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Spatio-temporal-spectral observation model for urban remote sensing
Zhenfeng Shao a, Wenfu Wub and Deren Lia

aState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China; bSchool 
of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

ABSTRACT
Taking cities as objects being observed, urban remote sensing is an important branch of 
remote sensing. Given the complexity of the urban scenes, urban remote sensing observation 
requires data with a high temporal resolution, high spatial resolution, and high spectral 
resolution. To the best of our knowledge, however, no satellite owns all the above character
istics. Thus, it is necessary to coordinate data from existing remote sensing satellites to meet 
the needs of urban observation. In this study, we abstracted the urban remote sensing 
observation process and proposed an urban spatio-temporal-spectral observation model, 
filling the gap of no existing urban remote sensing framework. In this study, we present four 
applications to elaborate on the specific applications of the proposed model: 1) a spatio- 
temporal fusion model for synthesizing ideal data, 2) a spatio-spectral observation model for 
urban vegetation biomass estimation, 3) a temporal-spectral observation model for urban 
flood mapping, and 4) a spatio-temporal-spectral model for impervious surface extraction. 
We believe that the proposed model, although in a conceptual stage, can largely benefit urban 
observation by providing a new data fusion paradigm.
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1. Introduction

Nowadays, most people live in cities. The proportion 
of the population living in cities has risen from 5% in 
1900 to 55% in 2018 (Hoole, Hincks, and Rae 2019). 
The United Nations (UN) World Urbanization 
Prospects estimated that more than two-thirds of the 
world population (close to 7 billion) would live in 
cities by 2050. Such a huge urban population poses 
great challenges to the land, ecological environment, 
and energy of the city. For example, by 2018, the global 
artificial impervious areas reached 797,076 km2, sig
nificantly increasing the risk of urban flooding (Gong 
et al. 2019). From another perspective, carbon emis
sions produced by cities account for about 75% of the 
whole carbon emissions in the world (Zhu et al. 2019). 
The UN has made sustainable cities as one of the 17 
goals of the United Nations 2030 sustainable develop
ment agenda (Scott and Rajabifard 2017). To achieve 
this goal, it is necessary to collect various data that 
facilitate urban monitoring. Fortunately, remote sen
sing has become an effective means of data acquisition 
due to its advantages of fast, low cost, and wide range 
detection capability. However, compared with other 
thematic remote sensing techniques, urban remote 
sensing is much more difficult due to the diversity of 
observation objects, means, and purposes.

The objects in urban remote sensing observation are 
generally characterized by multi-dimension, multi-scale, 

and multi-mode. For multi-dimension, horizontal or/and 
vertical observation are both required in urban remote sen
sing observation. For example, the land cover classification 
might require only horizontal observation (Yan, Schultz, 
and Zipf 2019), but energy demand estimation, aiding posi
tioning, and other similar applications, demand vertical 
observation (Li et al. 2019). Beyond that, when exploring 
the effect of urban structure on urban biophysical processes, 
horizontal and vertical observations are both required (Zhu 
et al. 2019). For multi-scale, objects in urban remote sensing 
observation can be divided into three scales: point, line, and 
plane, among which the image feature points belong to 
point scale (Shao, Chen, and Liu 2015), roads are line objects 
(Domingo, Thibaud, and Claramunt 2019), and impervious 
surfaces are plane objects (Shao et al. 2016). For multi-mode, 
the observed objects can be divided into two modes: static 
and time-sensitive objects, among which buildings belong to 
static targets (Shao et al. 2020b) and vehicles belong to time- 
sensitive objects. Moreover, due to the rapid urbanization 
process, urban land cover and land use are interchanging in 
a dynamic manner, especially in developing countries (e.g., 
China and India (Zhang, Weng, and Shao 2017)). In fact, 
dynamic land cover and land use in urban fabrics also 
belong to time-sensitive objects.

Due to the high heterogeneity of the urban envir
onment, ground objects tend to be more fragmented. 
The problem of mixed pixels should not be ignored 
when using images with medium and low spatial reso
lution, which remains a challenging work in urban 
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areas and demands higher spatial resolution images. 
However, higher spatial resolution images do not 
necessarily translate to higher precision outputs, 
given the existence of noises, such as microscopic 
features and socio-economic activities. For example, 
Li et al. explored the influence of spatial resolution on 
urban impervious surface extraction using Landsat 
TM (30 m) and SPOT (10 m) images (Li et al. 2011). 
They found that the overall accuracy of impervious
ness estimation using Landsat TM data was consider
ably higher than that of using SPOT data. Beyond that, 
the homologous spectrum is another problem to be 
considered in urban remote sensing. At this point, 
images with a higher spectral resolution are required. 
To sum up, we argue that the ideal data for urban 
remote sensing is with higher spatial resolution and 
higher spectral resolution. However, in order to obtain 
the signal-to-noise ratio that meets the imaging 
requirements, higher spatial resolution and higher 
spectral resolution are, most of the time, a pair of 
inherent contradictions.

The purposes behind urban remote sensing 
observation are multi-faceted. For example, moni
toring the status of land cover and land use, analyz
ing the driving factor of urbanization (Kabite, 
Muleta, and Awoke 2020), and exploring its inter
action and coupling effect on the urban ecological 
environment are the common purposes (Nistor 
2019; Tafesse and Suryabhagavan 2019). 
Monitoring the human and vehicle behaviors to 
retain the safety of urban traffic and the health of 
residents is also one important purpose of urban 
remote sensing (Almagbile 2019; Mohammed and 
Al-qaness 2019). Other purposes include deforma
tion safety of urban infrastructure (Wang et al. 
2017), energy consumption (Faroughi et al. 2020), 
to list a few. It is worth noting that each purpose 
corresponds to certain data requirements, increas
ing the difficulty of urban observation.

