
R-CNN is a general instance segmentation framework, which is a branch of 
Fast R-CNN (Meng et al. 2018). In order to use the Mask R-CNN model, we 
first need to label the diseased potato leaves using the Labelme (Lu, Yifan, and 
Xiao 2019) tool. These labeled data are then used to train a Mask RCNN 
model, and the trained model is used to segment images of potato leaves with 
complex backgrounds in natural environments. The experimental process of 
plant disease leaf segmentation is shown in Figure 4.

Data Augmentation

Due to time and human resource cost constraints, there are few data on potato 
disease in natural contexts, so it is crucial to use data-augmented methods to 
make it more effective. Data augmentation means making a limited amount of 
data yield value equivalent to more data without adding more data (Shorten 
and Khoshgoftaar 2019), while also increasing the number of positive and 
negative examples for contrastive learning, making the effect of contrastive 
learning better. This paper uses python’s skimage library to perform six image 
transformations on each segmented plant disease image, including left and 
right flip, up and down flip, contrast transformation, Gaussian noise, 

Figure 4. The experimental process of using Mask-RCNN to segment plant diseased leaves.
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brightness transformation, Gaussian noise plus brightness transformation, as 
shown in Figure 5. The augmented dataset has a total of 1183 images, and the 
number of images in each period is shown in Table 5.

Model Training

The matrix calculation of deep learning needs enough GPU computing power 
to support. The GPU we use is NVIDIA Tesla T4 16GB, the server environ
ment is Windows 10 64-bit operating system, and the CPU is Intel(R) Xeon(R) 
Gold 5117 CPU @ 2.00 GHz 2.00 GHz. The deep learning framework of choice 
is Pytorch, and based on this framework, we built the experimental data 
reading, model definition, training, and testing code from scratch. Under the 
above hardware and software conditions, the training time of our CLCNN 
model is about 12 hours. In addition to training the CLCNN model, we also 
trained Resnet50, Resnet101, AlexNet, Vgg16, Inception V3 models for com
parison. The hyperparameter settings of the model are shown in Table 6. The 

Figure 5. Six methods of data augmentation.

Table 5. Results of data augmentation.
Early_1 Early_2 Early_3 Early_4 Late_1 Late_2 Late_3 Late_4 total

original 10 10 28 25 6 25 32 33 169
augmentated 70 70 196 175 42 175 224 231 1183

Table 6. Hyperparameters of CLCNN. τ refers to 
Equation 13.

model hyperparameters value

CLCNN learn_rate 1e-05
τ 0.8
batch_size 10
epochs 200
rand_seed 42
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source code of the paper is https://github.com/woldcn/CLCNNhttps://github. 
com/woldcn/CLCNN.

Results and Discussions

In the experiment of fine-grained potato disease recognition, we compared the 
proposed CLCNN model with five other models which have good effects in the 
field of image recognition. We recorded the change of accuracy during the 
training and testing of each model, as shown in Figure 7. It is not difficult to 
find that the accuracy curve of CLCNN model is more stable and the upward 
trend is more obvious. It shows that the model has better denoising ability and 
learning ability by filtering and further restricting the general features of 
diseases by contrastive learning pro-jection head. It is proved that the pro
posed CLCNN model is suitable for fine-grained potato disease identification.

After 200 training iterations, we recorded the highest accuracy of the 6 
models on the test set, as shown in Table 7. The confusion matrix of classifica
tion results is presented in Figure 6. Among them, the accuracy of our 
proposed CLCNN model is 97.24%, higher than 90.28% of Resnet50, 90.62% 
of Resnet101, 93.06% of AlexNet, 94.44% of Inception V3, and 94.79% of 

Table 7. The highest accuracy of the 6 models on test set.
Models Resnet50 Resnet101 AlexNet Inception V3 Vgg16 CLCNN

accuracy 90.27 90.62 93.05 94.44 94.79 97.24

Figure 6. Confusion matrix of the classification results.
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Vgg16. It was 6.96% higher than Resnet50 and 2.45% higher than Vgg16. This 
shows that our proposed method is feasible and superior to the other five main 
image recognition models.

