
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: sergio.magalhaes@unincor.edu.br; 
 
 
 

British Journal of Applied Science & Technology 
11(2): 1-7, 2015, Article no.BJAST.19598 

ISSN: 2231-0843 

 
SCIENCEDOMAIN international 

            www.sciencedomain.org 

 

 

Test to Check the Equality of Regression Models 
and a Medical Application 

   
Sérgio Ricardo Silva Magalhães1*  

 
1Universidade Vale do Rio Verde, Av. Amazonas, 1700 – Belo Horizonte /Minas Gerais,  

CEP: 30.180-001, Brasil. 
 

Author’s contribution 
 

The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/BJAST/2015/19598 
Editor(s): 

(1) Qing-Wen Wang, Department of Mathematics, Shanghai University, P.R. China. 
Reviewers: 

(1) Anonymous, Institute of Business Management Karachi, Pakistan. 
(2) Anonymous, University of Tsukuba, Japan. 

Complete Peer review History: http://sciencedomain.org/review-history/10431 

 
 
 

Received 18
th

 June 2015  
Accepted 24th July 2015 

Published 5
th

 August 2015 

 
 
ABSTRACT 
 
In this study, we considered the Model Identity and the Dummy Variables methods used to compare 
regression models. The adjustment of h linear regression equations was considered to verify the 
equality of the regression models by data simulation. Using features from the Interactive Matrix 
Language (IML) from the SAS system, appropriate routines were developed for the methodology of 
regression models comparison. A data simulation with 100,000 experiments was performed 
considering different sample sizes (10, 50 and 100 observations). The performances of the two 
methods were essentially equivalent when comparing the different sample sizes. The results from all 
cases simulated by the methods had low percentages of Type I and Type II error rates. For larger 
samples, Type I and Type II error rates were always lower when using the approximate F statistics, 
which must therefore be the method of choice. The Dummy Variables method was the most efficient 
for all three sample sizes because it exhibited the lowest Type I and Type II error rates. 
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1. INTRODUCTION 
 
Linear regression models have applications in 
many different fields of knowledge [1].  
 
A linear model is often used because of its ease 
in describing the approximate relationship [2]. 
 
Regression analysis is often used to determine 
whether the equations from a set of h adjusted 
equations are identical, i.e., whether the 
phenomenon studied can be represented by a 
single equation [3].  
 
In medical data, the dependent variable Y and 
the set of regressive variables Xi, i = 1, 2,..., n 
are usually measured in a set composed of 
different groups to compare how they differ 
depending on the relationship between Xi and Y 
[4]. This analysis can be performed by 
developing regression models for each group 
and then determining whether the corresponding 
equations are parallel, have a common intercept 
or are identical [5]. 
 
Many authors have reported methods for testing 
hypotheses concerning the equality of linear 
models [6,7,8,9,10]. 
 
There are many methods of comparing 
regression equations; among these, the Model 
Identity [11] and Dummy Variables [12] (binary) 
methods are the most prominent. 
 
Thus, this study aimed to evaluate the Model 
Identity and Dummy Variables methods of 
comparing linear regression equations by data 
simulation and to determine whether there are 
differences between these methods and their 
practical applications. 
 
2. METHODOLOGY AND RESULTS 
 
2.1 Statistical Model 
 
Initially, the fit of the observational data relative 
to h groups was considered. The following linear 
regression model was fitted to each of them: 
 

0 1 1 2 2 ...i i i k ki iy x x x    = + + + + +         (1) 

 

where 

iy : ith value of the response variable, i= 1, 2, ..., 

N observations;  

iy kix : ith value of the kth explanatory variable, k 

= 1, 2, ..., K variables;  

k : model parameters; 

i  : random errors. 

 

In matrix notation, the model assumes the 
following form: 
 

β ε= +y X                                                   (2)              
     

where 
 :: N x 1 vector of observations, N being the 
number of observations; 
  :: N x (K + 1) matrix of explanatory variables, K 
being the number of explanatory variables; 
 : :(K + 1) x 1 parameter vector, (K + 1) being the 
number of parameters; 
 :: N x 1 vector of random errors. 
 

To estimate the β  parameter vector, the least 

squares and the maximum likelihood methods, 
which lead to the same estimators, are 
commonly employed. 
 

According to the error assumptions, there are 
variations in the method of least squares 
estimation for the linear regression model, 
regarding the several forms that the variance and 
covariance matrix can adopt. 
 

These variations are known as the ordinary, 
weighted and generalized least squares 
methods.  
 