According to the above descriptions regarding the 
observation objects, means, and purposes, urban 
remote sensing needs to thoroughly consider informa
tion from three dimensions: temporal dimension, spa
tial dimension, and spectral dimension. Ideally, urban 
remote sensing observation requires data with a high 
temporal resolution, high spatial resolution, and high 
spectral resolution. To the best of our knowledge, how
ever, no satellite owns all the above characteristics. 
Thus, it is necessary to coordinate data from existing 
remote sensing satellites to meet the needs of urban 
observation. But few studies have explored such issues 
in depth. In this study, we abstracted the observation 
process of urban remote sensing and proposed an urban 
spatio-temporal-spectral observation model, consider
ing temporal, spatial, and spectral features as model 
inputs. The theoretical, methodological, and contextual 

knowledge this study offers is expected to largely benefit 
further urban remote sensing observation.

2. Overview of Earth observation programs

2.1. Earth resources technology satellite (ERTS)

Back in the 1960s, William Pecora (Fischer 1966) envi
sioned the use of data collected from aircraft and space
craft for practical resource purposes. In 1967, the 
Goddard Space Flight Center demonstrated the feasi
bility of implementing the ERTS, followed by a pre- 
design and hardware period. On 23 July 1972, the first 
Earth Resources Technology Satellite (ERTS-1) was 
launched to obtain data of the Earth’s surface for nat
ural resources survey. It was renamed to “Landsat” in 
1975. So far, eight Landsat series satellites have been 
launched, with only Landsat-7 and Landsat-8 currently 
in orbit. With the development of technology, the num
ber of bands of Landsat images has increased from four 
to nine. The band range has become narrower, and the 
spectral quality has been greatly improved (Figure 1). 
Continuity is the most important advantage of Landsat 
satellites, as they contain archived data for nearly 
50 years. Thus, the Landsat series data has become an 
indispensable data source for earth observation and has 
been widely used in various fields, including land use 
and land cover (Xian, Homer, and Fry 2009), vegetation 
phenology (Senf, Seidl, and Hostert 2017), and urban 
hydrology (Shao et al. 2020a).

2.2. Earth observing system (EOS)

The EOS was conceived by National Aeronautics and 
Space Administration (NASA) in 1980s and began to 
take shape in the 1990s. Its primary initiative is to 
provide scientists with the earth information they 
needed to meet the goals set by the US Global 
Change Research Program (USGCRP) and the 
Intergovernmental Panel on Climate Change (IPCC) 
to develop a better understanding of our planet and to 
assist global policymakers in protecting and managing 
our environment and natural resources more effec
tively and efficiently (King, Herring, and Diner 
1995). The missions of EOS revolve around the cli
mate science areas, such as radiation, clouds, water 
vapor, precipitation, etc. The objectives of the EOS 
include: (1) establishing an integrated, sustained, and 
comprehensive program to observe the Earth on 
a global scale; (2) conducting focused and exploratory 
studies to improve understanding of the physical, che
mical, biological and social processes that influence 
the Earth’s climate; (3) developing models of the 
Earth system to integrate and predict climate changes; 
(4) assessing impacts of natural events and human 
activities on the Earth’s climate.
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2.3 Global Earth observation system of systems 
(GEOSS)

The GEOSS was launched by Group on Earth 
Observations (GEO) established in 2005 between the 
government of the multilateral cooperation mechan
ism of science and technology. Although GEO is not 
an official international organization, it has become 
the largest, most authoritative, and influential inter
governmental international organization in the field of 
Earth observation, with a total of 111 member coun
tries to date (as shown in Figure 2). GEO aims to 
benefit mankind by supporting decision-making and 
action through integrated, coordinated, and sustain
able earth observations, such as disaster prevention 
and reduction, energy and mineral resources manage
ment, food security and sustainable agriculture, and 
public health surveillance.

A key part of GEO’s missions is to build a system 
named GEOSS to better integrate observing systems 
and share data by connecting existing infrastructures. 
GEOSS is a set of coordinated, independent Earth 
observation, information, and processing systems 
that interact and provide access to diverse information 
for a broad range of users in both the public and 
private sectors. It aims to strengthen the Earth mon
itoring and facilitate information sharing from a large 
array of observing systems contributed by countries 
and organizations within GEO. Figure 3 shows the 
GEOSS platform. There are now more than 
400 million open data resources in GEOSS from 
more than 150 national and regional providers. 
GEOSS’s first-decade strategic execution plan (2006– 
2015) has been completed, and the second-decade 
strategic implementation plan (2016–2025) is now 
underway.

2.4 Copernicus program – the European Earth 
observation program

The Copernicus Program was renamed from Global 
Monitoring for Environment and Security (GMES). As 
a major space development jointly initiated by the 
European Commission and the European Space 
Agency, GMES was officially launched in 2003. Its 
main goals are to coordinate field observation data man
agement and integration through the European and non- 
European countries (third party) existing and future 
satellite data to realize real-time dynamic monitoring of 
environment and safety and provide data for decision- 
makers, aiming to guarantee the sustainable develop
ment of the European and international competitiveness.

Table 1 shows the launch schedule of the Copernicus 
Sentinel (S) satellites. There are currently seven satel
lites in orbit since the first Sentinel-1A was launched in 
2014. By 2030, more than 20 satellites are planned to be 
in orbit. Taking advantage of the satellite networking 
technique, it aims to achieve near real-time observation 
worldwide once the full constellation is constructed.

