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ABSTRACT 
 

The closed-form solution for European options on foreign assets did not consider the impact of 
strike price volatility. Therefore, these models overestimate the value of European options [1,2]. 
Using the pricing relationships among European, American and Bermudan option proposed by Yan 
[3-5], the article establishes four kinds closed-form solution for American and Bermudan option 
pricing models on foreign assets. The article contribution has three aspects. First, the volatility of 
underlying assets and strike price together determine the value of American options struck in 
foreign assets or exchange rate. The greater the strike price volatility, the smaller the American 
options value. Second, if underlying assets volatility is less than the volatility of strike price, the 
value of these two kinds of American options equals zero. Third, the bigger the correlation 
coefficient between exchange rate and foreign assets logarithm yields, the greater the value of 
these two kinds of American options. We can obtain European and Bermudan options pricing 
models on foreign assets from American options pricing models. 
 

 
Keywords: American options on foreign assets; European options on foreign assets; Bermudan 

options on foreign assets; continuous martingale; measure transformation; domestic and 
foreign currency measure transformation. 
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1. INTRODUCTION 
 
The binomial is the mainstream model of 
American option pricing [6]. Monte Carlo 
simulation method [7], finite difference methods 
[8], GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) model [9] and 
semi-infinite linear programming method [10] 
provides other numerical methods for American 
options pricing. Geske and Johnson (hereafter 
GJ) provide an efficient and approximate method 
to price American options [11]. Ho, Stapleton and 
Subrahmanyam (hereafter HSS) generalized GJ 
method [12]. Chung proposed method simplified 
HSS’s three-dimensional solution to a one-
dimensional solution [13]. Using these models to 
price American options the cost is very high. 
 
Early strike European options (warrants) and 
early termination American options (warrants) are 
called non-standard options, Yan proposed 
closed-form non-standard options pricing models 
[14,15], closed-form dividend American options 
pricing models [3], closed-form foreign exchange 
American options pricing models [16], closed-
form Bermudian options pricing models, closed-
form dividend fractal American options pricing 
models, and closed-form combinational American 
options pricing models [4]. Yan established the 
pricing relationships among American, European 
and Bermudan options [5], the error between Yan 
models and binomial is very small [3]. 
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Where: cE is European call options present value; 
pE is European put options present value; cA is 
the current value of American call options; pA is 
the current value of American put options; cB is 
the current value of Bermudan call options; pB is 
the current value of Bermudan put options; T is 
the term of options; T1 is the beginning strike 
time of Bermudan options; T2 is the ending strike 
time of Bermudan options, 0≤T1≤ T2≤T; rd is 
domestic risk-free interest rate. 
 
The strike price of foreign asset options may be 
the domestic currency, foreign currency and 
exchange rates. When the strike price is 
domestic currency, the strike price is a constant; 
when the strike price is foreign currency or 
exchange rates, the strike price is the stochastic 
process. Reiner proposed four European option 
pricing method, he ignored the impact on option 

value of the standard deviation of strike price and 
the correlation coefficient of underlying asset, 
and overestimated the value of European options 
[1,2]. Chung valued American options on foreign 
assets in a stochastic interest rate using a two-
point GJ method [17]. Actually, Yan models are 
the limit values of the binomial and GJ method 
when the number of steps and the number of 
strikes tend to infinity [3,4]. 
 
Using measure transformation [18] this article will 
present closed-form American options pricing 
models struck price in domestic currency, closed-
form quanto American options pricing models, 
closed-form American options pricing models 
stuck price in exchange rate, and closed-form 
American options pricing models struck price in a 
foreign currency. For quanto American options 
and American options stuck in a foreign currency 
we have to change foreign measure into 
domestic measure [2]. In addition to quanto 
American options, the larger the correlation 
coefficient between exchange rate and foreign 
asset logarithm yields, the greater the value of 
American options. The larger the volatility of 
strike price, the smaller the value of American. 
 
The second section will give the pricing models 
of American options stuck in domestic currency. 
The third section will propose the pricing models 
of quanto American options. The fourth section 
will deduce the pricing models of American 
options struck price in exchange rate. The fifth 
section will deduce the pricing model of American 
options struck price in a foreign currency. The 
sixth section will present empirical researches 
that parameters’ changes affect on the value of 
the American options. Finally, concludes the 
article. 
 
2. OPTIONS STRUCK IN DOMESTIC 

CURRENCY 
 
If the strike price is domestic currency Xd, the 
current value of American call options on foreign 
assets ST is 
 

cA= max(CTST-Xd,0) 
 

Where: CT stands for exchange rate per unit 
foreign currency at T time. 
 

