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ABSTRACT 
 

The granular computing with l-norm is used to zoom the image. Firstly, a granule is represented 
by l-norm and has the form of hypercube. Secondly, the bottle-up computing model is adopted to 
transform the microcosmic world into the macroscopic world by the designed join operation 
between two hypercube granules. The proposed granular computing is used to zoom the image 
and achieves the super-resolution image for the input low-resolution image. Experimental results 
show that the granular computing with l-norm reduces the error between the original image and 
the reconstructed super-resolution image compared with bicubic interpolation and sparse 
representation. 
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1. INTRODUCTION 
 
Image zooming is an image processing 
technology of the high resolution version from a 
low resolution image [1]. The image zoom in and 
out in the digital image processing plays a very 
important role, in order to meet the special 
application situation or get a better visual effect, 
for example to highlight some of the details, they 
usually need an effectively change the size of the 
image, the image is magnified and reduced when 
there is still a high quality. A variety of 
interpolation technology is a common method of 
image magnification [2]. The image processing 
theory and commonly existing is the interpolation 
method for image zooming in and out, such as 
translation repeated interpolation, bilinear 
interpolation and spline interpolation etc [3,4]. 
These interpolation methods have many 
advantages for image interpolation [5], and also 
achieved good results. 
 
Granular computing (GrC) is a transformation 
method between the universe and the parts, and 
widely used in pattern recognition, information 
system, etc. L.A. Zadeh identified three 
fundamental concepts of the human cognition 
process, namely, granulation, organization, and 
causation [6,7]. In recent years, the granular 
computing is the wide attention of people in the 
view of set theory. The granule is induced by the 
training datum, the transformation between two 
granules is realized by the operation between 
two granules. The relation between two granules 
is compounded by the positive valuation function 
of granules [8-10]. 
 

2. GrC CLUSTERING WITH l-NORM 
 
For the data set S={xi|i=1,2,...,n} in N-
dimensional space, GrC algorithm is formed in 
terms of the following steps. Firstly, the 
representation method of granule is proposed. 
Secondly, operations between two granules are 
designed. Thirdly, the fuzzy inclusion relation 
between two granules is measured by fuzzy 
inclusion measure. Finally, the GrC algorithms 
are designed by operations between two 
granules.  
 
2.1 Representation of Granules 
 
A granule is represented as the set including the 
points which distances from the center are less 
than or equal to the given threshold, so a granule 
can be represented as the form of vector 

G=(C,R), where C is the center of granule, R is 
radii of granule, and refers to the granularity of 
granule G which is measured by the maximal 
distance between center and the data included in 
granule. Particularly, a point x is represented by 
a atomic granule with the center x and 
granularity 0 in N-dimensional space. The 
distance between center C=(c1,c2,...,cN) and 
datum x=(x1,x2,...,xN) can be defined as follows 
 
dp(x,C)=||x-C||p=((x1-c1)

p
+(x2-c2)

p
+...+(xN-cN)

p
)
1/p 

 
The distance between two points denotes 
Manhattan distance and called as l1-norm when 
p=1, and the corresponding granule has the form 
hyperdiamond in N-dimensional space. The 
distance between two points denotes Euclidean 
distance and called as l2-norm when p=2, and 
the corresponding granule has the form 
hypersphere in N-dimensional space. The 
distance between two points denotes Chebyshev 
distance and called as l-norm when p=, and 
the corresponding granule has the form 
hypercube in N-dimensional space. 
  

2.2 Operations between Two Hypercube 
Granules 

 
The operations between two hypercube 
granules reflect the transformation between 
macroscopic and microcosmic of human 
cognitions. When a person want to observe 
the object more carefully, the object is 
partitioned into some suitable sub-objects, 
namely the universe is transformed into some 
parts in order to study the object in detail in 
the view of microscopic. Conversely, there is 
the same attributes of some objects, we 
regard the objects as a universe to simple the 
process in the view of macroscopic. The 
operations between two hypercube granules 
are designed to realize the transformation 
between macroscopic and microscopic. Set-
based models of granular structures are 
special cases of lattice-based models, where 
the lattice join operation ∨ coincides with set 

union operation ∪ and lattice meet operation 

∧ coincides with set intersection operation ∩. 
  