2.5 Japanese Earth observing satellite program

The Japanese Earth observing satellite program con
sists of two series: (1) Marine Observation Satellite 
(MOS) and (2) land observation satellites. As Japan’s 
first Earth observation satellite, MOS-1 was launched 
in February 1987, which was designed to help fisher
men track fish stocks, make accurate forecasts of ocean 
weather, and obtain oceanographic information. 
Following MOS-1, MOS-1b was launched in 
February 1989. Unfortunately, both satellites are no 
longer operational. Later on, Japan launched the JERS- 
1 and the Advanced Earth Observation satellites in 

Figure 1. Landsat sensors, spectral channels, and band-passes, superimposed on atmospheric transmission percentage (gray 
background). MSS: Landsat-1 through −5; TM: Landsat-4 and −5; ETM+: Landsat-7; OLI and TIRS: Landsat-8. (Source: NASA/Landsat 
Legacy Project Team and American Society for Photogrammetry and Remote Sensing).
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1992 and 1996, respectively. In cooperation with the 
United States, Japan launched the Tropical Rainfall 
Satellite in 1997. These satellites are designed for mon
itoring global and local climate change. After entering 
the twenty-first century, the study of global change 
sets new requirements for remote sensing data that 
highlight consistency. Thus, Japan launched the 
Advanced Land Observing Satellite (ALOS) on 
24 January 2006, which contains three remote sensing 
instruments: The Panchromatic Remote-sensing 
Instrument that benefits Stereo Mapping (PRISM), 
the Advanced Visible and Near Infrared Radiometer 
type 2 (AVNIR-2) for precise land coverage observa
tion, and the Phased Array type L-band Synthetic 
Aperture Radar (PALSAR) for day-and-night and all- 
weather land observation. Unfortunately, ALOS 
stopped working on 1 April 2011 due to the battery 
failure. However, its successor ALOS-2, was launched 
on 24 May 2014 to continue earth observations.

2.6 Chinese Earth observation satellite program

In the past few decades, China, as an essential member 
of the GEO, has been actively developing Earth obser
vation technology and made some significant progress. 
By 2019, China has launched more than 200 Earth 
observation satellites, mainly including ZiYuan (ZY), 
GaoFen (GF), HuanJing (HJ), FengYun (FY, meteor
ological satellite) and HaiYang (HY, marine satellite). 
In urban remote sensing observations, ZY, GF, and HJ 
series satellites are the most commonly used satellites. 
In the following sessions, we described them in detail.

2.6.1 ZY series satellites
ZY series satellites are China’s Earth resources 
exploration satellites. The first-generation ZY satel
lite, ZY-1 (also known as Chi Na Brazil Earth 
Resource Satellite (CBERS-1)), was launched on 
14 October 1999. It provides medium-resolution 
remote sensing images for the management and 
monitoring of agricultural, geological, hydrological, 
and environmental resources. Subsequently, China 
continued to launch a series of ZY-1 auxiliary satel
lites, such as CBERS-02, CBERS-02B, ZY1-02 C, 
CBERS-04, and ZY1-02D. In September 2000, 
October 2002, and November 2004, China launched 
the second-generation ZY satellites (i.e., ZY2-01, 
ZY2-02, and ZY2-03) to form an observation net
work. These satellites carried infrared and visible 
cameras, multi-spectral scanners, microwave radio
meters, and multi-functional radar sensors, which 
can be used in various fields, such as land and 
resources exploration, environmental monitoring 
and protection, urban planning, and disaster preven
tion and mitigation. On 9 January 2012, China suc
cessfully launched the ZY-3, China’s first civilian 

high-resolution optical three-dimensional mapping 
satellite, providing three-dimensional information 
that fills the gap of stereo mapping in China (Li, 
Wang, and Jiang 2020). ZY-3 provides 2.1 m high- 
resolution stereo images and 6 m multi-spectral 
images covering the entire country. To decrease the 
revisit time, China launched ZY3-02 on 30 May 2016, 
forming an observation network with ZY3-01. The 
combination of ZY3-01 and ZY3-02 largely facilitates 
national stereoscopic mapping at 1:50,000 and 
1:25,000 scale.

2.6.2 HJ series satellites
HJ series satellites target environmental and disaster 
monitoring. This series consists of two optical satellites 
(HJ-1A and HJ-1B) and a radar satellite (HJ-1 C). HJ-1A 
and HJ-1B were launched on 6 September 2008. HJ-1A 
satellite carried a 30 m resolution Charge-Coupled 
Device (CCD) camera and a 100 m resolution hyperspec
tral camera, with an imaging range of 700 km and 50 km, 
respectively. HJ-1B satellite was equipped with a 30 m 
CCD camera and a 150 m infrared multi-spectral camera, 
with an imaging range of 700 km and 720 km, respec
tively. HJ-1 C was launched on 19 November 2012 and 
equipped with S-band Synthetic Aperture Radar (SAR) 
with two working modes, namely strip mode and scan 
mode. Given the capability of large-scale, all-weather, all- 
day, dynamic monitoring from their multiple detection 
equipment, HJ-1 series satellites provide strong data sup
port for emergency rescue, post-disaster rescue, and 
reconstruction work. All three satellites from the HJ series 
are currently in orbit.