According measure transformation the arbitrage-
free price of stochastic process CtSt at time T is 
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Where: C is the domestic currency price of per 
unit foreign currency; S is the current price of 
foreign assets; σ is the joint distribution standard 
deviation between foreign assets and exchange 
rate logarithm yields; rd is domestic currency risk-
free rate, rf is foreign currency risk-free rate; qf is 

the dividend rate of foreign assets; TWT * is 

domestic currency measure Brownian motion (or 

Wiener process), )1,0(~ N , (WT
*
)=0.  

 
Since the value of American call options on 
foreign assets is greater than zero, then 
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The domain of the random variable at time T is 
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The expectation of American call option on 
foreign assets is 
 





deXTqrTCSc dfd

a
A

2

2

1
2 }])

2

1
(exp[{

2

1 

 
 

 
We can immediately obtain American call and put 
option pricing models. 
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σC and σS respectively is the standard deviation 
of exchange rate and foreign assets logarithm 
yields. The C, S, σ, σC, σS, rd, rf and qf are all 
constants. 
 

3. QUANTO OPTIONS 
 

If the strike price is foreign currency, the 
underlying asset is foreign assets, the exchange 

rate C is a constant, and the current value of 
American call options is 

 

cA=C max(ST-Xf,0) 

 

According measure transformation the arbitrage-
free price of stochastic process St at time T is 
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Where: TWT * is domestic currency 

measure Brownian motion, )1,0(~ N , 

(WT
*
)=0.  

 

Since the value of American foreign assets call 
option is greater than zero, then 
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The domain of the random variable at time T is 
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The expectation of American foreign asset call 
option is 
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We can immediately obtain American quanto call 
and put option pricing models. 
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4. OPTIONS STRUCK IN A FOREIGN 
CURRENCY 

 
If the strike price of American foreign asset 
options is foreign currency, the current value of 
the American call option on foreign assets is  
 

cA= max[CT(ST-Xf),0] 
 
or 
 

cA= max[CTST-CTXf),0] 
 
To facilitate the derivation of American option 
pricing models, we put stochastic process CtSt-
CtX as the underlying asset, the option strike 
price is zero. The price of the underlying asset at 
t time is 
 

ftttt XCSCG  tCCtSC Ut
f

Wt eCXCSe    )(  

 
Where: μC and μS are the real logarithm yields of 
exchange rate and foreign assets, they are all 

constants; tWt  is Brownian motion under  

measure; tUt  is Brownian motion under  

measure.  and  are not equivalent measure. 
Wt and Ut are all domestic measure Brownian 
motion. 
 
The current domestic currency price of the 
underlying assets at t time is 
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The stochastic differential equation of the 
stochastic processes Zt is 
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If the financial markets have not arbitrage 
opportunities, the stochastic differential equation 
must be continuous martingale process. 
  
Assuming Wt

*
 is the Brownian motion under 

*
 

measure, Ut
* is the Brownian motion under * 

measurer. 
*
 and  are equivalent measure, 

*
 

and  are equivalent measure. According to 
measure transformation theorem, let 
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Where:  
 

tWt * , tUt * , ~N(0,1), *(Wt
*
)=0,

*(Ut
*
)=0. 

 

The martingale process after measure 
transformation is 
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Use Ito theorem solving the stochastic differential 
equation, we can get the stochastic process 
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The final value of the underlying assets at t time 
is 
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Because the value of American options is greater 
than zero, so arbitrage-free price of the CtSt-CtX 
must be greater than zero, the domain of the 

random variable at time T is 
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The value of American call options is 
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The condition of the above option pricing models 
established is σ>σC. If σ≤σC, the value of 
European, American and Bermudan option 
struck in foreign currency is equal to zero. When 
ρ<0, there may be σ≤σC. 

 
 5. OPTIONS STRUCK IN EXCHANGE 

RATE 
 
If the strike price of American options is 
exchange rate, the current value of American call 
options is 
 

cA= max[(CT-XC)ST,0] 
 
 

Or 
 

cA= max(CTST- XCST,0) 
 
To facilitate the derivation of American option 
pricing models, we put stochastic process CtSt-
XSt as the underlying asset, the option strike 
price is zero. The price of the underlying assets 
at t time is 
 

tCttt SXSCG   

      
tSStSC Vt

C
Wt SeXCSe

~
)(     
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If the financial markets have not arbitrage 
opportunities, the stochastic differential equation 
must be continuous martingale process.  
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Where: tWt * , tVt * ,  ~N(0,1), 

*(Wt
*
)=0, *(Vt

*
)=0。 

 

The martingale process after measure 
transformation is 
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The condition of the above option pricing models 
established is σ>σS. If σ≤σS, the value of 
European, American and Bermudan option 
struck in exchange rate equals to zero. When 
ρ<0, there may be σ≤σS. 
 

