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Abstract: In this paper, improved and generalized version of Ostrowski’s type inequalities is established.
The parameters used in the peano kernels help us to obtain previous results. The obtained bounds are then
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1. Introduction

ince Ostrowski first time proved his inequality in 1938, after that many researchers did a lot of work
S on it. Some monographs presented by Barnet et al., [1] and Dragomir et al. [2] on Ostrowski’s type
inequalities. In the past years, many researchers [3-7] did efforts to obtain tighter error bounds of Ostrowski
type inequalities. Inspired and motivated by the work of above famous Mathematician [8,9] and [2,10,11], we
started our work to extend and produce new and generalized Ostrowski’s integral inequalities.

In this paper, we introduced some new generalized different types of Kernels, development of new
identities and new error bounds of Ostrowski’s type inequalities for first and second derivable mappings.
By utilizing our obtained results, previous famous results are recaptured as special cases.

2. Results for Quadratic mapping

Theorem 1. Let | C Rsuch that ¢,d € J,and ¢ < d.If s : | — R is a derivable function such that vy < s’ (t) < T, and
@, 9,7, T € R, then we get

p+y

S (et v =) || < TG (oG-t - p - a), )

X d
; B (pr—c —p(x—aP)s' (x) —(p(x—c)+9 (x—d))s(x) + ((P.C/s@)dth/s(t)dt)

forallt € [c,d].

Proof. Define a new peano Kernel L (x,t) : [c,d] = R by

L(t—c)2
L (X, t) = { (P—l};w (tfd)Zl He [C, X] (2)
i t e (x,d]
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forall x € [c,d]. By using (2), we get

d
C/L(x,t)s“(t)dt:qoiw %(x—c)zs’(x)—%(x—d)zs’(x)—(p(x—c)
x d
xs(x)+l/1(xd)s(x)+((p/s(t)dtJrlp/s(t)dt)]. 3)

Again, by using (2), we get

d
/L(x,t)dt:w(q)(x—c)g—lp(x—d)3). @)

c

Using (3) and (4), we get

x d
+ qo/s(t)dt—i—t,b/s(t)dt) —(6:<g0(x—c)3—lp(x—d)3>] ®)

On the other hand

< max 5" () — | C/ L (x,t)dt. ©)

d

v (o= —p(x—a)

C/|L(x,t)|dt_6((p+lp) (px—c —w(x—a)). )

Ltc_l”zrv then, m[a;( |s” (t) — C|§F_T7.Thus(6)becomes
telc

< sy (e —vix—a7)|. )

d
/L (x,t) (s" (t) — C) dt

Using (5) in (8), we get our required result (1). O

Remark 1. By putting ¢ = ¥ in (1), we get

(d_c)<x_“2rd)s'(x) +/ FH(d— )<<d;4c)2+;<x_cgd>z>

2
SM(d—c)<(d;f) +;<x—“;d>>. ©)

Corollary 2. By putting x = C+d in (9), we get mid point inequality:

< & (T=m) @0

d
/s(t)dt(dc)s(c—;d> 418(1‘+7)(d 0)?

[

3. Applications in numerical integration
Using [5], we suppose that J, : ¢ = xp < x1 < x3 < ... < X1 < X, = d a partition of [c,d],
gie[xi+ 5%,xi+1 — 5%] ,(i=0,1,..,n—1)and 0; = ;41 — x;, (i = 0,1, .....,n — 1), then following theorem

exist:
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Theorem 3. Let s : [c,d] — R be continuous on [c,d]| and derivable on (c,d) , then following formula exist:

d
[sat=AGe0)+ R8T, (10)
where
n—1 1

A(s,8 Jn) < ;) o0 (4’ (& —x) =9 (& - xi+1)2> s' (&)

n—1
X (pitp (@ (& —x) + ¢ (& — xi41)) s (&), (1)

8,8, Jn) < Z q)+lp ( (Gi —Xi)3—¢’(§i—xi+1)3>- (12)

and remainder satisfies the estimation for all &; € [xj, Xj11] -

Proof. By using Theorem 1 on [x;, x;11],C; € [x;, Xi+1], to get:

‘z(q,lJr ) <<P (Ci—xi)2_1p(§i—xz'+1)2) s' (&) _thLtp (@ (& — %)+ (& — xi41)] 5 (&)
Gi Xit1
+¢,i¢ (¢Js<t>dt+¢g/s<t>dt) “mery T (qo(@—xif—lp(a—xiﬂﬁ)\
12(5; ) (r—=7) ((P(Ci —xi)3—¢(§i—xi+1)3)/ (13)

— 1 2 2\ |
; 20+ 9) ((P(ﬁi —xi)" =¥ (& — xit1) )s (Gi) — Loy (@ (& —x;) + 9 (& —xi41)) s (&)

— ) d n—1 .