2.6.3 GF series satellites
After decades of development, China has realized the 
technology of earth observation satellites with med
ium and low spatial resolution. In order to further 
meet the requirements of the national economic con
struction, social development, and national security, 
the Chinese government has listed GF Program in the 
national medium and long-term science and technol
ogy development plan outline in 2006 and implemen
ted this program in 2010. GF series satellites are 
numbered from GF-1 to GF-7. By 2019, all missions 
have been completed. Table 2 summarizes the key 
parameters of GF series satellites. Compared with the 
previously launched satellites, GF series satellites have 
numerous advantages. For example, GF-2 is China’s 
first civil optical high-resolution remote sensing satel
lite with a spatial resolution of meters level. GF-3 is 
China’s first C-band multi-polarization SAR satellite 
with a spatial resolution of 1 m. GF-4 is China’s first 
and the world’s highest resolution remote sensing 
satellite with geosynchronous orbit. GF-5 is China’s 
first hyperspectral satellite. GF-6 is China’s first optical 
remote sensing satellite for precision agriculture 
observation. GF-7 is China’s mapping satellite with 
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the highest accuracy. The GF series satellites formed 
an earth observation system with high spatial resolu
tion, high temporal resolution, and high spectral reso
lution. At present, these satellites are contributing to 
national security, resource survey and monitoring, 
environmental monitoring and evaluation, and fine 
management of urbanization.

In addition to the aforementioned Earth observation 
programs, there are other observation programs, such 
as the Global Atmospheric Watch, Array for Real-time 
Geostrophic Oceanography, and Global Precipitation 
Measurement Satellites Program. Similarly, these pro
grams mainly focus on resource, environmental, atmo
spheric, and oceanic observations. To our best 
knowledge, there are no programs initially designed 

specifically for urban scenarios. Compared with the 
observation of a specific object, urban remote sensing 
observation is more complex, with the necessity of 
considering the temporal resolution, spatial resolution, 
and spectral resolution simultaneously. Due to the lack 
of special observing satellites for urban scenes, urban 
remote sensing observation can only be performed with 
the collaborative use of the existing satellite data based 
on the specific observation requirements.

3. Spatio-temporal-spectral observation 
model in urban remote sensing

Urban remote sensing observation is a complex but 
important task. Our previous discussion suggests that 

Figure 2. GEO numbers for the year 2020 and number of members by year (Source: http://www.earthobservations.org/geoss.php).

Figure 3. The GEOSS platform. It proactively links existing and planned observing systems around the world (Source: http://www. 
earthobservations.org/geoss.php).
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there is no special observation program initially 
designed for urban scenes. Therefore, urban remote 
sensing observation can only use data from existing 
satellites by considering temporal, spatial, and spectral 
features. To the best of our knowledge, there is no 
existing framework for remote sensing observation. In 
this section, we abstracted the urban remote sensing 
process and proposed an urban spatio-temporal- 
spectral observation model to provide a reference for 
urban remote sensing.

In remote sensing images, spatial features reflected 
by the spectral difference play an essential role in 
information extraction, especially for high spatial 
resolution images. In practice, the spatial resolution 
is the first feature that needs to be considered. When 
the spatial resolution meets the requirements, more 
spatial features can therefore be extracted. The com
monly used spatial features include edge, shape, tex
ture, height, and semantic features, to list a few, which 
can be expressed using the following formula: 

Ispatial ¼ hedge; hshape; htexture; hheight; . . . ; hsemantic
� �

(1) 

where Ispatial stands for the spatial features set, hedge, 
hshape, htexture, hheight and hsemantic represent the spatial 
features of edge, shape, texture, height, and semantic, 
respectively. These spatial features can be selected 
according to specific requirements. It is worth noting 
that if the spatial resolution is medium or low, the 
mixed-pixel issue should not be ignored.

Spectral features are important features in remote 
sensing images, reflecting the biochemical character
istics of ground objects. Different ground objects have 
different spectral signatures, which is the physical 
basis of remote sensing observation. However, in 
images with a lower spectral resolution, problems 
exist where the same objects are with different spec
trums, and different objects are with the same spec
trum. At this point, hyperspectral remote sensing that 
is able to obtain continuous and fine spectral curves of 
ground objects within a certain range is an effective 
way to solve this issue. The frequently used spectral 
features are shown in the following formula: 

Ispectral ¼ hbands; hindexes; hSD; hSA; hSID; . . . ; hCCf g (2) 

where hbands stands for the pixel values of the spectral 
band, hindexes represents the indexes derived from 
operations between the bands (e.g., Normalized 
Difference Vegetation Index (NDVI)). These two fea
tures are often extracted from multi-spectral images. 
The features hSD, hSA hSID and hCC represent spectral 
derivative, spectral angle, spectral information diver
gence, and correlation coefficients, which are usually 
derived from hyperspectral images. Although hyper
spectral images generally contain abundant spectral 
features, there may be strong correlations among fea
tures, resulting in severe information redundancy. 
Another limitation of hyperspectral remote sensing is 
its low spatial resolution.

Some tasks for urban monitoring, e.g., land use 
renewal, need to detect the changes of ground objects. 
In this case, the temporal resolution must be consid
ered, and time-series images might be required. 
Therefore, many temporal features that benefit obser
vations can be mined from time-series images. These 
features are shown in the following formula: 

Itemporal ¼ hspatial t1; t2; . . . ; tnð Þ; hspectral t1; t2; . . . ; tnð Þ;
�

hDTW ; . . . ; hstatisticsg (3) 

where hspatial t1; t2; . . . ; tnð Þ and hspectral t1; t2; . . . ; tnð Þ

are the spatial and spectral features at different times, 
respectively. hDTW represents the dynamic time warp
ing distance and hstatistics stands for the statistics fea
tures of time-series images (e.g., mean and variance).