In fitting a model by the ordinary least squares 
method, it is assumed that the average error is 

null ( ( ) 0iE  = ); the error variance, 

, 1,2,...,i i n = , is constant and equal to 
2 ; 

and the error of an observation is not correlated 
with the error of another observation, i.e., 

( ) 0i jE   = , for i j  and the errors are random 

variables with normal distributions [6]. 
 

Based on the ordinary least squares method, a 
β  vector is estimated under the condition that 

the residual sum of squares is minimized. The 
quadratic function Z, which is the residual sum of 
the squares, is 
                                                              

(3) 
 

By taking the partial derivative relative to β , the 

following system of normal equations is obtained 
[7]: 
             

ˆ =X'Xβ X'y                                                (4) 

( ) '  ( )= =  Z ε'ε y βX y Xβ
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As the matrix X  has full column rank, X'X is a 
positive definite matrix and, thus, X'X is 
nonsingular. Therefore, the inverse matrix 

1(X'X)  exists, and the solution for β  is 
 

ˆ = 1β (X'X) X'y                                           (5) 

 

This unique solution corresponds to the non-
linear unbiased estimator with the minimum 
variance forβ . 

 

2.2 Model Identity Method 
 

The Model Identity method is a very general test 
that verifies the equality of two linear 
regressions. Its algorithm proceeds through the 
following steps [11]: 
 

1. Given the following linear relationships:  
 

1 1 1 1 1 1

2 2 2 2 2 2

1,...,

1,...,

i i i

i i i

y a b x e i n

y a b x e i n

= + + =

= + + =
              (6)     

  
relative to two observation sets. 
 

2. All the 1 2n n+  observations are combined, and 

the least squares estimates of a  and b  are 
calculated in the combined regression
y a bx e= + + . From this equation, the residual 

sum of squares ( 1S ) is obtained with 1 2n n p+   

degrees of freedom, in which p  is the number of 

parameters to be estimated. In this case, p = 2. 
 

3. The residual sum of squares for each of the 

two equations, i.e., 2S  and 3S , is obtained with 

1n p  and 2n p  degrees of freedom, 

respectively. These two residual sums of squares 

are added, i.e., 4 2 3S S S= + , as are their degrees 

of freedom, i.e., 1 2 2n n p+  . 

 

4. 5 1 4S S S=   is obtained. 

5. The F statistic is calculated as follows: 

 

 
5

4 1 2 2
c

S p
F

S n n p
=

+ 
                              (7) 

 

with p  and 1 2 2n n p+   degrees of freedom. 

If cF  > the F value from the table for a given   

significance level, the hypothesis that 'a s  and 

'b s  parameters are the same for both 
observation sets is rejected. 

2.3 Dummy Variables Method 
 

The inclusion of additive or multiplicative dummy 
variables makes it possible to determine whether 
two linear equations differ in intercept, slope or 
both. 
 

Given the following relation, relative to two sets 
[12], 
 

 
0 1 2 3

1 2

( )

1,...,( )

i i i iy a aD a x a Dx e

i n n

= + + + +

= +
               (8)    

 

where D = 1 for observations from the first set (n1  
observations), and D = 0 for observations from 
the second set (n2  observations). 
 
The binary variables were introduced as additive 
and multiplicative. The a1 and a3 coefficients are 
the differences in the intercepts and the slopes, 
respectively.  
 
If H0: a1 = 0 is rejected, i.e., a1 is significant, then 
the intercept value of the first set is obtained by 
a1 + a0. In this case, a0 is the intercept of the 
second set. If H0: a1 = 0 is not rejected, i.e., a1 is 
not significant, then a0 represents the common 
intercept for both sets.  
 

If H0: a3 = 0 is rejected, then the slope value from 
the first set is a2 + a3. In this case, a2 is the slope 
of the second set.  
 

If H0: a3 = 0 is not rejected, then a2 represents 
the common slope for both sets.  
 

2.4 Methods Simulation 
 

A data simulation composed of 100,000 
experiments, each one with 10, 50 or 100 
observations, was performed.  
 

For each experiment, simple linear regression 
models were developed in which the values of 
the independent variables were obtained on a 
closed interval from 0 to 10, randomly, by the 
RANUNI function of the SAS® system [13]. 
 