We tried multiple hyperparameters tuning using the fixed variable method, 
and the best results for each parameter on the test set are shown in Figure 8. It 
can be seen from Figure 8 (a) and (b) that there is an optimal value for the 
learning rate and temperature hyperparameters. Below or above this value, the 
accuracy will decrease. Moreover, the learning rate cannot be set too high, and 
the model cannot be fitted after being higher than 1e-05. After the number of 

Figure 7. Accuracy curves for training and testing of each model.
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iterations exceeds 200, the accuracy of the model no longer rises, indicating 
that the model and data do not require too many iterations and can converge 
quickly within a limited number of iterations, as shown in Figure 8 (c). 
Limited by GPU (Tesla T4) hardware conditions, we experimented with 
batch sizes up to 10 pictures. Figure 8 (d) shows that as the batch size increases, 
the accuracy of the model increases. We analyzed the reason that each batch 
needs to have enough samples to support positive and negative sampling. The 
larger the batch, the richer the sampling of positive and negative samples, and 
the more valuable the contrast loss calculated by Equation 13. At the same 
time, this is also a limitation of the model, which requires certain hardware 
conditions to support a sufficient size of batch data. If the memory is not 
enough, it will cause overflow errors. Whether the larger the batch, the better, 
which requires us to have better hardware conditions later experimental 
verification.

In order to deeply analyze the reason why the proposed CLCNN model has 
higher accuracy, we remove the projection head and contrast loss function in the 
CLCNN model, and the remaining model network is basically consistent with the 
network module of Vgg16. The encoder still uses the pre-training weights of 
Vgg16. We evaluated the recognition accuracy, recall rate, specificity and F1 score 

Figure 8. The highest accuracy of CLCNN on different hyperparameters. lr denotes learn_rate. τ 
refers to Equation 13.
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of the two models in different degrees of potato early blight and late blight,, as 
shown in Table 8. The results show that the CLCNN model has improved 
significantly in five of them. It shows that the CLCNN model using the idea of 
contrastive learning not only obtains higher accuracy, but also more comprehen
sive identification and lower probability of error in fine-grained potato disease 
identification. It is proved that the supervised contrastive convolution neural 
network is effective.

Conclusions

Deep learning is an effective method for plant disease identification. In 
order to make the characteristics of potato in different disease stages more 
dispersed in the latent space, so as to improve the classification accuracy, 
we studied the contrastive learning which has been developed in the past 
two years. In this study, we proposed a deep convolutional neural network 
(CLCNN) based on supervised end-to-end contrastive learning for the 
identification of fine-grained potato diseases. Through many comparative 
experiments, the main conclusions of the model are as follows : (1) The 
CLCNN model improves the similarity between similar sample features 
and reduces the similarity between different sample features, and makes 
the samples of different classes have better discrimination. (2) CLCNN 
model can effectively improve the accuracy of fine-grained potato disease 
identification. (3) The previous contrastive learning methods extract fea
tures in the pre-training stage, and the contrastive learning of CLCNN is 
directly used for classification tasks, indicating that the contrastive learn
ing method can also achieve good results when directly applied to down
stream tasks. In fact, the projection head module based on contrastive 
learning in the CLCNN model can be integrated into all supervised 
classification models, which is expected to improve the accuracy of all 
classification tasks. In the following work, we will try more research and 
experiments to prove this.

Table 8. Precision, recall, specificity, and F1 score of Vgg16 and CLCNN in each period.
Vgg16 Early_1 Early_2 Early_3 Early_4 Late_1 Late_2 Late_3 Late_4

precision 1.0 1.0 0.961 1.0 0.933 0.93 0.902 0.942
recall 0.667 1.0 1.0 0.886 1.0 0.952 0.982 0.98
specificity 1.0 1.0 0.992 1.0 0.996 0.988 0.974 0.987
F1 score 0.8 1.0 0.98 0.9394 0.965 0.9412 0.9402 0.9608
CLCNN Early_1 Early_2 Early_3 Early_4 Late_1 Late_2 Late_3 Late_4
precision 1.0 0.84 1.0 1.0 0.933 1.0 0.949 1.0
recall 0.667 1.0 1.0 1.0 1.0 0.976 1.0 1.0
specificity 1.0 0.985 1.0 1.0 0.996 1.0 0.987 1.0
F1 score 0.8 0.913 1.0 1.0 0.965 0.988 0.973 1.0
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