In fact, urban remote sensing observation process is 
generally achieved by constructing appropriate models 
or algorithms based on the temporal, spatial, and 
spectral features of images. Therefore, we abstract 
the process as a spatio-temporal-spectral mode, 
where temporal, spatial, and spectral features serve as 
model inputs. Given different model outputs, an urban 
remote sensing observation model can be divided into 
two categories: 1) data quality improvement model 
and 2) information extraction model. The data quality 
improvement model refers to obtaining higher quality 
images by fusing multi-source data, which can be 
modeled as the following formula: 

I ¼ O I1; I2; I3; . . . ; IKð Þ (4) 

Table 1. The launch schedule of copernicus sentinel satellites.

S-1 
Radar

S-2 
High resolution 

optical

S-3 
Medium resolution optical & 

altimetry

S-4 
Atmospheric chemistry 

(GEO)

S-5p 
Atmospheric chemis

try (LEO)

S-5 
Atmospheric chemis

try (LEO)
S-6 

Altimetry

S-1A 
3 April 2014

S-2A 
23 June 2015

S-3A 
16 February 2016

S-4A 
2021

S-5 pA 
13 October 2017

S-5A 
2021

S-6A 
2020

S-1B 
25 April 2016

S-2B 
6 March 2017

S-3B 
25 April 2018

S-4B 
2027

S-5B 
2021

S-6B 
2025

S-1 C 
2022

S-2 C 
2022

S-3 C 
2023

S-5 C 
>2027

S-1D 
>2024

S-2D 
>2025

S-3D 
>2025
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where I1; I2; I3; . . . ; IK represent multi-source images, 
O �ð Þ stands for fusion model, and I indicates the out
put of the model, i.e., images with higher quality.

Generally speaking, remote sensing images mainly 
contain spatial, spectral, and temporal features, which 
can be expressed by the following formula: 

Ii ¼ Ii;spatial � Ii;temporal � Ii;spectral (5) 

where Ii stands for a remote sensing image, Ii;spatial, 
Ii;temporal and Ii;spectral represent the spatial, temporal, 
and spectral features set, respectively.

Given the difference in sensing techniques, multi- 
source images tend to focus only on a certain compo
nent. For example, high-resolution images own high 
spatial resolution but couples with low temporal and 
low spectral resolution. Therefore, the constraint rela
tionship between multi-source images on each compo
nent should be established to fuse each component when 
a spatio-temporal-spectral observation model is 
constructed: 

I ¼ O F Ii;spatial
� �K

i¼1

� ��
� F Ii;temporal

� �K
i¼1

� �

� F Ii;spectral
� �K

i¼1

� �� (6) 

where F �ð Þ is the feature constraint function and I is 
the fused image.

Furthermore, the output of spatio-temporal-spectral 
observation models can be information. Such a model 
with a specific task T can be abstracted as: 

Y ¼ O I1; I2; I3; . . . ; IK ; Tð Þ (7) 

where I1; I2; I3; . . . ; IK represent multi-source images, 
O �ð Þ stands for information extraction model, and Y 
indicates the output of the model.

Similarly, under the constraint of task T, features 
from three aspects (i.e., spatial, temporal, and spectral) 
can be extracted and further combined, thereby out
putting useful information that benefits numerous 
urban monitoring tasks. This process can be expressed 
via the following formula: 

Y ¼ O F Ii;spatial
� �K

i¼1; T
� �

� F Ii;temporal
� �K

i¼1; T
� ��

� F Ii;spectral
� �K

i¼1; T
� ��

(8) 

where F �ð Þ is the feature constraint function and O �ð Þ
represents information extraction function.

Despite the rich spatial, temporal, and spectral fea
tures remote sensing images contain, not all of them 
are needed for specific tasks. We need to make certain 
choices based on urban observation tasks and pur
poses. In the following section, we further elaborate 
on the proposed model by presenting some 
applications.

4. Applications of urban spatio-temporal- 
spectral observation model

In this section, we gave four examples to elaborate 
on the specific applications of the proposed model. 
These applications included a spatio-temporal 
fusion model for synthesizing ideal data, a spatio- 
spectral observation model for urban vegetation 
biomass estimation, a temporal-spectral observation 
model for urban flood mapping, and a spatio- 
temporal-spectral model for impervious surface 
extraction.

Table 2. The key parameters of GF series satellites.

Name Launch date Sensors
Revisit 
cycle

Number 
of bands

Spatial 
resolution 

(m) Applications

GF-1 2013–04-26 Pan 4d 1 2 Mineral resources survey and monitoring, land use dynamic monitoring, 
geological disaster monitoring, water environment, crop growth 
monitoring, and yield estimation, etc.

Multi-spectral 5 8
Multi-spectral 2d 4 16

GF-2 2014–08-19 Pan 5d 1 1 Geological interpretation, geological disaster investigation, land use 
monitoring and change investigation, urban and rural construction 
management, road network planning and disaster emergency response, 
forest resources investigation, etc.

Multi-spectral 5 4

GF-3 2016–08-10 SAR (C band) 3d 1 1–500 Soil moisture monitoring, prediction and early warning of geological 
hazards, surface water distribution, flood, land use, surface wind field, 
internal waves, oil spill, sea ice and surface targets, etc.

GF-4 2015–12-29 Multi-spectral 20s 5 50 Disaster prevention and mitigation, meteorology, earthquake, forestry and 
environmental protection, etc.Infrared 1 400

GF-5 2018–05-09 Hyper-spectral 5d 330 30 Monitoring of water and ecological environment, solid waste, major 
projects and environmental accidents, investigation of oil and gas 
resources and geological mapping, etc.