To generate the residues for each model, their 

variance was estimated [14]. Setting the 2R
coefficient of determination to 90%, and knowing 

the relationship
2

2 mod

2 2
mod

el

el error

R


 
=

+
, in which 

2
model  corresponds to the variance values of the 

dependent variables, the variance of residuals 
2
error was estimated [15]. 
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Once the variance of residuals 
2
error  was 

estimated, the RANNOR function of the SAS
®
 

system generated the random residuals for each 
model. These residuals are supposedly 
independent and normally distributed, with a zero 

mean and common variance, i.e., hi  ~ NID             

(0, 
2
error ) [16]. 

 
Based on the regression models considered and 
setting the parameters of each model for each of 
the situations described above to compare the 
methods, the Model Identity and Dummy 
Variables methods were computationally 
implemented by the IML module of the SAS® 
system. 
 

2.5 Results  
 
To evaluate the methods, four linear regression 
cases were considered: these were represented 
by (a) the most general case, when all 
coefficients are different; (b) parallel regressions, 
wherein the slopes are equal but the intercepts 
are different; (c) concurrent regressions, wherein 
the intercepts are equal but the slopes are 
different; and (d) coincident regressions, wherein 
all the lines coincide. 
 
The results were analyzed based on the FREQ 
procedure of the BASE module from the 
Statistical Analysis System (SAS), and the 
frequencies of the results were determined for 
the nominal significance levels. These results 
were found for the values of the F test in the 
models for sample sizes of 10, 50 and 100, 
respectively. 
 
The evaluation of the Model Identity and the 
Dummy Variables methods was based on the 5% 
nominal level for the rates of Type I error, which 

lies in the rejection of a hypothesis 0H  regarded 

as true, and on the rates of Type II error, which 
lies in the non-rejection of an initial hypothesis 

0H , regarded as false. 

 

Table 1 illustrates all simulated situations using 
both of the methods under study, showing a 
combination of frequencies of Type I and Type II 
errors. 
 
The Model Identity and the Dummy variables 
methods indicate very similar results due to the 
low rates of Type I and Type II errors. 
 
In general, higher rates of the combination of 
Type I and Type II errors were perceived when 
the sample size was 10 observations, with an 
apparent advantage to the Model Identity 
method. 
 
Reduced Type I and Type II error rates were 
expected with an increased number of 
observations. This expectation usually occurred, 
showing better efficiency of the methods for 
larger sample sizes. For example, for the Dummy 
Variables method, lower rates were found with a 
sample size of 100 observations. In general, 
samples with 100 observations showed lower 
error rates, but these values are not much 
different from those of the other sample sizes. 
 
In all of the cases studied, evidence that the 
three methods studied have good accuracy was 
observed, given the low percentages of the Type 
I and Type II error rates. However, it should be 
noted that a lower probability of Type I and Type 
II errors was obtained for the Dummy Variables 
method. 
 

2.6 Example with Real Data 
 
It was deemed necessary and appropriate to 
present a numerical example to illustrate the 
results obtained in this study.  

 
Table 1. Frequency distribution of errors type I and type II for the methods used  

 

Methods 

Cases 

 

Identity of models 

(Number of observations) 

Dummy variables 

(Number of observations) 

10 50 100 10  50 100 

a 

b 

c 

d 

2811 

1342 

1312 

1053 

1126 

487 

448 

1002 

1219 

219 

371 

18 

2415 

1083 

1084 

3101 

1001 

308 

487 

185 

1003 

115 

242 

12 

 6518 3063 1827 7683 1981 1372 

  11408   9055  
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Thus, based on the method used in Table 1 
calculations were performed to illustrate the 
methods. The data analyzed were collected 
between 2009 and 2010 from a sample of blood 
donors from the Blood Center of the Mário Penna 
University Hospital from the University of Vale do 
Rio Verde in Belo Horizonte. The donors 
included both males and females. 
 

To compare the proposed methodologies, 
regression lines were fit for systolic blood 
pressure versus age, for a sample of 1,500 men 
and 1,500 women, to determine whether these 
variables have a similar linear relationship for 
both sexes. 
 

In industrialized countries, the average blood 
pressure of the population increases with age. 
After age 50, systolic pressure tends to rise with 
increasing age, resulting in systolic hypertension. 
Thus, increased systolic pressure is well 
established as a cardiovascular risk factor [17].  
 

Therefore, this application attempted to confirm 
the theories that systolic blood pressure 
increases continually with age in both sexes [18]. 
 

Through the SAS® program for statistical 
analysis, the following cases were considered: 
 

a) Different intercepts and equal slopes; 
b) Equal intercepts and different slopes; 
c) Different intercepts and slopes; and 
d) Equal intercepts and slopes. 