The aim of join operation ∨ of two sets S1 
and S2 is to obtain the minimal closure which 
is a set with the minimal granularity and 
including S1 and S2. In GrC by l-norm, the 
join operation between two hypercube 
granules G1 and G2 is to obtain the join 
hypercube granule G with minimal granularity 
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and including G1 and G1. Any points are 
regarded as atomic hypercube granules which 
are indivisible, the join process are the key to 
obtain the larger granules compared with 
atomic granules. 
 
The key issue of the join hypercube granule is to 
determine the center and the l-distance 
between center and the farthest point from the 
center. 
  
For two hypercube granules G1=(C1, R1) and 
G2=(C2, R2) in N-dimensional space,  suppose 
the join hypercube granule is  
 

G=G1G2=(C, R) 
 

Firstly, the vector from C1 to C2 and vector from 
C2 to C1 are computed. If C1=C2, then C12=0 and 
C21=0. If C1C2, then C12=(C2-C1)/d(C1,C2) and 
C21=(C1-C2)/d(C2,C1). 
  
Secondly, the crosspoints of G and G1 are 
P1=C1-C12R1 and P2 = C1+C12R1. The crosspoints 
of G and G2 are Q1 = C2-R2C21 and Q2 = 
C2+R2C21. 
 
Thirdly, the center C and granularity R of the join 
hypercube granule G is computed by algorithm 1. 

Algorithm 1. Computing C and R of join 
hypercube granule G between G1 and G2 
Input: G1=(C1,R1) and G2=(C2,R2) 
Output: G=(C,R) 
if R1>=R2 

   if d(C1,C2)<=R1-R2    C=C1                  R=R1 
   else             C=(P1+Q1)/2       R=d(P1,Q1)/2 
   end 

else 
   if d(C1,C2)<=R2-R1    C=C2                  R=R2 
   else            C=(P1+Q1)/2        R=d(P1,Q1)/2 
   end 

end 
 
Fig. 1 shows the join process of the 
hypercube granule G1 = [0.2 0.15 0.1] and the 
hypercube granule G2 = [0.3 0.1 0.06]. The 
cross points between hypercube granules G1 
and the line crossing vector C12=[1,-0.5] and 
the cross points between hypercube granule 
G2 and the line crossing vector C21=[-1 0.5], 

which l-norm distance is maximal, are 
P=[0.1, 0.2] and Q=[0.36,0.07]. According to 
algorithm1, the central vector and granularity 
of the join hypercube granule G are 
C=[0.23,0.135] and R=0.13, namely G=[0.23 
0.135 0.13]. 

 

 
 

Fig. 1. The join hypercube granule of two hypercube granules 
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2.3 GrC Clustering with -norm 
 
For data set S, the granular computing 
clustering algorithms are proposed by the 
following steps. Firstly, the samples are used 
to form the atomic granule. Secondly, the 
threshold of granularity is introduced to 
conditionally union the atomic granules by the 
aforementioned join operation, and the 
granule set is composed of all the join 
granules. Thirdly, if all atomic granules are 
included in the granules of GS, the join 
process is terminated, otherwise, the second 
process is continued. The GrC clustering 
algorithms are described as follows. 
 
Suppose the atomic hypercube granules induced 
by S are g1, g2, g3, g4, g5. The training process 
can be described as the following tree structure 
shown in Fig. 2, leafs denote the atomic 
hypercube granules, root denotes GS including 

its child nodes G1, G2, and g3. G1 is induced by 
join operation of child nodes g1 and g2, G2 is the 
join hypercube granule of g4 and g5, g3 is the 
atomic hypercube granule. The whole process of 
obtaining GS is the bottle up process. 
 

 
 

Fig. 2. The framework of GrC 
 

The GrC framework is described as    
algorithm 2. 