Multi-spectral 12 20 and 40

GF-6 2018–06-02 Pan 4d 1 2 Agriculture, rural areas, natural resources, emergency management, 
ecological environment, etc.Multi-spectral1 5 8

Multi-spectral2 2d 8 16
GF-7 2019–11-03 Pan 5d 1 0.8 Basic surveying and mapping, global geographic information assurance, 

monitoring and evaluation of urban and rural construction, agricultural 
survey and statistics, etc.

Multi-spectral 5 3.2
Laser altimeter - - -
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4.1 Urban spatio-temporal fusion observation 
model

The temperature rise caused by urban heat island 
affects vegetation phenology. Exploring such effects 
is of high significance, as vegetation growth has 
a significant impact on water, energy, and carbon 
exchange, which in turn has important feedback on 
climate (Zipper et al. 2016). In phenological studies, 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) and the Advanced Very-High Resolution 
Radiometer (AVHRR) are the two most commonly 
used data given their ability to provide daily data for 
Earth surface observations (Ujoh, Igbawua, and Paul 
2019). However, the spatial resolution of these data is 
very limited and cannot be applied directly to urban 
areas with high heterogeneity (Eliakim et al. 2013). 
With the availability of Landsat series satellites data 
by the United States Geological Survey (USGS) in 
2008, they have quickly become a potential data source 
for urban phenology research, given their spatial reso
lution of 30 m and an 8-day revisit cycle. However, 
due to the influence of weather, light, and other lim
itations, the actual effective observation frequency of 
Landsat ranges from bi-weekly to bi-monthly or even 
less, falling short to meet the requirements of urban 
phenological study (Coops et al. 2012). Fortunately, 
with the launching of Sentinel-2 satellites in 2015, 
scholar started to combine Landsat and Sentinel-2 
MSI to form a twin system, enabling intensive global 
observations with a revisit cycle of 2–3 days (Shao 
et al. 2019). However, the spatial resolution of these 
two satellites is inconsistent.

To address this problem, we proposed a spatio- 
temporal fusion model named super-resolution CNN 
(ESRCNN) to generate a new image with a finer spatial 
resolution of 10 m and a revisit cycle of 2–3 days (Shao 
et al. 2019). The spatio-temporal fusion model belongs 
to the first type of the proposed spatio-temporal- 
spectral model, i.e., data quality improvement model: 

I ¼ ESRCNNðL8t1; . . . ; S2t1; S2t2; S2t3Þ (9) 

where L8ti represents Landsat-8 image acquired at 
time ti, S2ti represents Sentinel-2 image acquired at 
time ti and I represents the fused image.

Figure 4 shows the structure of the ESRCNN model 
for fusing images from Landsat-8 and Sentinel-2 satel
lites. The ESRCNN model contains two major parts: 
a spatial resolution self-improving network for 
Sentinel-2 and a multi-temporal space fusion network 
for Landsat-8 and Sentinel-2 images. First, bands 2–4 
(B, G, and R), 8 (NIR) of Sentinel-2 image with 
a resolution of 10 m and bands 11 and 12 of 
Sentinel-2 image resampled at 10 m using the nearest 
neighbor interpolation were input to the ESRCNN 
model, aiming to provide Sentinel-2 data with richer 
spectral and spatial information, and providing 

auxiliary data for the fusion in the second step. 
Second, the Landsat-8 bands 1–7 resampled at 10 m 
via the nearest neighbor interpolation, and Sentinel-2 
data sets (bands 2–4, 8, 11–12 at 10 m) were input into 
the ESRCNN model to derive Landsat-8 images with 
a spatial resolution of 10 m. Note that our proposed 
fusion network can accommodate multi-temporal 
Sentinel-2 images (10 m) captured in relatively close 
days to the target Landsat-8 image as auxiliary data 
sets. More information about the spatio-temporal 
fusion model can be found in our previous study 
(Shao et al. 2019).

Figure 5 shows the results of Landsat-8 fused with 
three-temporal Sentinel-2 images, respectively. From 
Figure 5, we found that the spatial resolution of the 
fused results is considerably improved while the spectral 
information is well maintained. In addition, we observed 
changes in the land use and land cover due to the 
planting of crops from June 20 to 7 July 2017 (high
lighted by the yellow circles in Figure 5). Although 
Sentinel-2 image on 7 July 2017 was also used as aux
iliary data, the fused result did not present those changes. 
This indicates that the fusion model can identify the land 
use and land cover changes and then remove the spectral 
change related features inconsistent with the target 
image.

To sum up, by applying the proposed spatio- 
temporal fusion model, we can obtain images similar 
to Landsat-8 with a spatial resolution of 10 m and 
a temporal resolution of 2–3 days, thus providing 
effective data sources for urban remote sensing obser
vations that demand both high temporal resolution 
and high spatial resolution.

4.2 Urban spatio-spectral observation model

Urbanization and urban vegetation are intertwined. 
Estimating the biomass of urban vegetation is conductive 
to understand vegetation growth, carbon assimilation 
process, and urban ecosystem (Mincey, Schmitt-Harsh, 
and Thurau 2013). Remote sensing technology has been 
widely used in vegetation biomass estimation by con
structing the relationship between the features derived 
from remote sensing data and the measured biomass 
(Zhang et al. 2019; Shao, Zhang, and Wang 2017). 
However, previous studies in forest biomass tend to use 
medium- and low-resolution remote sensing images (e.g., 
Landsat and MODIS), which does not apply to dense 
urban fabrics as the characteristics of vegetation land
scapes in urban areas are high heterogeneous. Therefore, 
it is necessary to use high spatial resolution images to 
estimate the urban vegetation biomass.