 

The two methods for comparing linear regression 
models were explored, and hypothesis tests 
were applied to identify the above situations. 
 
To apply the Model Identity method, the lines 
were first fit for each sex: 

Male: Y
^

mal = 99.81+0.48x  

Female: Y
^

fem =105.14+0.37x  
 

and the parameter estimates for both sexes were 
recorded in Table 2. 

For the Dummy Variables method, a regression 
model of the whole set was fitted and then 
separated, producing a model for each sex 
through the inclusion of dummy variables. 

 
                If the individual is male. 
               If the individual is female.          (9) 
      
Main line: 
 

 
^

100.11 0.52 12.67 0.04Y x D xD= + +   
 
Adjusted line - Male:  
 

 
^

100.01 0.52   ( 0)malY x D= + =  

 
Adjusted line - Female:  
 

 
^

113.41 0.49    ( 1)femY x D= + =  

 
Table 2. Estimate for the parameters of the 

estimated models, age versus systolic 
pressure 

 
Group ^

0  
^

1  x  
2
xs  

2
/Y Xs  

Masculine 99,81 0,48 31,08 105,21 328,25 
Feminine 105,14 0,37 31,05 115,44 254,81 

 
Table 3 shows the analysis of variance of the line 
fit for this situation. 
 
For the Model Identity method, cases in which 
the estimated lines fit the parallelism and equality 
tests of the parameters were identified and are 
detailed below. 
 
a) Parallelism test:  
 

     0 1 1: mal femH  =  

 
2
, / 301.25PY XS =  and ^ ^

1 1

2 0.04
mal fem

S
 

= . 

 
 

Table 3. ANOVA by the dummy variables method for the variable age versus systolic pressure 
 

Variation source GL SQ QM F 
Regression  (x) 1 77071,12 7707,12 20,60 
Residual 3005 1124445,00 374,19  
Regression (x,D) 2 926547,00 463273,5 245,81 
Residual 3004 1428954,00 475,70  
Regression (x,d,xD) 3 155768,00 51912,67 165,84 
Residual 3003 926158,00 308,41  

0,

1,
D


=




 
 
 
 

Magalhães; BJAST, 11(2): 1-7, 2015; Article no.BJAST.19598 
 
 

 
6 
 

The test statistic was T = 0.61. For this statistic, 
the critical bilateral value given by the p-value 
was 2P (T ≥ |0.61|) = 0.55. Considering an α 
nominal significance level of 5%, it was observed 
that the p-value > α. Therefore, the null 
hypothesis was not rejected; i.e., there was 
sufficient sample evidence not to reject the 
parallelism hypothesis. 
 
b) Intercept equality test: 
      

0 0 0: mal femH  =  

 
2
, / 301.25PY XS =  and ^ ^

0 0

2 5.01
mal fem

S
 

= . 

 
The test statistic was T = -5.61. For this statistic, 
the critical bilateral value given by the p-value 
was 2P (T ≥ |-5.09|)   0. Therefore, the null 
hypothesis was rejected for all α nominal 
significance levels. There was strong sample 
evidence that the hypothesis of equality of 
intercepts is not true. Fig. 1 shows that women 
had higher systolic blood pressure regardless of 
age, considering the estimated line parallelism. 
 

 
 

Fig. 1. Sistolic Arterial blood pressure rate 
(mmHg) versus age in years 

 
This result is consistent with a large study in 
Paris that involved 77,023 men and 48,480 
women and correlated the risk of systolic and 
diastolic hypertensions with the patients' age. 
One of the conclusions of this study was that 
women had higher systolic hypertension than 
men [18].  
 
In contrast, using the Dummy Variables method 
on cases in which the estimated lines fit the 

parallelism test, the parameter equality test and 
the coincidence test were identified and are 
detailed below. 
 
a) Parallelism test:  
 

      0 3: 0H  =  

 
The test statistic was F(XD/X,D) = 0.52. The p-
value with 1 and 3,003 degrees of freedom was 

equal to 0.46. Therefore, the null hypothesis 0H  

was not rejected for any nominal values of α, and 
there was no sample evidence for rejecting the 
hypothesis of parallelism of linear regressions.  
 
b) Intercept equality test: 
 

     0 2: 0H  =  

 
The test statistic was F(D/X,XD) = 253.25. The p-
value with 1 and 3,003 degrees of freedom was 

approximately zero. The null hypothesis 0H  was 

therefore rejected for any nominal values of α 
different from zero. Thus, sample evidence was 
found that the hypothesis of equal intercepts for 
the linear equations of both sexes was not true.  
 
c) Coincidence test: 
 

      0 2 3: 0H  = =  

 
The test statistic was F(D/X) = 121.68. The p-
value with 2 and 3,003 degrees of freedom was 

< 0.001. Therefore, the null hypothesis 0H  was 

rejected for any nominal values of α different 
from zero. Therefore, sample evidence for the 
hypothesis of the coincidence of estimated linear 
regressions for both sexes were not found. 
 