 
Algorithm 2. GrC clustering process 
Input: Data set S, threshold  of granularity 
Output: Granule set GS 

S1. initialize the granule set GS= 
S2. i=1 
S3. for the ith sample xi in S, form the corresponding atomic granule Gi 
S4. j=1 
S5. form the join granule GiGj of Gi and GjGS, if the granularity of GiGj is less than or 

equal to , then Gj=GiGj, else  
S6. j=j+1 
S7. if all the granularities of GiGj are greater than , then GS=GS{Gi} 
S8. remove x i until S is empty. 

 
Suppose training set S includes 10 training data in 2-dimensional space, 10 atomic hypercube 
granules induced by l-norm are shown in Fig. 3(a), the achieved hypercube granule set including 4 
hypercube granules are shown in Fig. 3(b) if algorithm 2 is performed and the threshold  is set to 
0.25. 
 

  
 
Fig. 3. Numerical example of GrC, (a) atomic hypercube granules, (b) the achieved hypercube 

granule set (=0.25) 
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3. EXPERIMENT 
 
91 training images are selected to form the 
training set which includes 999910 patches 
extracted from the training images [11]. The 
reconstruction strategy is adopted to achieve the 
SR image for the LS image [11]. Four images 
shown in Fig. 4 are used to evaluate the 
performance of image zooming algorithm, such 
as the root mean square error (RMSE) between 
the SR reconstruction image and the original SR 
image listed in Table 1, and the input image, 

original image, and the reconstructed image are 
shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. From 
the table, we can see the image zooming 
algorithm based on GrC with l-norm achieves 
the less RMSE compared with bicubic 
interpolation and sparse representation. Sparse 
representation has caused over sparse, and the 
interpolation method only considers the local 
information without considering the global 
information, so the bicubic interpolation and 
sparse representation are worse than GrC with 
l-norm.

 

Table 1. The RMSE of different methods for super-resolution with magnification factor 3, 
respect to the original images 

 
Images Bicubic interpolation Sparse representation GrC with l-norm 

Image a (321481) 15.5377 12.2445 12.0372 (=0.1) 
Image b (321481) 16.8497 16.5612 16.3122 (=0.1) 
Image c (481321) 16.1873 15.8615 15.3912 (=0.1) 
Image d (481321) 10.0712 9.4427 8.6423 (=0.1) 

 
 (a) 

 

 
(b) 

 
(c) 

 

(d) 

 

 

Fig. 4. The four testing images selected from BSD500 
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Fig. 5. The image (a) zoomed by a factor of 3. (a) low-resolution image, (b) the original image, 
(c) SR image by bicubic interpolation, (d) SR image by sparse representation, (e) SR image  

by GrC 
 

 
 

Fig. 6. The image (b) zoomed by a factor of 3. (a) low-resolution image, (b) the original image, 
(c) SR image by bicubic interpolation, (d) SR image by sparse representation, (e) SR image by 

GrC 
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Fig. 7. The image (c) zoomed by a factor of 3. 

(a) low-resolution image, (b) the original 
image, (c) SR image by bicubic interpolation, 

(d) SR image by sparse representation,  
(e) SR image by GrC 

 
Fig. 8. The image (d) zoomed by a factor of 3. 

(a) low-resolution image, (b) the original 
image, (c) SR image by bicubic interpolation, 

(d) SR image by sparse representation,  
(e) SR image by GrC 

 

4. CONCLUSION 

 
The image zooming algorithm is proposed based 
on granular computing with l-norm. The 
experimental results demonstrate the 
effectiveness of image zooming via GrC with l-
norm compared with bicubic interpolation and 
sparse representation. However, the 
effectiveness of super-resolution image by image 
zooming algorithm is demonstrated by RMSE, 
the other evaluation methods of SR image 
reconstruction will be discussed in the future 
works. To compared with sparse representation, 
image magnified by a factor of 3 is performed in 
the paper, and the other magnification factors 
must retrain the sparse dictionary, it is a time 
consuming process, and discussed in the future 
works. 
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