We selected Hengqin New District, Zhuhai City, 
Guangdong Province as study area and used 
WordView-3 and airborne Light Detection and 
Ranging (LiDAR) data to estimate the urban vegetation 
biomass. The height and canopy coverage of trees are 
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closely related to biomass; therefore, three-dimensional 
spatial information is required. After referring to pre
vious studies and our own experimentation, we selected 
10 spatial features from three categories at the plot level 
from LiDAR data (Table 3).

In this study, a total of 22 features from WorldView-3 
image were selected to estimate urban vegetation biomass, 
among which 14 were spectral features and eight were 
spatial features. The spectral features included reflectance 
from four bands and ten vegetation indices, and the spatial 
features included eight texture features (Table 4). We 
obtain the field biomass via the allometric equation.

In this study, we used a Random Forest (RF) algo
rithm to estimate the vegetation biomass. According to 
the above mentioned urban spatio-temporal-spectral 
observation model, the urban vegetation biomass esti
mation process can be modeled as follows: 

Ispatial ¼ F Ii;spatial
� �K

i¼1; biomass
� �

¼ HMax;HMean;Hp; . . . ;Cov;CRR;ME; . . . ;CC
� �

Ispectral ¼ F Ii;spectral
� �K

i¼1; biomass
� �

¼ B2;B3; . . . ;NDVI;OSAVIf g

AGB ¼ RF Ispatial � Ispectral
� �

(10) 

where Ispatial and Ispectral represent the selected spatial 
and spectral features. RFð�Þ represents the random for
est algorithm. AGB denotes the above-ground biomass.

Figure 6 shows the biomass of Hengqin estimated 
by our proposed spatio-spectral observation model 
from 2009 to 2018. In this study, three indicators, i.e., 
coefficient of determination (R2), Root Mean Square 
Error (RMSE), and Relative Root Mean Square Error 
(RRMSE), were used to assess the accuracy of bio
mass estimation. The R22, RMSE and RRMSE of the 
proposed model are 0.6913, 26.98 Mg ha-1, and 
0.4418 respectively, reflecting the effectiveness of 
the proposed model.

4.3 Urban temporal-spectral observation model

In July 2020, the Yangtze River watershed received inten
sive rains and caused massive flooding in the middle and 
lower reaches of the Yangtze River. Chaohu Lake, one of 
the five largest freshwater lakes in the middle and lower 
reaches of the Yangtze River with an area of 780 km2, 
experienced its highest water level in 150 years (13.43 m). 
The city of Hefei, surrounded by Chaohu Lake, is threa
tened with flooding. Therefore, monitoring the flooded 
area of Chaohu Lake is of great significance.

Figure 4. The structure of the ESRCNN model for fusing Landsat-8 and Sentinel-2 images. Conv represents the convolutional layer, 
and ReLU stands for the rectified linear unit(Shao et al. 2019).
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Due to the overcast during flood events, optical 
remote sensing sensors often fail to obtain effective 
data (Annis and Nardi 2019). As an active detec
tor, SAR sensors are able to penetrate cloud cover, 
haze, dust and overcome other climatic conditions 
thanks to its long wavelength, which is not easily 
affected by meteorological conditions and sunshine 
level. Given these properties, SAR can observe the 
Earth in all-weather conditions and in both day 
night. Therefore, we selected SAR images to moni
tor the flooded area of Chaohu Lake in this study. 
Given the size of Chaohu Lake, the spatial resolu
tion of the image does not need to be very high. 
Therefore, Radarsat-2 HH polarization image with 
8 m spatial resolution was selected. According to 
the low backscatter coefficient of water bodies in 
SAR image, we used the thresholding method to 
extract the water bodies. We are also interested in 
monitoring the dynamics of water bodies so multi- 
temporal SAR images are required. According to 
Equation (7) and (8), the observation process can 
be expressed by the following equations: 

Ispectral ¼ F Ii;spectral
� �K

i¼1; flood mapping
� �

¼ δf g

Itemporal ¼ F Ii;temporal
� �K

i¼1; flood mapping
� �

¼ δt1 ; δt2 ; δt3 ; . . . :; δtKf g

Y ¼ ThresholdðIspectral � ItemporalÞ

(11) 

where δ indicates the backscatter coefficient, δti repre
sents the backscatter coefficients of SAR image at 
timeti.Ispectral and Itemporal respectively stand for the 
spectral and temporal features used in this study. 
Threshold �ð Þ represents the threshold extraction 
function.

Figure 7 shows the extraction result of water 
bodies. Compared with July 20, the inundation area 
increased significantly on July 24. However, the inun
dation area did not notably expand, evidenced by the 
similar water body extent on July 24 and July 26. Such 
timely flood monitoring can provide policymakers 
with useful information to guide disaster response 
and mitigation.

4.4 Urban spatio-temporal-spectral observation 
model of Earth-Ground collaboration

In urban areas, the existence of trees on both sides of 
the roads poses great challenge in impervious surface 
extraction, as it is impossible to judge whether the 
ground objects under the trees is impervious surface 
or not using aerial or aerospace remote sensing 
images alone. Recent advances in sensor technology 
and digitization have fostered some new data acqui
sition means, such as street view. The street view is 
a live-action mapping service that provides users 
with 360-degree panoramic views of a city, street, or 
other environments. The most commonly used 

Figure 5. The multi-temporal fusion results (R: band 5, G: band 4, B: band 3). (a) – (c) are three 10 m Sentinel-2 images taken on 
June 20, June 27 and 7 July 2017. (d) – (f) are the original Landsat-8 reference image of 30 m and the fused Landsat-8 image of 
30 m and 10 m on 15 June 2017, respectively (Shao et al. 2019).
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street view maps include Google Street View, Baidu 
Street View, and Tencent Street View. Compared 
with remote sensing images, street view images have 
several merits. First, street view images record urban 
street-level scenes from the perspective of pedes
trians, reflecting the facade information. Second, 
street view images have extensive spatial coverage 
and large data volume. For example, Baidu Street 
View covers 372 cities in China. Third, street view 
data collection is of high efficiency and low cost. 
Therefore, the combination of remote sensing data 
and street view data is expected to mitigate the occlu
sion problem of trees and shadows in the urban 
remote sensing observation.