6. EMPIRICAL RESEARCHES 
 
If the term of an American option is T=1. The 
current exchange rate is C=1.11, the standard 
deviation of the exchange rate is σC=10%. The 
current price of foreign stock is S=60, foreign 
stock dividend payout rate is qf=0, and the 
standard deviation of the logarithm yields is 
σS=25%. The risk-free rate of domestic currency 
is rd=5%, the risk-free interest rate of foreign 
currency is rf=4%. The strike price is domestic
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Table 1. The values comparison of American options on foreign assets 
 

Strike prices X Strike prices 
volatility 

ρ=-0.5 ρ=0 ρ=0.5 
cA pA cA pA cA pA 

Domestic 
currency 

Xd=66.60 σd =0.00 7.79 4.37 9.07 5.65 10.29 6.88 

Foreign 
currency 

XS =60.00 σC=0.10 4.78 2.03 5.60 2.85 7.28 4.54 

Exchange rate XC =1.11 σS=0.25 0.00 0.00 1.70 0.02 3.18 0.77 
 

currency Xd=66.6, the strike price is foreign 
currency XS=60, and the strike price is exchange 
rate XC=1.11. The correlation coefficient between 
exchange rate and foreign stock logarithm yields 
respectively is ρ=-0.5, ρ=0, ρ=0.5. Calculate the 
values of the American options. 

 

Solution: In the empirical studies we do not 
involve quanto American options because its 
strike price and exchange rate is constant. The 
values of quanto American options do not relate 
to the strike price volatility and the correlation 
coefficient between exchange rate and foreign 
stock logarithm yields. 

 

If the strike price is domestic currency that is a 
constant, Xd =66.60, the strike price volatility is 
equal to zero, σd =0.00, and the value of 
American options is the largest. The larger the 
correlation coefficient between exchange rate 
and foreign stock logarithm yields, the greater 
the value of American options. 

 

If the strike price is foreign currency, XS =60.00, 
the strike price is a stochastic process, and its 
volatility is σC=0.10. The larger the volatility of the 
strike price, the smaller the value of American 
options. The values of American options are less 
than formers. American option value is 
proportional to the correlation coefficient between 
exchange rate and foreign stock logarithm yields. 

 

If the strike price is exchange rate, XC=1.11, the 
strike price is a stochastic process, and its 
volatility is σS=0.25. Because the volatility of 
strike price is larger than formers, in the case of 
the correlation coefficient equal，the values of 
American options are less than the formers. If the 
correlation coefficient is ρ=-0.5, then the volatility 
σ=0.2180 of underlying asset is less than the 
volatility σS=0.25 of strike price. So the values of 
American options are all zero. The values of 
other American options are shown in Table 
1(above). 

SCSC  222   

 

    25.010.05.0225.010.0 22   

 

     
25.02180.0  S  

 
If the strike price is domestic currency, the 
volatility of the strike price is zero, and the value 
of American options is the maximum. If the strike 
price is foreign currency, the standard deviation 
of the strike price is in the middle, the values of 
the American options are also centered. If the 
strike price is exchange rate, the volatility of the 
strike price is the largest, and the American 
option value is the smallest. The greater the 
correlation coefficient between the exchange rate 
and foreign assets logarithm yields, the greater 
the American option value. According to the 
pricing relationship between European, American 
and Bermuda option, we can obtain the value of 
European and Bermudan option from American 
option value. 
 
7. CONCLUSION 
 
If the logarithm yields of exchange rate prices 
and foreign assets prices show normal 
distribution, the joint distribution of the product 
also follows normal distribution. The strike price 
of American options on foreign assets may be 
domestic currency, foreign currency and 
exchange rate. The volatility of underlying asset 
and strike price decide the value of American 
options on foreign assets. If strike price is 
domestic currency that is a constant, the 
standard deviation of strike prices is zero, and 
American options’ value is the maximum. 
 
The exchange rate and strike price of quanto 
American options on foreign assets is a constant. 
The values of quanto American options do not 
relate to the strike price volatility and the 
correlation coefficient between exchange rate 
and foreign stock logarithm yields. The 
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relationship between foreign and domestic 
measure leads to American call option value 
much bigger and American put options value 
much smaller. 
 
If the strike price of American options on foreign 
assets is foreign currency, the strike price is the 
stochastic process of foreign assets. The 
standard deviation of the stochastic process of 
foreign assets also affects the value of American 
options on foreign assets. The greater the 
standard deviation of strike price, the smaller the 
value of American options. 
 
If the strike price of American options on foreign 
assets is exchange rate, the strike price is the 
stochastic process of exchange rate. Generally, 
the standard deviation of exchange rate is less 
than the standard deviation of foreign assets. 
Therefore, the value of American options struck 
in exchange rate is less than the value of 
American options struck in foreign currency. 
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