3. CONCLUSIONS 
 
The sample data for systolic blood pressure and 
age, subjected to both methods under study, 
have shown that the estimated lines for males 
and females were not coincident. They were 
parallel, with different intercepts and had the 

form 0 1Y x  = + + . 

 

The application of the Model Identity method was 
equivalent to the application of the Dummy 
Variables method. 
 

However, for the simulated situations for each of 
the three sample sizes, the Dummy Variables 



 
 
 
 

Magalhães; BJAST, 11(2): 1-7, 2015; Article no.BJAST.19598 
 
 

 
7 
 

method proved to be more efficient than the 
Model Identity method because the former had 
the lowest percentage of Type I and Type II 
errors. 
 

COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 
 

REFERENCES  
 
1. Armitage P, Berry G. Statistical methods in 

medical research. 6
th
 ed. Blackwell. 

Oxford; 2011. 
2. Hoffmann R, Vieira S. Regression 

analysis: An introduction to econometrics. 
5rd ed. São Paulo. Hucitec; 2009.  

3. Seber GAF. Linear regression analysis. 
New York. John Wiley; 2007.   

4. David CS, Hall DB. A computer program 
for the regression analysis of ordered 
categorical repeated measurements. 
Computer Methods and Programs in 
Biomedicine. 2011;51:153-169. 

5. Copenhaver MD, Holland BS. Computation 
of the distribution of the maximum 
studentized range statistic with application 
to multiple significance testing of simple 
effects. Journal of Statistical Computing 
and Simulation.  2012;30:1-15. 

6. Chow GC. Tests of equality between sets 
of coefficients in two linear regressions. 
Econometrica. 1960;28:591-605. 

7. Cordeiro GM, Paula GA. Regression 
models for univariate data analysis. Impa. 
Rio de Janeiro; 1989.  

8. Neter J, Kutner MH, Nachtsheim CJ, 
Wasseman W. Applied linear statistical 
models. 4th ed. Richard D. Irwin. Chicago; 
2011. 

9. Gujarati D. Use of dummy variables in 
testing for equality between sets of 

coefficients in two linear regressions: A 
note. The American Statistician. 1970;24: 
50-52.  

10. Ratkowsky DA. Nonlinear regression 
modeling: A unified practical approach. 
Marcel Dekker, New York; 2010. 

11. Graybill FA.  Theory and application of the 
linear model. Duxbury Press. Belmont; 
1976. 

12. Gujarati D. Use of dummy variables in 
testing for equality between sets of 
coefficients in two linear regressions: A 
note. The American Statistician. 1970; 
24:50-52.  

13. SAS Institute. SAS Procedures guide for 
computers. 13

th
 ed. SAS Institute. Cary, 

NC. 2012;3.  

14. Verbeke G, Molenberghs G. Linear mixed 
models in practice: A SAS-oriented 
approach. SAS Institute. Cary, NC; 2011.  

15. Littell RC, Henry PR, Ammerman CB. 
Statistical analysis of repeated measures 
data using SAS procedures. The Journal 
of Animal. Science. 2010;76:1216-1231. 

16. Brown RL, Durbin J, Evans JM. 
Techniques for testing the constancy of 
regression relationships over time. Journal 
of the Royal Statistical Society. Series B, 
Statistical Methodology. 1975;37:149-192. 

17. Sesso HD,  Stampfer MJ, Rosner B, 
Hennekens CH, Gaziano JM, Manson JE, 
Glynn RJ. Systolic and diastolic blood 
pressure, pulse pressure, and mean 
arterial pressure as predictors of 
cardiovascular disease risk in men. 
Hypertension. 2010;36:801-807. 

18. Franklin SS, Khan SA, Wong ND, Larson 
MG, Levy D. Is pulse pressure useful in 
predicting risk for coronary heart disease? 
The Framingham Heart Study. Circulation. 
2010;100:354-360. 

_________________________________________________________________________________ 
© 2015 Magalhães; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 
 

 
Peer-review history: 

The peer review history for this paper can be accessed here: 
http://sciencedomain.org/review-history/10431 