Figure 8 shows the comparison of impervious sur
face extraction results before and after combining 
street view images. In this example, we used GF-2 
images with a spatial resolution of 2 m. We observed 
that using GF-2 images alone fails to extract the 
impervious surface accurately under the trees, as 
shown in region A, B, and C in Figure 8. After com
bining the GF-2 with street view images, the imper
vious surface below the trees can be extracted 
effectively. However, we need to acknowledge that 
the street view images may not fully cover the entire 
study area. Thus, such a combination of satellite 
images and street views can only improve the 

impervious surface detection in areas where both 
data sources are available.

5. Discussions

Due to the diversification of the purposes and objects 
in urban remote sensing observation, urban remote 
sensing has a relatively high requirement for data, with 
a preference for data with high spatial resolution, high 
temporal resolution, and high spectral resolution. 
Unfortunately, it is difficult to optimize all three 
types of resolution simultaneously due to technical 
bottlenecks of sensors. After reviewing the literature, 
we notice that there is no Earth observation program 
initially designed for urban scenes. Therefore, it is 
necessary to coordinate data from existing remote 
sensing satellites to meet the needs of urban 
observation.

To fill the aforementioned gap, we abstracted the 
urban remote sensing process and proposed an urban 
spatio-temporal-spectral observation model in this 

Table 3. The features extracted from LiDAR data.
Type Feature Description

Canopy height 
variables

Hmax Maximum height of the point cloud

Hmean Average height of the point cloud
Hp The percentile height of the point cloud
Hsd Standard deviation of point cloud height
Hcv Change coefficient of point cloud height
Hvar Variance of the point cloud height
Hske Gradient of point cloud height
Hkur Peak point cloud height

Canopy coverage Cov The ratio of the canopy echo area to the 
total wave area

Shape of the 
canopy

CRR Canopy relief ratio

Figure 6. The biomass of Hengqin estimated by our proposed spatio-spectral observation model from 2009 to 2018.

Table 4. The features extracted from WroldView-3 images.
Feature Description Feature Description

B2 Blue band MSAVI Modified Soil Adjusted 
Vegetation Index

B3 Green band ARVI Atmospherically 
Resistant Vegetation 
Index

B4 Red band OSAVI Atmospherically 
Resistant Vegetation 
Index

B5 NIR band ME. Mean
NDVI Normalized Difference 

Vegetation Index
VAR Variance

RVI Ratio Vegetation Index HO. Homogeneity
GNDVI the variant of the NDVI 

that uses the green 
band

CO. Contrast

EVI Enhanced Vegetation 
Index

DI Dissimilarity

VIgreen Green Vegetation Index EN Entropy
TVI Temperature Vegetation 

Index
SM. Second Moment

SAVI Soil Adjusted Vegetation 
Index

CC Correlation

382 Z. SHAO ET AL.



study. Illustrated by the applications in Section 4, we 
believe that the proposed model can largely benefit 
urban observation. First, we believe that the data 
requirements of the specific task of urban remote sen
sing observation should be carefully analyzed. Second, 
we need to prioritize resolution metrics. When certain 
resolution metrics meet the requirements, other rele
vant features can be further considered. Third, when 
the existing data do not meet the application require
ments, we need to consider synthesizing new images 
to meet the requirements by means of image fusion, 
where the scale inconsistency among different images 
should not be ignored. Fourth, we need to mine the 
features of the observed objects from the three dimen
sions of time, space, and spectrum. The proposed 
model is a conceptual model now. In the future, we 
expect that specific feature constraint rules can be 
established given different observation requirements 
so as to specifically guide the selection of features and 
the construction of models.

6. Conclusions and prospects

Cities contain complex types of land use and land cover. 
Urban remote sensing needs to reflect the dynamics in 
complex urban fabrics by obtaining images with high 
spatial resolution, high spectral resolution, and high 

temporal resolution. To the best of our knowledge, 
however, no satellite sensors own all the above charac
teristics. Thus, it is necessary to coordinate data from 
existing remote sensing satellites to meet the needs of 
urban observation. In this study, we abstracted the 
urban remote sensing observation process and pro
posed an urban spatio-temporal-spectral observation 
model, filling the gap of no existing urban remote sen
sing framework. In this study, we present four applica
tions to elaborate on the specific applications of the 
proposed model: 1) a spatio-temporal fusion model 
for synthesizing ideal data, 2) a spatio-spectral observa
tion model for urban vegetation biomass estimation, 3) 
a temporal-spectral observation model for urban flood 
mapping, and 4) a spatio-temporal-spectral model for 
impervious surface extraction. We believe that the pro
posed model, although in a conceptual stage, can largely 
benefit urban observation by providing a new data 
fusion paradigm.

With hundreds and thousands of communication, 
navigation, and remote sensing satellites in space, we 
should acknowledge the importance of real-time and 
intelligent information services for remote sensing data 
fusion. In the future, the Internet for Satellites and the 
Internet of things for satellites should be further devel
oped to contribute to the harmonious and sustainable 
development of human beings and cities.

Figure 7. The extraction result of water bodies.
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