E— ( C/s(t)dth/s(t)dt) ' Ly (P@ v @) )|

g—: §0+¢, ( (5‘—xi)3—¢(§i—xi+1)3)-

With the help of generalized triangular inequality, we get the desired estimation. [J

4. Results for generalized linear mapping

Theorem 4. Letr : [ - Randv,w € I, v < w.If g’ : I — R, such that v < v (t) < T, V't € [v,w] and
o, ¥, v, T € R. We have

g |7 (o= ) v (vt e ) [ + 25 r o) 9 (o)

¢y 2(p + )
1 X w 1“+7 w—1v 2 0 2
S (gov/r(t)wth/r(t)wt) Tt s <<p<x—v—g ) v (x-wre®; ))
o’ (¢—9)
(o T ) (T +19) (w—0)?
2

O A s
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Proof. First we define the mapping L (x,t) : [v,w] — Rby
s = (0+e®)],  te o]
L(x,t)y=1{ %V g 15
et {qpi,,[t—w—ew;)], e (xul 9
By using (15), we get
U/L(x,t)r’(t)dt—¢+lp[go(x—<v+gw2v))r(x)—1p<x—(w—ngv>>
xr(x)+Q%v(q)r(v)+l/Jr( ))—(q)/r(t)dt—i—lp/r(t)dt)], (16)
and
i P w-ov\\? ¢ 2
/L(x,t)dtzm <x—<v+g > >) —Z(w—v)
¥ 0’ 2 w-ov)\?
a5 (o (o) )
We put C = ”77 and using (16) and (17), we get
/L(x,t)(r’(t)—C)dt <qu)¢ (x—<U+Qw2_v)>r(x)—i-g(w—v)r(v)—/r(t)dt]
+% g( —U)r(w)—(x—<w—g_>)r(x)—x/r(t)dt]
C —-o\\* o2
g | () i(w”z]
2 _ 2
- 9 i(“"”)z‘("‘<w“\’wzv>)] o
Let e
_ v
=
Then
D/L(x,t) (' (t) — C) dt gtrer[1321|r’(t)—c|v/L(x,t)dt. (19)
Now
w 2 1 N2 N2
/|L(x,t)|dt:%(w—v)2+m (p<x—v—gw20) +1,b(x—w+gw20> ], (20)
max |7/ (1)~ C| < 227 forall y<t<T. 21)
tev,w) 2
Using (19) and (21), we have
/L(x,t)(r'(t)— ;")dt
r— 2 1 _ 2 _ 2
_27[%(w—v)2+2(¢+¢) <q)<x—v—Q 20) +1P(x—w+qwzv> >] (22)
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Using (18) and (22), we get our required result (14). [

Remark 2. By putting ¢ = 0 in (14), we get

p+y

1T (Pl -y
r

e L R (T Rt

5. Results for generalized Quadratic mapping

Theorem 5. Letz : | CR,and ¢,d € I, ¢ < d.Ifz: I — R is a derivable function such that v < z' (t) <T, Vt €
[c,d], the constants ¢, 1, v, € R. Then, we get

L d—c\’® d—c\’ / Q2 / /
W(?(’Ccez) v (x-d+e% ))Z(XHWMC)Z(W (@) - 97 ()
1

+(P+<¢ (x—d—i—gdz_c> —go(x—c—gdgc>>2(x) — 2((PQ+¢) (d—c)(gz(c) +yz(d))

T—v (-9 1 d—c\’ d—c\’
< ) 0 Yy (¢<x‘d+92) AR >>] *)

[ _ d—c 2
Lixt=4 M0 ’ (HQ;_C)L’ relox (24)
s - (d-ef)| " re(xd]
By using (24), we get
/dL(x £ 2 (t)dt =—— 9"{ —(c+ d_c)rz’(x)—‘/’ {x—(d— d_c>]2z’(x)—"’ 2(d - ¢)?Z (c)
S oty |2 2 2 2 ¢

d
Q(d—c)z(c)—%g(d—c)z(d) +g0/z(t)dt+tp/z(t)dt] (25)

and
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Using (25) and (26), we get

3
—gg(d—c)z(c)—fg(d—c)z(d) +go/z(t)dt+¢/z(t)dt —c[ig (d—c)3+6((p1+¢)
_ 3 o 3
><<<p(x—c—gdzc> —1p(x—d+gdzc)> (27)
But on the other side,
d d
/L(x,t) (" (t) — C) dt gtrg[?;]|z”(t)—c|/|L(x,t)|dt. (28)

Now, again by using (24), we get

C/dL(x,t)dt:—mw—cf%—w (go [x— <c+gdgc)]3+1p [x— (d—Qd;Cﬂg) (29)

and

c_tv (30)
2
Also r
ity —c| < —7. 31
max 2" () |<— (31)

Using (28) and (29), we get

d

/ L (x,t) (2" (t) — C) dt

c

G- o ag (  of f)])

Using (27) and (32), we get our required result (23). O

6. Conclusion

In this paper, we proved the results by using quadratic mapping, generalized linear mapping and
generalized quadratic mapping. We developed application for numerical integration also.
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